Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.765
Filtrar
1.
Clin Transl Sci ; 17(7): e13881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982592

RESUMO

Chondrocyte apoptosis is recognized as one of the pathological features involved in cartilage degeneration driving the onset and progression of knee osteoarthritis (OA). This study aimed to determine the molecular mechanism underlying the effect of clusterin (CLU), anti-apoptotic molecule, in human knee OA chondrocytes. Primary knee OA chondrocytes were isolated from the cartilage of knee OA patients and divided into five groups: (1) the cells treated with interleukin (IL)-1ß, (2) CLU alone, (3) a combination of IL-1ß and CLU, (4) LY294002 (PI3K inhibitor) along with IL-1ß and CLU, and (5) the untreated cells. Production of apoptotic, inflammatory, anabolic, and catabolic mediators in knee OA chondrocytes was determined after treatment for 24 h. Our in vitro study uncovered that CLU significantly suppressed the production of inflammatory mediators [nitric oxide (NO), IL6, and tumor necrosis factor (TNF)-α] and apoptotic molecule (caspase-3, CASP3). CLU significantly upregulated messenger ribonucleic acid (mRNA) expressions of anabolic factors [SRY-box transcription factor-9 (SOX9) and aggrecan (ACAN)], but significantly downregulated mRNA expressions of IL6, nuclear factor kappa-B (NF-κB), CASP3, and matrix metalloproteinase-13 (MMP13). Anti-apoptotic and anti-inflammatory effects of CLU were mediated through activating PI3K/Akt signaling pathway. The findings suggest that CLU might have beneficial effects on knee OA chondrocytes by exerting anti-apoptotic and anti-inflammatory functions via PI3K/Akt pathway, making CLU a promising target for potential therapeutic interventions in knee OA.


Assuntos
Apoptose , Condrócitos , Clusterina , Interleucina-1beta , Osteoartrite do Joelho , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Apoptose/efeitos dos fármacos , Clusterina/metabolismo , Clusterina/genética , Interleucina-1beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Masculino , Pessoa de Meia-Idade , Idoso , Inflamação/metabolismo , Inflamação/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Morfolinas/farmacologia , Cromonas/farmacologia , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Metaloproteinase 13 da Matriz/metabolismo , Mediadores da Inflamação/metabolismo , Óxido Nítrico/metabolismo
2.
BMC Musculoskelet Disord ; 25(1): 467, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879481

RESUMO

BACKGROUND: The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS: Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS: The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION: The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.


Assuntos
Fator 4 Ativador da Transcrição , Apoptose , Cartilagem Articular , Condrócitos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Histona Desacetilases , Ratos Sprague-Dawley , Animais , Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Masculino , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Humanos , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Transcrição CHOP/metabolismo , Células Cultivadas , Osteoartrite/patologia , Osteoartrite/metabolismo , Proteínas Repressoras
3.
Front Immunol ; 15: 1407679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868774

RESUMO

Background: Cartilage injury is the main pathological manifestation of osteoarthritis (OA). Healthy chondrocyte is a prerequisite for cartilage regeneration and repair. Differences between healthy and OA chondrocyte types and the role these types play in cartilage regeneration and OA progression are unclear. Method: This study conducted single-cell RNA sequencing (scRNA-seq) on the cartilage from normal distal femur of the knee (NC group) and OA femur (OA group) cartilage, the chondrocyte atlas was constructed, and the differences of cell subtypes between the two groups were compared. Pseudo-time and RNA velocity analysis were both performed to verify the possible differentiation sequence of cell subtypes. GO and KEGG pathway enrichment analysis were used to explore the potential functional characteristics of each cell subtype, and to predict the functional changes during cell differentiation. Differences in transcriptional regulation in subtypes were explored by single-cell regulatory network inference and clustering (SCENIC). The distribution of each cell subtype in cartilage tissue was identified by immunohistochemical staining (IHC). Result: A total of 75,104 cells were included, they were divided into 19 clusters and annotated as 11 chondrocyte subtypes, including two new chondrocyte subtypes: METRNL+ and PRG4+ subtype. METRNL+ is in an early stage during chondrocyte differentiation, and RegC-B is in an intermediate state before chondrocyte dedifferentiation. With cell differentiation, cell subtypes shift from genetic expression to extracellular matrix adhesion and collagen remodeling, and signal pathways shift from HIF-1 to Hippo. The 11 subtypes were finally classified as intrinsic chondrocytes, effector chondrocytes, abnormally differentiated chondrocytes and dedifferentiated chondrocytes. IHC was used to verify the presence and distribution of each chondrocyte subtype. Conclusion: This study screened two new chondrocyte subtypes, and a novel classification of each subtype was proposed. METRNL+ subtype is in an early stage during chondrocyte differentiation, and its transcriptomic characteristics and specific pathways provide a foundation for cartilage regeneration. EC-B, PRG4+ RegC-B, and FC are typical subtypes in the OA group, and the HippO-Taz pathway enriched by these cell subtypes may play a role in cartilage repair and OA progression. RegC-B is in the intermediate state before chondrocyte dedifferentiation, and its transcriptomic characteristics may provide a theoretical basis for intervening chondrocyte dedifferentiation.


Assuntos
Cartilagem Articular , Condrócitos , Análise de Célula Única , Humanos , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Análise de Sequência de RNA , Fêmur/metabolismo , Fêmur/patologia , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Diferenciação Celular , Masculino , Feminino , Transcriptoma , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/genética
4.
PeerJ ; 12: e17417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827307

RESUMO

Background: Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods: Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results: A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1ß were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion: Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.


