Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.542
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865265

RESUMO

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Assuntos
Eletroporação , Imunoterapia , Vacinas de DNA , Animais , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Eletroporação/métodos , Camundongos , Imunoterapia/métodos , Administração Cutânea , Neoplasias/terapia , Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Feminino , Camundongos Endogâmicos C57BL , Humanos , Vacinação/métodos
2.
J Control Release ; 370: 379-391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697317

RESUMO

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Assuntos
Vacinas Anticâncer , Galactosilceramidas , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Animais , Galactosilceramidas/administração & dosagem , Galactosilceramidas/química , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Feminino , Nanopartículas/química , Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Vacinas de mRNA , Adjuvantes Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , RNA Mensageiro/administração & dosagem , Camundongos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Lipídeos/química , Lipossomos
3.
Vaccine ; 42(17): 3721-3732, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38719694

RESUMO

Nanotechnology has emerged as a promising avenue for enhancing the efficacy of vaccine delivery systems. This study investigates the utilization of nanogels as carriers for the model antigen ovalbumin, with a focus on in vivo assessments in equine and murine models. Nanogels, owing to their biocompatibility and tunable physicochemical properties, offer a versatile platform for efficient antigen encapsulation and controlled release. The encapsulation efficiency and physicochemical characteristics of ovalbumin-loaded nanogels were comprehensively characterized. In vitro biocompatibility was evaluated, finding excellent properties of these nanogels. In vivo evaluations were conducted on both equine and murine subjects, assessing immunogenicity through antibody and splenic cell response. Furthermore, the study propose the potential use of nanogels in tailoring immune responses through the modulation of antigen release kinetics. The results obtained in the in vitro assays showed an increase in the uptake of nanogels by APCs compared to free antigen (OVA). In mice, an absence of inflammatory response in the inoculation site was observed, without systemic damage in the evaluated organs. In addition, non-significant humoral response was found nor cellular proliferation and proinflammatory cytokine production, compared with a traditional adjuvant as aluminum hydroxide, in both animal models. These findings allow further insights into nanogel-based delivery systems and offer valuable insights into their application in various animal models. In conclusion, this research establishes the utility of nanogels as effective carriers for antigens-based vaccines, with interesting biocompatibility properties and highly taken affinity by antigen-presenting cells, without inducing inflammation at the injection site. The study underscores the potential of nanogel technology in revolutionizing vaccine design and highlights the importance of tailored approaches for diverse target species.


Assuntos
Ovalbumina , Animais , Camundongos , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Cavalos/imunologia , Nanogéis/química , Vacinas/imunologia , Vacinas/administração & dosagem , Feminino , Portadores de Fármacos/química , Antígenos/imunologia , Antígenos/administração & dosagem , Camundongos Endogâmicos BALB C , Materiais Biocompatíveis/química , Adjuvantes Imunológicos/administração & dosagem , Citocinas/metabolismo , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Polietilenoimina/química
4.
Biomater Sci ; 12(12): 3175-3192, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38742916

RESUMO

The tumor immunosuppressive microenvironment (TIME) and uncontrollable release of antigens can lower the efficacy of nanovaccine-based immunotherapy (NBI). Therefore, it is necessary to develop a new strategy for TIME reshaping and controllable release of antigens to improve the NBI efficacy. Herein, an acidity-responsive Schiff base-conjugated polyphenol-coordinated nanovaccine was constructed for the first time to realize bidirectional TIME reshaping and controllable release of antigens for activating T cells. In particular, an acidity-responsive tannic acid-ovalbumin (TA-OVA) nanoconjugate was prepared via a Schiff base reaction. FeIII was coordinated with TA-OVA to produce a FeIII-TA-OVA nanosystem, and 1-methyltryptophan (1-MT) as an indoleamine 2,3-dioxygenase inhibitor was loaded to form a polyphenol-coordinated nanovaccine. The coordination between FeIII and TA could cause photothermal ablation of primary tumors, and the acidity-triggered Schiff base dissociation of TA-OVA could controllably release OVA to realize lysosome escape, initiating the body's immune response. More importantly, oxidative stress generated by a tumor-specific Fenton reaction of Fe ions could promote the polarization of tumor-associated macrophages from the M2 to M1 phenotype, resulting in the upregulation of cytotoxic T cells and helper T cells. Meanwhile, 1-MT could downregulate immunosuppressive regulatory T cells. Overall, such skillful combination of bidirectional TIME reshaping and controllable antigen release into one coordination nanosystem could effectively enhance the NBI efficacy of tumors.