Assuntos
Mapas de Interação de Proteínas , Humanos , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/patologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/imunologia , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Masculino , Tíbia/patologia , Tíbia/imunologia , Tíbia/metabolismo , Regulação para Baixo , Feminino
5.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928219

RESUMO

Angiogenesis and vascular endothelial growth factor (VEGF) are involved in osteoarthritis (OA). We previously reported the inhibitory effect of bevacizumab in a rabbit model of OA. In the current study, we investigated the effects of lenvatinib, an angiogenesis inhibitor targeting the VEGF and fibroblast growth factor receptors, on synovitis, osteophyte formation, and cartilage degeneration in a rabbit OA model. Posttraumatic OA was induced by anterior cruciate ligament transection (ACLT) on one knee of each rabbit. Rabbits were placed into four groups according to the following lenvatinib doses: untreated control (n = 12), L0.3: 0.3 mg/kg/day (n = 15), L1.0: 1.0 mg/kg/day (n = 14), and L3.0: 3.0 mg/kg/day (n = 13) groups. We evaluated limb pain using the weight distribution ratio measured with an incapacitance tester, macroscopic osteophyte formation, and femoral condyle synovium and cartilage histology. For cartilage evaluation, the following distal sites of the femur were evaluated separately: femoral-tibial (FT), femoral-patellar (FP), and femoral corner (between FP and FT). The weight distribution ratio at 12 weeks after surgery was higher in the L0.3 and L1.0 groups than in the control group. Osteophyte formation and synovitis scores were significantly lower in the L0.3, L1.0, and L3.0 groups than in the control group. The Osteoarthritis Research Society International scores of the FT, corner, and FP sites in the L0.3 group were lower than in the control group. The cartilage thickness ratio at the FT and corner sites was significantly lower in the L0.3 group than in the control group. Krenn's grading system of cartilage synovitis showed that all lenvatinib-administered groups had significantly lower scores than the control group. MMP3 expression level in cartilage tissue was significantly lower in the L3.0 group compared with the other three groups. ADAMTS5 expression was lower in the L3.0 group compared with the control and L0.3 groups. Oral administration of lenvatinib inhibited synovitis, osteophyte formation, and cartilage degeneration and reduced pain in a rabbit ACLT model. Lenvatinib is an oral VEGF inhibitor that is easier to administer than other VEGF inhibitors and may have potential as a treatment of posttraumatic OA.


Assuntos
Osteoartrite do Joelho , Compostos de Fenilureia , Quinolinas , Animais , Coelhos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Modelos Animais de Doenças , Masculino , Sinovite/tratamento farmacológico , Sinovite/etiologia , Sinovite/patologia , Sinovite/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Osteófito/tratamento farmacológico , Osteófito/metabolismo , Osteófito/etiologia , Osteófito/patologia
6.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791302

RESUMO

The diagnosis of osteoarthritis (OA) is based on radiological changes that are delayed, along with clinical symptoms. Early and very early diagnosis at the stage of molecular pathology may eventually offer an opportunity for early therapeutic intervention that may retard and prevent future damage. Cartilage oligomeric matrix protein (COMP) is a non-collagenous extracellular matrix protein that promotes the secretion and aggregation of collagen and contributes to the stability of the extracellular matrix. There are contradictory literature data and currently, the parameter is used only for scientific purposes and its significance is not well-determined. The serum level of COMP in patients with metabolic type OA of the knee has not been evaluated. The aim of the study was to analyze serum COMP levels in metabolic knee OA and controls with different BMI. Our results showed that the mean COMP values were significantly higher in the control group (1518.69 ± 232.76 ng/mL) compared to the knee OA patients (1294.58 ± 360.77 ng/mL) (p = 0.0012). This may be related to the smaller cartilage volume in OA patients. Additionally, COMP levels negatively correlated with disease duration (p = 0.04). The COMP level in knee OA with BMI below 30 kg/m2 (n = 61, 1304.50 ± 350.60 ng/mL) was higher compared to cases with BMI ≥ 30 kg/m2 (n = 76, 1286.63 ± 370.86 ng/mL), but the difference was not significant (p = 0.68). Whether this finding is related to specific features in the evolution of the metabolic type of knee OA remains to be determined. Interestingly, comparison of COMP levels in the controls with different BMI revealed significantly higher values in overweight and obese individuals (1618.36 ± 203.76 ng/mL in controls with BMI ≥ 25 kg/m2, n = 18, 1406.61 ± 216.41 ng/mL, n = 16; p = 0.0092). Whether this finding is associated with increased expression of COMP in the adipose tissue or with more intensive cartilage metabolism in relation to higher biomechanical overload in obese patients, considering the earlier development of metabolic type knee OA as an isolated finding, remains to be determined.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem , Obesidade , Osteoartrite do Joelho , Humanos , Proteína de Matriz Oligomérica de Cartilagem/sangue , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Idoso , Índice de Massa Corporal , Biomarcadores/sangue , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Estudos de Casos e Controles
7.
Cytokine ; 180: 156635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749277

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a chronic progressive osteoarthropathy. Chrysin's anti-KOA action has been demonstrated, however more research is needed to understand how chrysin contributes to KOA. METHODS: LPS/ATP-induced macrophages transfected with or without HMGB1 overexpression underwent 5 µg/mL chrysin. The cell viability and macrophage pyroptosis were examined by cell counting kit-8 and flow cytometer. In vivo experiments, rats were injected with 1 mg monosodium iodoacetate by the infrapatellar ligament of the bilateral knee joint to induce KOA. The histological damage was analyzed by Safranin O/Fast Green staining and hematoxylin and eosin staining. The PWT, PWL and inflammatory factors were analyzed via Von-Frey filaments, thermal radiometer and ELISA. Immunofluorescence assay examined the expressions of CGRP and iNOS. The levels of HMGB1/RAGE-, NLRP3-, PI3K/AKT- and neuronal ion channel-related markers were examined by qPCR and western blot. RESULTS: Chrysin alleviated macrophage pyroptosis by inhibiting HMGB1 and the repression of chrysin on HMGB1/RAGE pathway and ion channel activation was reversed by overexpressed HMGB1. HMGB1 facilitated neuronal ion channel activation through the RAGE/PI3K/AKT pathway. Chrysin could improve the pathological injury of knee joints in KOA rats. Chrysin suppressed the HMGB1-regulated RAGE/PI3K/AKT pathway, hence reducing KOA damage and peripheral sensitization. CONCLUSION: Chrysin mitigated neuropathic pain and peripheral sensitization in KOA rats by repressing the RAGE/PI3K/AKT pathway modulated by HMGB1.


Assuntos
Flavonoides , Proteína HMGB1 , Neuralgia , Osteoartrite do Joelho , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais , Animais , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Flavonoides/farmacologia , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Piroptose/efeitos dos fármacos
8.
Redox Biol ; 73: 103143, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754271

RESUMO

BACKGROUND: Our previous studies have shown that lipoxin A4 (LXA4) can serve as a potential biomarker for assessing the efficacy of exercise therapy in knee osteoarthritis (KOA), and fibroblast-like synoviocytes (FLSs) may play a crucial role in KOA pain as well as in the progression of the pathology. OBJECTIVE: By analyzing the GSE29746 dataset and collecting synovial samples from patients with different Kellgren-Lawrence (KL) grades for validation, we focused on exploring the potential effect of LXA4 on ferroptosis in FLSs through the ESR2/LPAR3/Nrf2 axis to alleviate pain and pathological advancement in KOA. METHODS: The association between FLSs ferroptosis and chondrocyte matrix degradation was explored by cell co-culture. We overexpressed and knocked down LPAR3 in vitro to explore its potential mechanism in FLSs. A rat model of monosodium iodoacetate (MIA)-induced KOA was constructed and intervened with moderate-intensity treadmill exercise and intraperitoneal injection of PHTPP to investigate the effects of the LXA4 intracellular receptor ESR2 on exercise therapy. RESULTS: ESR2, LPAR3, and GPX4 levels in the synovium decreased with increasing KL grade. After LXA4 intervention in the co-culture system, GPX4, LPAR3, and ESR2 were upregulated in FLSs, collagen II was upregulated in chondrocytes, and MMP3 and ADAM9 were downregulated. LPAR3 overexpression upregulated the expression of GPX4, Nrf2, and SOD1 in FLSs, while downregulating the expression of MMP13 and MMP3; LPAR3 knockdown reversed these changes. Moderate-intensity platform training improved the behavioral manifestations of pain in KOA rats, whereas PHTPP treatment partially reversed the improvement in synovial and cartilage pathologies induced by platform training. CONCLUSION: LXA4 inhibited FLSs ferroptosis by activating the ESR2/LPAR3/Nrf2 axis, thereby alleviating the pain and pathological progression of KOA. This study brings a new target for the treatment of KOA and also leads to a deeper understanding of the potential mechanisms of exercise therapy for KOA.


Assuntos
Ferroptose , Lipoxinas , Fator 2 Relacionado a NF-E2 , Osteoartrite do Joelho , Sinoviócitos , Animais , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/patologia , Ratos , Lipoxinas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sinoviócitos/metabolismo , Humanos , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Membrana Sinovial/metabolismo , Progressão da Doença
9.
Sci Rep ; 14(1): 12093, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802533

RESUMO

Recently, we found significantly reduced total superoxide dismutase (SOD) activity in the cartilage of patients with end-stage knee osteoarthritis (OA). In this study, we aimed to evaluate the SOD activity in serum, joint fluid, cartilage, and synovial membrane samples collected from 52 patients with end-stage knee OA who underwent total knee arthroplasty. The relationship between the total SOD activity in each tissue was evaluated using Spearman's rank correlation coefficient. The joint fluid total SOD activity was used as the objective variable, and its association with the serum, cartilage, and synovial total SOD activities was evaluated using multiple linear regression analysis. Univariate analysis revealed that joint fluid total SOD activity was positively correlated with synovial total SOD activity. Multiple linear regression analysis using joint fluid total SOD activity as the objective variable showed a positive association with synovial total SOD activity (ß = 0.493, adjusted R2 = 0.172, P < 0.01). In patients with end-stage knee OA, the state of the synovial total SOD activity is better reflected by the total SOD activity in the joint fluid than that in the cartilage. Joint fluid total SOD activity may serve as a biomarker for the treatment and prevention of synovitis.