Assuntos
Imunoterapia , Ovalbumina , Polifenóis , Bases de Schiff , Taninos , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Ovalbumina/imunologia , Ovalbumina/química , Ovalbumina/administração & dosagem , Polifenóis/química , Polifenóis/farmacologia , Camundongos , Taninos/química , Taninos/farmacologia , Bases de Schiff/química , Concentração de Íons de Hidrogênio , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Triptofano/química , Triptofano/análogos & derivados , Nanoconjugados/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Linhagem Celular Tumoral , Compostos Férricos/química , Nanovacinas
5.
J Toxicol Sci ; 49(5): 209-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692908

RESUMO

The immune system is sensitive to many chemicals. Among dioxin compounds, 2,3,7,8-tetrachlorodizenzo-p-dioxin (TCDD) is the most toxic environmental pollutant. The effects of perinatal maternal exposure to dioxins may persist into childhood. However, there have been no reports to date on the effects of exposure to dioxins during infancy, when the immune organs are developing. Therefore, we investigated the effects of TCDD and antigen exposure during lactation on immune function, especially antibody production capacity, in adult mice. Beginning the day after delivery, lactating mothers were orally administered TCDD or a mixture of TCDD and ovalbumin (OVA) daily for 4 weeks, until the pups were weaned. At 6 weeks of age, progeny mice were orally administered OVA daily for 10 weeks, while non-progeny mice were orally administered OVA or a mixture of TCDD and OVA daily for 10 weeks. Production of serum OVA-specific IgG was examined weekly. The amount of TCDD transferred from the mother to the progeny via breast milk was determined by measuring TCDD in the gastric contents of the progeny. A trend toward increasing IgA titer was observed in TCDD-treated mice, and production of IgE was observed only in progeny whose mothers were treated with TCDD and OVA. The results suggest that exposure to TCDD and OVA in breast milk can affect immune function in newborns.


Assuntos
Lactação , Ovalbumina , Dibenzodioxinas Policloradas , Animais , Feminino , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Dibenzodioxinas Policloradas/toxicidade , Exposição Materna/efeitos adversos , Formação de Anticorpos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Imunoglobulina G/sangue , Imunoglobulina A/sangue , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Antígenos/imunologia , Camundongos , Gravidez , Leite/imunologia , Masculino , Leite Humano/imunologia , Administração Oral
6.
J Control Release ; 369: 556-572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580136

RESUMO

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.


Assuntos
Camundongos Endogâmicos C57BL , Ovalbumina , Linfócitos T Citotóxicos , Animais , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Metacrilatos/química , Polímeros/química , Polímeros/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Vacinas/administração & dosagem , Vacinas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Nanovacinas
7.
Int J Pharm ; 656: 124076, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569976