Assuntos
Osteoartrite do Joelho , Superóxido Dismutase , Líquido Sinovial , Membrana Sinovial , Humanos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/enzimologia , Osteoartrite do Joelho/patologia , Masculino , Feminino , Líquido Sinovial/metabolismo , Superóxido Dismutase/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Idoso , Pessoa de Meia-Idade , Biomarcadores , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/enzimologia , Artroplastia do Joelho
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788831

RESUMO

Osteoarthritis (OA) is a prevalent joint disease that can be exacerbated by lipid metabolism disorders. The intra-articular fat pad (IFP) has emerged as an active participant in the pathological changes of knee OA (KOA). However, the proteomic and lipidomic differences between IFP tissues from KOA and control individuals remain unclear. Samples of IFP were collected from individuals with and without OA (n = 6, n = 6). Subsequently, these samples underwent liquid chromatography/mass spectrometry-based label-free quantitative proteomic and lipidomic analysis to identify differentially expressed proteins (DEPs) and lipid metabolites (DELMs). The DEPs were further subjected to enrichment analysis, and hub DEPs were identified using multiple algorithms. Additionally, an OA diagnostic model was constructed based on the identified hub DEPs or DELMs. Furthermore, CIBERSORT was utilized to investigate the correlation between hub protein expression and immune-related modules in IFP of OA. Our results revealed the presence of 315 DEPs and eight DELMs in IFP of OA patients compared to the control group. Enrichment analysis of DEPs highlighted potential alterations in pathways related to coagulation, complement, fatty acid metabolism, and adipogenesis. The diagnostic model incorporating four hub DEPs (AUC = 0.861) or eight DELMs (AUC = 0.917) exhibited excellent clinical validity for diagnosing OA. Furthermore, the hub DEPs were found to be associated with immune dysfunction in IFP of OA. This study presents a distinct proteomic and lipidomic landscape of IFP between individuals with OA and those without. These findings provide valuable insights into the molecular changes associated with potential mechanisms underlying OA.


Assuntos
Tecido Adiposo , Lipidômica , Osteoartrite do Joelho , Proteômica , Humanos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Proteômica/métodos , Lipidômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Metabolismo dos Lipídeos , Idoso , Relevância Clínica
11.
Clin Rheumatol ; 43(7): 2307-2316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727800

RESUMO

OBJECTIVE: This study investigated the effects of sericin on inflammation, oxidative stress, and lipid metabolism in female rats with experimental knee osteoarthritis (KOA), focusing on evaluating its effectiveness via the sterol regulatory protein (SREBP)-1C and SREBP-2 pathways. METHODS: The rats were randomly assigned to three experimental groups: the C group (control), the KOA group (KOA control), and the sericin group (KOA + sericin). The KOA model was created by injecting monosodium iodoacetate (MIA) into the knee joint. Sericin was administered intra-articularly to rats on days 1, 7, 14, and 21 (0.8 g/kg/mL, 50 µL). After 21 days, the rats were sacrificed, and serum samples were analyzed using an ELISA to measure tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), IL-10, SREBP-1c, SREBP-2, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), cholesterol, triglyceride, and total oxidant-antioxidant status (TOS-TAS) levels. RESULTS: The KOA group exhibited higher serum TNF-α, IL-1ß, TOS, SREBP-1C, ACC, FAS, triglyceride, SREBP-2, and cholesterol levels than the C group (P < 0.05). However, the levels of these cytokines, except cholesterol, were significantly lower in the sericin group than in the KOA group. The KOA group exhibited significantly lower serum TAS and IL-10 levels than the C group (P < 0.05). In the sericin group, there was a statistically significant increase (P < 0.05). CONCLUSION: Sericin shows promising potential for reducing inflammation, oxidative stress, and lipid metabolism in experimental models of KOA in rats. However, further clinical research is necessary to validate the potential of sericin as a therapeutic agent for treating KOA. Key Points • Sericin can reduce knee osteoarthritis (KOA) symptoms in an experimental rat model. • In particular, in the serum of an experimental KOA rat model, sericin specifically reduces the levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1ß), and increases the levels of anti-inflammatory cytokines, such as IL-10. • Sericin reduced lipid metabolism via the sterol regulatory protein (SREBP)-1C and SREBP-2 pathways and oxidative stress in the serum of the experimental KOA rat model. • The intra-articular administration of sericin has been shown to significantly reduce lipid metabolism, oxidative stress, and inflammation, as supported by biochemical analysis. These findings suggest its promising potential as an alternative treatment option for KOA.


Assuntos
Modelos Animais de Doenças , Inflamação , Metabolismo dos Lipídeos , Osteoartrite do Joelho , Estresse Oxidativo , Sericinas , Animais , Feminino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Sericinas/farmacologia , Inflamação/tratamento farmacológico , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ratos Sprague-Dawley
12.
J Tradit Chin Med ; 44(3): 468-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767630

RESUMO

OBJECTIVE: To investigate the effect of acupotomy, on mitophagy and the Pink1-Parkin pathway in chondrocytes from rabbits with knee osteoarthritis (KOA). METHODS: A KOA model was established via the modified Videman method. Rabbits were randomly divided into a control group (CON), KOA group and KOA + acupotomy group (Acu). Rabbits in the acupotomy group were subjected to acupotomy for 4 weeks after model establishment. The behavior of the rabbits before and after intervention was recorded. Cartilage degeneration was evaluated by optical microscopy and fluorescence microscopy. The level of mitophagy was evaluated by transmission electron microscopy, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). The expression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1)-Parkin mitophagy pathway components was evaluated by immunofluorescence, Western blotting and real-time polymerase chain reaction. RESULTS: In rabbits with KOA, joint pain, mobility disorders and cartilage degeneration were observed, the Mankin score was increased, collagen type Ⅱ (Col-Ⅱ) expression was significantly decreased, mitophagy was inhibited, mitochondrial function was impaired, and factors associated with the Pink1-Parkin pathway were inhibited. Acupotomy regulated the expression of Pink1-Parkin pathway-related proteins, the mitophagy-related protein microtubule-associated protein-1 light chain-3, the translocase of the outer membrane, and the inner mitochondrial membrane 23; increased the colocalization of mitochondria and autophagosomes; promoted the removal of damaged mitochondria; restored mitochondrial adenosine-triphosphate (ATP) production; and alleviated cartilage degeneration in rabbits with KOA. CONCLUSIONS: Acupotomy played a role in alleviating KOA in rabbits by activating mitophagy in chondrocytes via the regulation of proteins that are related to the Pink1-Parkin pathway.