RESUMO

Vaccines represent a pivotal health advancement for preventing infection. However, because carrier systems with repeated administration can invoke carrier-targeted immune responses that diminish subsequent immune responses (e.g., PEG antibodies), there is a continual need to develop novel vaccine platforms. Zinc carnosine microparticles (ZnCar MPs), which are composed of a one-dimensional coordination polymer formed between carnosine and the metal ion zinc, have exhibited efficacy in inducing an immune response against influenza. However, ZnCar MPs' limited suspendability hinders clinical application. In this study, we address this issue by mixing mannan, a polysaccharide derived from yeast, with ZnCar MPs. We show that the addition of mannan increases the suspendability of this promising vaccine formulation. Additionally, since mannan is an adjuvant, we illustrate that the addition of mannan increases the antibody response and T cell response when mixed with ZnCar MPs. Mice vaccinated with mannan + OVA/ZnCar MPs had elevated serum IgG and IgG1 levels in comparison to vaccination without mannan. Moreover, in the mannan + OVA/ZnCar MPs vaccinated group, mucosal washes demonstrated increased IgG, IgG1, and IgG2c titers, and antigen recall assays showed enhanced IFN-γ production in response to MHC-I and MHC-II immunodominant peptide restimulation, compared to the vaccination without mannan. These findings suggest that the use of mannan mixed with ZnCar MPs holds potential for subunit vaccination and its improved suspendability further promotes clinical translation.


Assuntos
Carnosina , Mananas , Vacinas de Subunidades Antigênicas , Zinco , Mananas/química , Mananas/administração & dosagem , Mananas/imunologia , Animais , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Zinco/química , Zinco/administração & dosagem , Carnosina/administração & dosagem , Carnosina/química , Feminino , Imunoglobulina G/sangue , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Camundongos Endogâmicos C57BL , Polímeros/química , Polímeros/administração & dosagem , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química
8.
J Pharm Sci ; 113(7): 1794-1803, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522753

RESUMO

Research on innovative mucosal adjuvants is essential to develop new vaccines for safe mucosal application. In this work, we propose the development of a Lactococcus lactis that expresses a variant of flagellin on its surface (FliC131*), to increase the adjuvanticity of the living cell and cell wall-derived particles (CWDP). We optimized the expression of FliC131*, and confirmed its identity and localization by Western blot and flow cytometry. We also generated CWDP containing FliC131* (CDWP-FliC131*) and evaluated their storage stability. Lastly, we measured the human TLR5 stimulating activity in vitro and assessed the adjuvanticity in vivo using ovalbumin (OVA) as a model antigen. As a result, we generated L. lactis/pCWA-FliC131*, that expresses and displays FliC131* on its surface, obtained the corresponding CWDP-FliC131*, and showed that both activated hTLR5 in vitro in a dose-dependent manner. Furthermore, CWDP-FliC131* retained this biological activity after being lyophilized and stored for a year. Finally, intranasal immunization of mice with OVA plus live L. lactis/pCWA-FliC131* or CWDP-FliC131* induced OVA-specific IgG and IgA in serum, intestinal lavages, and bronchoalveolar lavages. Our work demonstrates the potential of this recombinant L. lactis with an enhanced adjuvant effect, prompting its further evaluation for the design of novel mucosal vaccines.


Assuntos
Adjuvantes Imunológicos , Flagelina , Lactococcus lactis , Camundongos Endogâmicos BALB C , Ovalbumina , Receptor 5 Toll-Like , Lactococcus lactis/imunologia , Animais , Flagelina/imunologia , Flagelina/administração & dosagem , Camundongos , Humanos , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Receptor 5 Toll-Like/imunologia , Adjuvantes Imunológicos/administração & dosagem , Feminino , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunização/métodos , Administração Intranasal
9.
Biomater Sci ; 12(9): 2292-2301, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38498328

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent cancers globally, demanding innovative therapeutic strategies. Immunotherapy, a promising avenue, employs cancer vaccines to activate the immune system against tumors. However, conventional approaches fall short of eliciting robust responses within the gastrointestinal (GI) tract, where CRC originates. Harnessing the potential of all-trans retinoic acid (ATRA) and cytosine-phosphorothioate-guanine (CpG), we developed layered nanoparticles using a layer-by-layer assembly method to co-deliver these agents. ATRA, crucial for gut immunity, was efficiently encapsulated alongside CpG within these nanoparticles. Administering these ATRA@CpG-NPs, combined with ovalbumin peptide (OVA), effectively inhibited orthotopic CRC growth in mice. Our approach leveraged the inherent benefits of ATRA and CpG, demonstrating superior efficacy in activating dendritic cells, imprinting T cells with gut-homing receptors, and inhibiting tumor growth. This mucosal adjuvant presents a promising strategy for CRC immunotherapy, showcasing the potential for targeting gut-associated immune responses in combating colorectal malignancies.


Assuntos
Neoplasias Colorretais , Fosfatos de Dinucleosídeos , Nanopartículas , Tretinoína , Tretinoína/química , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Humanos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Camundongos Endogâmicos C57BL , Feminino , Imunoterapia/métodos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Nanopartículas em Multicamadas
10.
Comput Math Methods Med ; 2022: 1452116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047052

RESUMO

OBJECTIVES: This study sought to examine whether ligustrazine was capable of inhibiting phosphodiesterase (PDE) activity and improving lung function in a rat model of asthma. METHODS: Rats were initially sensitized using ovalbumin (OVA) and then were challenged daily with aerosolized OVA beginning 14 days later (30 min/day) to generate a rat model of asthma. Changes in airway function following methacholine (MCh) injection were evaluated by monitoring lung resistance (R L) and dynamic lung compliance (C dyn) values using an AniRes2005 analytic system. In addition, serum IgE was measured via ELISA, while PDE expression was evaluated via qPCR and western blotting. Key Findings. Ligustrazine significantly impaired allergen-induced lung hyperresponsivity and inflammation in this asthma model system. Ligustrazine treatment was also associated with reduced expression of PDEs including PDE4 in the lungs of these rats. CONCLUSIONS: Ligustrazine suppresses airway inflammation and bronchial hyperresponsivity in this rat model system, and these changes are associated with decreased PDE expression at the protein and mRNA levels.


Assuntos
Asma/tratamento farmacológico , Inibidores de Fosfodiesterase/farmacologia , Pirazinas/farmacologia , Resistência das Vias Respiratórias/efeitos dos fármacos , Alérgenos/administração & dosagem , Alérgenos/imunologia , Animais , Asma/imunologia , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Biologia Computacional , Modelos Animais de Doenças , Imunoglobulina E/sangue , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Diester Fosfórico Hidrolases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/fisiopatologia
11.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062354

RESUMO

The susceptibility to respiratory syncytial virus (RSV) infection in early life has been associated with a deficient T-helper cell type 1 (Th1) response. Conversely, healthy adults generally do not exhibit severe illness from RSV infection. In the current study, we investigated whether Th1 cytokine IFN-γ is essential for protection against RSV and RSV-associated comorbidities in adult mice. We found that, distinct from influenza virus, prior RSV infection does not induce significant IFN-γ production and susceptibility to secondary Streptococcus pneumoniae infection in adult wild-type (WT) mice. In ovalbumin (OVA)-induced asthmatic mice, RSV super-infection increases airway neutrophil recruitment and inflammatory lung damage but has no significant effect on OVA-induced eosinophilia. Compared with WT controls, RSV infection of asthmatic Ifng-/- mice results in increased airway eosinophil accumulation. However, a comparable increase in eosinophilia was detected in house dust mite (HDM)-induced asthmatic Ifng-/- mice in the absence of RSV infection. Furthermore, neither WT nor Ifng-/- mice exhibit apparent eosinophil infiltration during RSV infection alone. Together, these findings indicate that, despite its critical role in limiting eosinophilic inflammation during asthma, IFN-γ is not essential for protection against RSV-induced exacerbation of asthmatic inflammation in adult mice.