Assuntos
Terapia por Acupuntura , Condrócitos , Mitofagia , Osteoartrite do Joelho , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Coelhos , Mitofagia/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Condrócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Masculino , Humanos , Transdução de Sinais , Mitocôndrias/metabolismo , Mitocôndrias/genética
13.
Clin Rheumatol ; 43(7): 2317-2327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38787477

RESUMO

The purpose was to investigate relationships of cumulative load and cartilage turnover biomarkers with 2-year changes in cartilage in knee osteoarthritis. From participants with Kellgren-Lawrence (KL) grades of 1 to 3, cartilage thickness and transverse relaxation time (T2) were computed from 24-month (baseline) and 48-month magnetic resonance images. Cumulative load was the interaction term of the Physical Activity Scale for the Elderly (PASE) and body mass index (BMI). Serum cartilage oligomeric matrix protein (COMP) and the nitrated form of type II collagen (Coll2-1 NO2) were collected at baseline. Multiple regressions (adjusted for baseline age, KL grade, cartilage measures, pain, comorbidity) evaluated the relationships of cumulative load and biomarkers with 2-year changes. In 406 participants (63.7 (8.7) years), interactions of biomarkers with cumulative load weakly predicted 2-year cartilage changes: (i) COMP × cumulative load explained medial tibia thickness change (R2 increased 0.062 to 0.087, p < 0.001); (ii) Coll2-1 NO2 × cumulative load explained central medial femoral T2 change (R2 increased 0.177 to 0.210, p < 0.001); and (iii) Coll2-1 NO2 × cumulative load explained lateral tibia T2 change (R2 increased 0.166 to 0.188, p < 0.001). Moderate COMP or Coll2-1 NO2 at baseline appeared protective. High COMP or Coll2-1 NO2, particularly with high BMI and low PASE, associated with worsening cartilage. Moderate serum concentrations of cartilage turnover biomarkers, at high and low physical activity, associated with maintained cartilage outcomes over 2 years. In conclusion, high concentrations of cartilage turnover biomarkers, particularly with high BMI and low physical activity, associated with knee cartilage thinning and increasing T2 over 2 years. Key Points • Higher quality cartilage may be better able to tolerate a larger cumulative load than poor quality cartilage. • Among participants enrolled in the Osteoarthritis Initiative Biomarkers Consortium Project, a representation of cumulative load exposure and its interaction with cartilage turnover biomarkers were weakly related with 2-year change in knee cartilage. • These findings suggest that cartilage turnover is a factor that modifies the relationship between loading exposure and cartilage loss in knee OA.


Assuntos
Biomarcadores , Proteína de Matriz Oligomérica de Cartilagem , Cartilagem Articular , Colágeno Tipo II , Articulação do Joelho , Imageamento por Ressonância Magnética , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/metabolismo , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Pessoa de Meia-Idade , Feminino , Biomarcadores/sangue , Masculino , Proteína de Matriz Oligomérica de Cartilagem/sangue , Idoso , Articulação do Joelho/diagnóstico por imagem , Colágeno Tipo II/sangue , Progressão da Doença , Suporte de Carga , Índice de Massa Corporal
14.
Zhongguo Zhen Jiu ; 44(5): 555-64, 2024 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-38764106

RESUMO

OBJECTIVE: To observe the effect of acupotomy on heat shock protein A family member 5 (HSPA5)/glutathione peroxidase 4 (GPX4) signaling pathway in the chondrocytes of the rabbits with knee osteoarthritis (KOA) and explore the mechanism of acupotomy on chondrocyte ferroptosis in KOA. METHODS: Twenty-seven New Zealand rabbits were randomly divided into a normal group, a model group and an acupotomy group, with 9 rabbits in each group. The left hind limb was fixed by the modified Videman method for 6 weeks to establish KOA model. After modeling, acupotomy was given in the acupotomy group, once a week and for consecutive 3 weeks. Using Lequesne MG score, the local symptoms, physical signs and functions of knee joint were evaluated. With HE staining and saffrane-solid green staining adopted, the morphology of chondrocytes and cartilage tissue was observed. Under transmission electron microscope, the mitochondrial structure of chondrocytes was observed. The iron content of cartilage tissue was detected by iron ion kit. The mitochondrial membrane potential (Δψm) and the reactive oxygen species (ROS) level in cartilage tissue were determined by flow cytometry, and the mitochondrial damage rate was calculated. The mRNA expression of HSPA5, GPX4, type Ⅱ collagen α1 chain (COL2A1), matrix metalloproteinases (MMP) 3 and MMP13 was detected by the real-time quantitative PCR; and the protein expression of HSPA5, GPX4, type Ⅱ collagen (COL-Ⅱ), MMP3 and MMP13 was detected by Western blot. The mean flourscence intensity of HSPA5 and GPX4 in cartilage tissue was determined by immunofluorescence. RESULTS: Before intervention, compared with the normal group, the Lequesne MG scores were increased in the model group and the acupotomy group (P<0.01). After intervention, the Lequesne MG score in the acupotomy group was decreased when compared with that in the model group. In comparison with that in the normal group, the number of chondrocytes was reduced and the cells were disarranged; the layers of cartilage structure were unclear, the tide lines disordered and blurred; the mitochondria were wrinkled and the mitochondrial crista decreased or even disappeared in the model group. Compared with the model group, the number of chondrocytes was increased, the layers of cartilage structure were clear, the tide lines recovered, the number of mitochondria elevated, with normal structure and more crista in the acupotomy group. The iron content of cartilage tissue was increased (P<0.01), the Δψm of chondrocytes was declined, the mitochondrial damage rate was increased (P<0.01), the average fluorescence intensity of ROS was increased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was decreased (P<0.01), the mRNA and protein expression of MMP3 and MMP13 was increased (P<0.01) and the average fluorescence intensity of HSPA5, GPX4 was decreased (P<0.01) in the model group when compared with those in the normal group. Compared with the model group, the iron content in cartilage tissue was reduced (P<0.01), the Δψm of chondrocytes was increased, the mitochondrial damage rate was decreased (P<0.01), and the average fluorescence intensity of ROS was decreased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was higher (P<0.01), and the mRNA and protein expression of MMP3 and MMP13 was lower, and the average fluorescence intensity of HSPA5, GPX4 was increased (P<0.01) in the acupotomy group. CONCLUSION: Acupotomy can alleviate cartilage injury of KOA rabbits, and its mechanism may be related to the regulation of HSPA5/GPX4 signaling pathway to maintain iron homeostasis in articular cartilage, thus inhibiting chondrocyte ferroptosis and relieving extracellular matrix degradation.


Assuntos
Terapia por Acupuntura , Condrócitos , Ferroptose , Proteínas de Choque Térmico , Osteoartrite do Joelho , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Animais , Coelhos , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Condrócitos/metabolismo , Masculino , Humanos , Terapia por Acupuntura/instrumentação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Chaperona BiP do Retículo Endoplasmático , Feminino
15.
Osteoarthritis Cartilage ; 32(8): 950-962, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782252

RESUMO

OBJECTIVE: Diabetes and other metabolic and inflammatory comorbidities are highly associated with osteoarthritis (OA). However, whether early-life hyperglycemia exposure affects susceptibility to long-term OA is still unknown. The purpose of this study was to explore the fetal origins of OA and provide insights into early-life safeguarding for individual health. METHOD: This study utilized streptozotocin to induce intrauterine hyperglycemia and performed destabilization of the medial meniscus surgery on the knee joints of the offspring mice to induce accelerated OA. Cartilage degeneration-related markers, as well as the expression levels of mitochondrial respiratory chain complexes and mitophagy genes in the adult offspring mice, were investigated. In vitro, mitochondrial function and mitophagy of chondrocyte C28/I2 cells stimulated under high glucose conditions were also evaluated. The methylation levels of the sirt3 gene promoter region in the articular cartilage of intrauterine hyperglycemia-exposed offspring mice were further analyzed. RESULTS: In this study, we found that the intrauterine hyperglycemic environment could lead to an increase in individual susceptibility to OA in late adulthood, mainly due to persistently low levels of Sirt3 expression. Downregulation of Sirt3 causes impaired mitophagy in chondrocytes and abnormal mitochondrial respiratory function due to a failure to clear aged and damaged mitochondria in a timely manner. Overexpressing Sirt3 at the cellular level or using Sirt3 agonists like Honokiol in mouse models can partially rescue mitophagy disorders caused by the hyperglycemic environment and thus alleviate the progression of OA. CONCLUSION: Our study revealed a significantly increased susceptibility to OA in the gestational diabetes mellitus offspring, which is partly attributed to exposure to adverse factors in utero and ultimately to the onset of disease via epigenetic modulation.


Assuntos
Condrócitos , Hiperglicemia , Mitocôndrias , Sirtuína 3 , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , Hiperglicemia/metabolismo , Camundongos , Feminino , Gravidez , Condrócitos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Efeitos Tardios da Exposição Pré-Natal , Cartilagem Articular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Osteoartrite/metabolismo , Osteoartrite/etiologia , Osteoartrite/genética , Metilação de DNA , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/genética
16.
Mol Cell Proteomics ; 23(6): 100785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750696

RESUMO

The molecular mechanisms that drive the onset and development of osteoarthritis (OA) remain largely unknown. In this exploratory study, we used a proteomic platform (SOMAscan assay) to measure the relative abundance of more than 6000 proteins in synovial fluid (SF) from knees of human donors with healthy or mildly degenerated tissues, and knees with late-stage OA from patients undergoing knee replacement surgery. Using a linear mixed effects model, we estimated the differential abundance of 6251 proteins between the three groups. We found 583 proteins upregulated in the late-stage OA, including MMP1, collagenase 3 and interleukin-6. Further, we selected 760 proteins (800 aptamers) based on absolute fold changes between the healthy and mild degeneration groups. To those, we applied Gaussian Graphical Models (GGMs) to analyze the conditional dependence of proteins and to identify key proteins and subnetworks involved in early OA pathogenesis. After regularization and stability selection, we identified 102 proteins involved in GGM networks. Notably, network complexity was lost in the protein graph for mild degeneration when compared to controls, suggesting a disruption in the regular protein interplay. Furthermore, among our main findings were several downregulated (in mild degeneration versus healthy) proteins with unique interactions in the healthy group, one of which, SLCO5A1, has not previously been associated with OA. Our results suggest that this protein is important for healthy joint function. Further, our data suggests that SF proteomics, combined with GGMs, can reveal novel insights into the molecular pathogenesis and identification of biomarker candidates for early-stage OA.