Assuntos
Asma/patologia , Inflamação/imunologia , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Asma/induzido quimicamente , Asma/imunologia , Líquido da Lavagem Broncoalveolar , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/prevenção & controle , Comorbidade , Feminino , Inflamação/prevenção & controle , Interferon gama/genética , Pulmão/microbiologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Células Th1 , Células Th2
12.
Int Immunopharmacol ; 104: 108522, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032825

RESUMO

Induction of tumor-specific CD8 + T cell responses is known as a major challenge for cancer vaccine development; here we presented a strategy to improve peptide nanofibers-mounted antitumor immune responses. To this end, peptide nanofibers bearing class I (Kb)-restricted epitope (Epi-Nano) were formulated with polyethylene imine backbone (Epi-Nano-PEI), and characterized using morphological and physicochemicalcharacterizationtechniques. Nanofibers were studied in terms of their uptake by antigen-presenting cells (APCs), antigen cross-presentation capacity, and cytotoxic activity. Furthermore, nanofibers were assessed by their potency to induce NLRP3 inflammasome-related cytokines and factors. Finally, the ability of nanofibers to induce tumor-specific CD8 T cells and tumor protection were investigated in tumor-bearing mice. The formulation of Epi-Nano with PEI led to the formation of short strand nanofibers with a positive surface charge, a low critical aggregation concentration (CAC), and an increased resistancetoproteolytic degradation. Epi-Nano-PEI was significantly taken up more efficiently by antigen-presenting cells (APCs), and was more potent in cross-presentation when compared to Epi-Nano. Moreover, Epi-Nano-PEI, in comparison to Epi-Nano, efficiently up-regulated the expression of NLRP3, caspase-1, IL-1b, IL18 and IL-6. Cell viability analysis showed that formulation of PEI with Epi-Nano not only abolished its cytotoxic activity, but surprisingly induced macrophage proliferation. Furthermore, it demonstrated that Epi-Nano-PEI triggered robust antigen-specific CD8+ T cell responses, and induced maximum antitumor response (tumor growth inhibition and prolonged survival) in tumor-bearing mice that were significantly higher compared to Epi-Nano. Taken together, the formulation of Epi-Nano with PEI is suggested as a promising strategy to improve nanofibers-mounted antitumor immune response.


Assuntos
Antígenos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Epitopos/administração & dosagem , Nanofibras/administração & dosagem , Neoplasias/imunologia , Ovalbumina/administração & dosagem , Peptídeos/administração & dosagem , Polietilenoimina/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos C57BL
13.
J Pharm Pharmacol ; 74(3): 435-445, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34894135

RESUMO

OBJECTIVES: The effects of Polygonum Cillinerve polysaccharide (PCP) on the immune and antioxidant activity were studied. METHODS: The effects of PCP on cell proliferation, phagocytic activity, cell uptake, the secretion of NO, iNOS, IL-6, IL-12, CAT and POD, intracellular ROS, cell apoptosis and antioxidative mechanism were measured by MTT, ELISA, fluorescence staining, flow cytometry and western blot. KEY FINDINGS: The results showed that PCP had no toxic effect at 31.25-1.95 µg/ml, could improve the uptake of neutral red and fluorescein isothiocyanate-labelled ovalbumin and promote the release of nitric oxide and nitric oxide synthase. Moreover, PCP also could promote the secretion of IL-6 and IL-12. The damage of RAW264.7 cells induced by hydrogen peroxide was significantly alleviated by PCP at 15.63-0.975 µg/ml. The mechanism of antioxidative damage might be that PCP inhibited the upstream p38 and the phosphorylation of JNK and ERK proteins, and down-regulated caspase 3 and up-regulated the protein expressions of cytochrome C and Bcl-2, finally PCP improved the antioxidative capacity and protected the oxidative damage of cells. CONCLUSIONS: These results indicated that PCP had the better immunopotentiation and antioxidative damage activity.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Polygonum/química , Polissacarídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peróxido de Hidrogênio , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ovalbumina/administração & dosagem , Polissacarídeos/isolamento & purificação , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
14.
Front Immunol ; 12: 697292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867941