Assuntos
Mapas de Interação de Proteínas , Proteômica , Líquido Sinovial , Humanos , Líquido Sinovial/metabolismo , Proteômica/métodos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Interleucina-6/metabolismo , Proteoma/metabolismo , Metaloproteinase 1 da Matriz/metabolismo
17.
Drug Des Devel Ther ; 18: 1583-1602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765877

RESUMO

Background: Knee osteoarthritis (KOA) is a persistent degenerative condition characterized by the deterioration of cartilage. The Chinese herbal formula Radix Rehmanniae Praeparata- Angelica Sinensis-Radix Achyranthis Bidentatae (RAR) has often been used in effective prescriptions for KOA as the main functional drug, but its underlying mechanism remains unclear. Therefore, network pharmacology and verification experiments were employed to investigate the impact and mode of action of RAR in the treatment of KOA. Methods: The destabilization of the medial meniscus model (DMM) was utilized to assess the anti-KOA effect of RAR by using gait analysis, micro-computed tomography (Micro-CT), and histology. Primary chondrocytes were extracted from the rib cartilage of a newborn mouse. The protective effects of RAR on OA cells were evaluated using a CCK-8 assay. The antioxidative effect of RAR was determined by measuring reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) production. Furthermore, network pharmacology and molecular docking were utilized to propose possible RAR targets for KOA, which were further verified through experiments. Results: In vivo, RAR significantly ameliorated DMM-induced KOA characteristics, such as subchondral bone sclerosis, cartilage deterioration, gait abnormalities, and the degree of knee swelling. In vitro, RAR stimulated chondrocyte proliferation and the expression of Col2a1, Comp, and Acan. Moreover, RAR treatment significantly reduced ROS accumulation in an OA cell model induced by IL-1ß and increased the activity of antioxidant enzymes (SOD and GSH). Network pharmacology analysis combined with molecular docking showed that Mapk1 might be a key therapeutic target. Subsequent research showed that RAR could downregulate Mapk1 mRNA levels in IL-1ß-induced chondrocytes and DMM-induced rats. Conclusion: RAR inhibited extracellular matrix (ECM) degradation and oxidative stress response via the MAPK signaling pathway in KOA, and Mapk1 may be a core target.


Assuntos
Achyranthes , Angelica sinensis , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Osteoartrite do Joelho , Animais , Angelica sinensis/química , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Camundongos , Achyranthes/química , Rehmannia/química , Simulação de Acoplamento Molecular , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Ratos
18.
J Cell Mol Med ; 28(9): e18319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742846

RESUMO

Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.


Assuntos
Glycyrrhiza uralensis , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoartrite do Joelho , Animais , Glycyrrhiza uralensis/química , Camundongos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos Endogâmicos C57BL
19.
Sci Rep ; 14(1): 11797, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782951

RESUMO

Knee osteoarthritis (OA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in knee OA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n = 51) with Kellgren-Lawrence grade 2-3 knee OA through a Support Vector Machine (SVM) and a regulation network model. Clinical descriptors (i.e., pain catastrophism, depression, functionality, joint pain, rigidity, sensitization and synovitis) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the Osteoarthritis Initiative, and the mean accuracy is 0.97. For our cohort, the data used as SVM inputs are knee OA descriptors, synovial fluid proteomic measurements (n = 25), and transcription factor activation obtained from regulatory network model stimulated with the synovial fluid measurements. The relative weights after classification reflect input importance. The performance of each classifier is evaluated through ROC-AUC analysis. The best classifier with clinical data is pain catastrophism (AUC = 0.9), highly influenced by funcionality and pain sensetization, suggesting that kinesophobia is involved in pain perception. With synovial fluid proteins used as input, leptin strongly influences every classifier, suggesting the importance of low-grade inflammation. When transcription factors are used, the mean AUC is limited to 0.608, which can be related to the pleomorphic behaviour of osteoarthritic chondrocytes. Nevertheless, funcionality has an AUC of 0.7 with a decisive importance of FOXO downregulation. Though larger and longitudinal cohorts are needed, this unique combination of SVM and regulatory network model shall help to stratify knee OA patients more objectively.


Assuntos
Osteoartrite do Joelho , Máquina de Vetores de Suporte , Humanos , Feminino , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/metabolismo , Pessoa de Meia-Idade , Idoso , Redes Reguladoras de Genes , Biomarcadores , Líquido Sinovial/metabolismo , Proteômica/métodos
20.
Clin Orthop Relat Res ; 482(7): 1246-1262, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662932