RESUMO

Ideally, a vaccine should provide life-long protection following a single administered dose. In our previous study, the immunopotentiator CVC1302, which contains pattern- recognition receptor (PRR) agonists, was demonstrated to prolong the lifetime of the humoral immune response induced by killed foot-and-mouth disease virus (FMDV) vaccine. To elucidate the mechanism by which CVC1302 induces long-term humoral immunity, we used 4-hydroxy-3-nitrophenylacetyl (NP)-OVA as a pattern antigen and administered it to mice along with CVC1302, emulsified together with Marcol 52 mineral oil (NP-CVC1302). From the results of NP-specific antibody levels, we found that CVC1302 could induce not only higher levels of NP-specific antibodies but also high-affinity NP-specific antibody levels. To detect the resulting NP-specific immune cells, samples were taken from the injection sites, draining lymph nodes (LNs), and bone marrow of mice injected with NP-CVC1302. The results of these experiments show that, compared with mice injected with NP alone, those injected with NP-CVC1302 had higher percentages of NP+ antigen-presenting cells (APCs) at the injection sites and draining LNs, higher percentages of follicular helper T cells (TFH), germinal center (GC) B cells, and NP+ plasma-blasts in the draining LNs, as well as higher percentages of NP+ long-lived plasma cells (LLPCs) in the bone marrow. Additionally, we observed that the inclusion of CVC1302 in the immunization prolonged the lifetime of LLPCs in the bone marrow by improving the transcription expression of anti-apoptotic transcription factors such as Mcl-1, Bcl-2, BAFF, BCMA, Bax, and IRF-4. This research provides a blueprint for designing new generations of immunopotentiators.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos/administração & dosagem , Imunidade Humoral/efeitos dos fármacos , Nitrofenóis/administração & dosagem , Ovalbumina/administração & dosagem , Fenilacetatos/administração & dosagem , Receptores de Reconhecimento de Padrão/agonistas , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Feminino , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Nitrofenóis/imunologia , Ovalbumina/imunologia , Fenilacetatos/imunologia , Linfócitos T/imunologia
15.
J Immunol Res ; 2021: 6234836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869783

RESUMO

Immunomodulation of airway hyperreactivity by excretory-secretory (ES) products of the first larval stage (L1) of the gastrointestinal nematode Trichuris suis is reported by us and others. Here, we aimed to identify the proteins accounting for the modulatory effects of the T. suis L1 ES proteins and studied six selected T. suis L1 proteins for their immunomodulatory efficacy in a murine OVA-induced allergic airway disease model. In particular, an enzymatically active T. suis chitinase mediated amelioration of clinical signs of airway hyperreactivity, primarily associated with suppression of eosinophil recruitment into the lung, the associated chemokines, and increased numbers of RELMα + interstitial lung macrophages. While there is no indication of T. suis chitinase directly interfering with dendritic cell activation or antigen presentation to CD4 T cells, treatment of allergic mice with the worm chitinase influenced the hosts' own chitinase activity in the inflamed lung. The three-dimensional structure of the T. suis chitinase as determined by high-resolution X-ray crystallography revealed high similarities to mouse acidic mammalian chitinase (AMCase) but a unique ability of T. suis chitinase to form dimers. Our data indicate that the structural similarities between the parasite and host chitinase contribute to the disease-ameliorating effect of the helminth-derived chitinase on allergic lung inflammation.


Assuntos
Quitinases/ultraestrutura , Eosinofilia/tratamento farmacológico , Proteínas de Helminto/administração & dosagem , Agentes de Imunomodulação/administração & dosagem , Hipersensibilidade Respiratória/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar , Cristalografia por Raios X , Modelos Animais de Doenças , Eosinofilia/diagnóstico , Eosinofilia/imunologia , Eosinofilia/patologia , Feminino , Proteínas de Helminto/ultraestrutura , Interações Hospedeiro-Parasita/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Camundongos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Hipersensibilidade Respiratória/diagnóstico , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Trichuris/enzimologia
16.
Front Immunol ; 12: 783944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970267

RESUMO

Neutrophil cytosolic factor 1 (Ncf1) is a major genetic factor associated with autoimmune diseases and has been identified as a key player in autoimmune mediated inflammation. We addressed the role of Ncf1 in an antigen-induced pulmonary inflammation model, and found that the Ncf1m1j mutation, causing a deficient reactive oxygen species response, alleviated disease. The Ncf1m1j mutation was associated with a reduced inflammatory cell infiltration in airways, but had limited effect on mucus secretion, antibody production and lung fibrosis. The disease remission in the Ncf1 mutated mice was reversed when functional Ncf1 was transgenically expressed in alveolar macrophages, suggesting that the cellular inflammation was depended on functional Ncf1 in alveolar macrophages. By determining cytokine and chemokine profiles in lung and serum, we found that Ncf1 deficiency allowed an increased expression of Th1 cytokines, including TNF-α, IFN-γ and IL-12. Since also epithelial cytokines were found to be regulated by Ncf1, we tested the effect of Ncf1 in IL-33 and IL-25 induced lung inflammation models. Mice with the Ncf1m1j mutation showed less sensitivity to IL-33, but not IL-25, induced lung inflammation, in a macrophage independent manner. The mice with deficient Ncf1 showed a reduced eosinophil infiltration and group 2 innate lymphoid cell (ILC2) activation. The production of IFN-γ in CD4+ T cells was increased, whereas IL-5 and IL-13 in ILC2 were decreased. Importantly, anti-IFN-γ antibody treatment of Ncf1 deficient mice increased eosinophil infiltration and rescued ILC2 activation in the lung. We conclude that Ncf1 deficiency enhances Th1 response, deactivates ILC2, and protects against pulmonitis.


Assuntos
Asma/imunologia , Pulmão/patologia , NADPH Oxidases/deficiência , Animais , Asma/patologia , Modelos Animais de Doenças , Eosinófilos/imunologia , Feminino , Humanos , Imunidade Inata/genética , Pulmão/imunologia , Ativação Linfocitária/genética , Camundongos , Camundongos Transgênicos , Mutação , NADPH Oxidases/genética , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th1/imunologia
17.
Drug Deliv ; 28(1): 2594-2602, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866536

RESUMO

It is urgently needed to develop novel adjuvants for improving the safety and efficacy of vaccines. Metal-organic frameworks (MOFs), with high surface area, play an important role in drug delivery. With perfect biocompatibility and green preparation process, the γ-cyclodextrin metal-organic framework (γ-CD-MOF) fabricated with cyclodextrin and potassium suitable for antigen delivery. In this study, we modified γ-CD-MOF with span-85 to fabricate the SP-γ-CD-MOF as animal vaccine adjuvants. The ovalbumin (OVA) as the model antigen was encapsulated into particles to investigate the immune response. SP-γ-CD-MOF displayed excellent biocompatibility in vitro and in vivo. After immunization, SP-γ-CD-MOF loaded with OVA could induce high antigen-specific IgG titers and cytokine secretion. Meanwhile, SP-γ-CD-MOF also significantly improved the proliferation of spleen cells and activated and matured the bone marrow dendritic cells (BMDCs). The study showed the potential of SP-γ-CD-MOF in vaccine adjuvants and provided a novel idea for the development of vaccine adjuvants.


Assuntos
Adjuvantes de Vacinas/farmacologia , Estruturas Metalorgânicas/química , Ovalbumina/farmacologia , gama-Ciclodextrinas/química , Adjuvantes de Vacinas/administração & dosagem , Animais , Animais não Endogâmicos , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Citocinas/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Imunoglobulina G/efeitos dos fármacos , Camundongos , Ovalbumina/administração & dosagem , Células RAW 264.7 , Distribuição Aleatória , Baço/efeitos dos fármacos
18.
BMC Pulm Med ; 21(1): 385, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836520

RESUMO

BACKGROUND: Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. METHODS: To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. RESULTS: The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. CONCLUSION: Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.