RESUMO

BACKGROUND: Extracellular vesicles derived from mesenchymal stem cells (MSCs) show great promise in treating osteoarthritis (OA). However, studies from the perspective of clinical feasibility that consider an accessible cell source and a scalable preparation method for MSC-extracellular vesicles are lacking. QUESTIONS/PURPOSES: (1) Does an infrapatellar fat pad obtained from patients undergoing TKA provide a suitable source to provide MSC-extracellular vesicles purified by anion exchange chromatography? Using an in vivo mouse model for OA in the knee, (2) how does injection of the infrapatellar fat pad-derived MSC-extracellular vesicles alter gait, cartilage structure and composition, protein expression (Type II collagen, MMP13, and ADAMTS5), subchondral bone remodeling and osteophytes, and synovial inflammation? METHODS: The infrapatellar fat pad was collected from three patients (all female; 62, 74, 77 years) during TKA for infrapatellar fat pad-derived MSC culturing. Patients with infection, rheumatic arthritis, and age > 80 years were excluded. MSC-extracellular vesicles were purified by anion exchange chromatography. For the animal study, we used 30 male C57BL/6 mice aged 10 weeks, divided into six groups. MSC-extracellular vesicles were injected weekly into the joint of an OA mouse model during ACL transection (ACLT). To answer our first research question, we characterized MSCs based on their proliferative potential, differentiation capacity, and surface antigen expression, and we characterized MSC-extracellular vesicles by size, morphology, protein marker expression, and miRNA profile. To answer our second research question, we evaluated the effects of MSC-extracellular vesicles in the OA mouse model with quantitative gait analysis (mean pressure, footprint area, stride length, and propulsion time), histology (Osteoarthritis Research Society International Score based on histologic analysis [0 = normal to 24 = very severe degeneration]), immunohistochemistry staining of joint sections (protein expression of Type II collagen, MMP13, and ADAMTS5), and micro-CT of subchondral bone (BV/TV and Tb.Pf) and osteophyte formation. We also examined the mechanism of action of MSC-extracellular vesicles by immunofluorescent staining of the synovium membrane (number of M1 and M2 macrophage cells) and by analyzing their influence on the expression of inflammatory factors (relative mRNA level and protein expression of IL-1ß, IL-6, and TNF-α) in lipopolysaccharide-induced macrophages. RESULTS: Infrapatellar fat pads obtained from patients undergoing TKA provide a suitable cell source for producing MSC-extracellular vesicles, and anion exchange chromatography is applicable for isolating MSC-extracellular vesicles. Cultured MSCs were spindle-shaped, proliferative at Passage 4 (doubling time of 42.75 ± 1.35 hours), had trilineage differentiation capacity, positively expressed stem cell surface markers (CD44, CD73, CD90, and CD105), and negatively expressed hematopoietic markers (CD34 and CD45). MSC-extracellular vesicles purified by anion exchange chromatography had diameters between 30 and 200 nm and a typical cup shape, positively expressed exosomal marker proteins (CD63, CD81, CD9, Alix, and TSG101), and carried plentiful miRNA. Compared with the ACLT group, the ACLT + extracellular vesicle group showed alleviation of pain 8 weeks after the injection, indicated by increased area (0.67 ± 0.15 cm 2 versus 0.20 ± 0.03 cm 2 , -0.05 [95% confidence interval -0.09 to -0.01]; p = 0.01) and stride length (5.08 ± 0.53 cm versus 6.20 ± 0.33 cm, -1.12 [95% CI -1.86 to -0.37]; p = 0.005) and decreased propulsion time (0.22 ± 0.06 s versus 0.11 ± 0.04 s, 0.11 [95% CI 0.03 to 0.19]; p = 0.007) in the affected hindlimb. Compared with the ACLT group, the ACLT + extracellular vesicles group had lower Osteoarthritis Research Society International scores after 4 weeks (8.80 ± 2.28 versus 4.80 ± 2.28, 4.00 [95% CI 0.68 to 7.32]; p = 0.02) and 8 weeks (16.00 ± 3.16 versus 9.60 ± 2.51, 6.40 [95% CI 2.14 to 10.66]; p = 0.005). In the ACLT + extracellular vesicles group, there was more-severe OA at 8 weeks than at 4 weeks (9.60 ± 2.51 versus 4.80 ± 2.28, 4.80 [95% CI 0.82 to 8.78]; p = 0.02), indicating MSC-extracellular vesicles could only delay but not fully suppress OA progression. Compared with the ACLT group, the injection of MSC-extracellular vesicles increased Type II collagen expression, decreased MMP13 expression, and decreased ADAMTS5 expression at 4 and 8 weeks. Compared with the ACLT group, MSC-extracellular vesicle injection alleviated osteophyte formation at 8 weeks and inhibited bone loss at 4 weeks. MSC-extracellular vesicle injection suppressed inflammation; the ACLT + extracellular vesicles group had fewer M1 type macrophages than the ACLT group. Compared with lipopolysaccharide-treated cells, MSC-extracellular vesicles reduced mRNA expression and inhibited IL-1ß, IL-6, and TNF-α in cells. CONCLUSION: Using an OA mouse model, we found that infrapatellar fat pad-derived MSC-extracellular vesicles could delay OA progression via alleviating pain and suppressing cartilage degeneration, osteophyte formation, and synovial inflammation. The autologous origin of extracellular vesicles and scalable purification method make our strategy potentially viable for clinical translation. CLINICAL RELEVANCE: Infrapatellar fat pad-derived MSC-extracellular vesicles isolated by anion exchange chromatography can suppress OA progression in a mouse model. Further studies with large-animal models, larger animal groups, and subsequent clinical trials are necessary to confirm the feasibility of this technique for clinical OA treatment.


Assuntos
Tecido Adiposo , Modelos Animais de Doenças , Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho , Animais , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/patologia , Idoso , Feminino , Pessoa de Meia-Idade , Cromatografia por Troca Iônica , Progressão da Doença , Camundongos , Transplante de Células-Tronco Mesenquimais , Articulação do Joelho/cirurgia , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/cirurgia , Cartilagem Articular/patologia , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...