Assuntos
Asma/tratamento farmacológico , Interleucinas/farmacologia , Animais , Asma/metabolismo , Modelos Animais de Doenças , Feminino , Interleucinas/análise , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Interleucina 22
19.
Can Respir J ; 2021: 6406295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630778

RESUMO

Aim: To investigate the therapeutic effect of LiuJunZi decoction (LJZD) in an experimental model of asthma and uncover its potential mechanism. Materials and Methods: The ovalbumin (OVA) was applied to induce asthma in Balb/C mice, and LJZD was orally administrated to asthmatic mice. The lung function and histological lesion were evaluated by airway hyperresponsiveness assay, lung edema assay, and hematoxylin and eosin staining. The amounts of CD4+CD25+Foxp3+ TReg cells were analyzed through combining fluorescent antibody staining with flow cytometry assay. The levels of inflammatory factors and immunoglobulins were detected by enzyme-linked immuno sorbent assay (ELISA). The expression of miR-21 and miR-146a was investigated by real-time PCR. The protein expression of activating protein-1 (AP-1), nuclear factor kappa-B (NF-κB), and NF-κB inhibitor alpha (IκBα) was determined by western blotting. Results: LJZD improves OVA-induced asthma in Balb/C mice, which is manifested by decreasing lung edema, Penh levels, lung histological lesion, and inflammatory cell infiltration. LJZD increased the number of CD4+CD25+Foxp3+ TReg cells in blood mononuclear cells from asthmatic mice. Furthermore, LJZD reduced the levels of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 4, IL-6, IgG1, and IgE, but increased interferon gamma (IFN-γ) expression, in serum of asthmatic mice, and also decreased the expression of IL-17a, IL-23, IL-25, and thymic stromal lymphopoietin (Tslp) in lung tissues. In addition, miR-21 and miR-146a expression and phospho (p)-NF-κB, p-IκBα, and AP-1 protein expression were inhibited by LJZD in lung tissues from asthmatic mice. Conclusion: LJZD improved OVA-induced asthma in Balb/C mice by inhibiting allergic inflammation and Th2 immunoreaction, which might be associated with the inactivation of the NF-κB signaling pathway.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Ovalbumina/efeitos adversos , Linfócitos T Reguladores/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Antiasmáticos/farmacologia , Asma/induzido quimicamente , Asma/imunologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs , Ovalbumina/administração & dosagem , Linfócitos T Reguladores/imunologia , Células Th2/imunologia
20.
Nutrients ; 13(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34684316

RESUMO

(1) Background: The use of antibiotics affects the composition of gut microbiota. Studies have suggested that the colonization of gut microbiota in early life is related to later food allergies. Still, the relationship between altered intestinal microbiota in adulthood and food allergies is unclear. (2) Methods: We established three mouse models to analyze gut microbiota dysbiosis' impact on the intestinal barrier and determine whether this effect can increase the susceptibility to and severity of food allergy in later life. (3) Results: The antibiotic-induced gut microbiota dysbiosis significantly reduced Lachnospiraceae, Muribaculaceae, and Ruminococcaceae, and increased Enterococcaceae and Clostridiales. At the same time, the metabolic abundance was changed, including decreased short-chain fatty acids and tryptophan, as well as enhanced purine. This change is related to food allergies. After gut microbiota dysbiosis, we sensitized the mice. The content of specific IgE and IgG1 in mice serum was significantly increased, and the inflammatory response was enhanced. The dysbiosis of gut microbiota caused the sensitized mice to have more severe allergic symptoms, ruptured intestinal villi, and a decrease in tight junction proteins (TJs) when re-exposed to the allergen. (4) Conclusions: Antibiotic-induced gut microbiota dysbiosis increases the susceptibility and severity of food allergies. This event may be due to the increased intestinal permeability caused by decreased intestinal tight junction proteins and the increased inflammatory response.


Assuntos
Antibacterianos/efeitos adversos , Disbiose/induzido quimicamente , Disbiose/microbiologia , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/microbiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Intestinos/patologia , Animais , Biodiversidade , Modelos Animais de Doenças , Suscetibilidade a Doenças , Disbiose/complicações , Feminino , Haptoglobinas/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Ovalbumina/administração & dosagem , Filogenia , Precursores de Proteínas/metabolismo , Receptor PAR-2/metabolismo , Índice de Gravidade de Doença , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...