Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.166
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968106

RESUMO

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Assuntos
Proteínas de Bactérias , Cobre , Haemophilus influenzae , Oxazolona , Fatores de Virulência , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Cobre/metabolismo , Cobre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Ferro/metabolismo , Processamento de Proteína Pós-Traducional , Oxirredutases/metabolismo , Oxirredutases/genética , Óperon , Cisteína/metabolismo
2.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930820

RESUMO

The genome-the source of life and platform of evolution-is continuously exposed to harmful factors, both extra- and intra-cellular. Their activity causes different types of DNA damage, with approximately 80 different types of lesions having been identified so far. In this paper, the influence of a clustered DNA damage site containing imidazolone (Iz) or oxazolone (Oz) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOdG) on the charge transfer through the double helix as well as their electronic properties were investigated. To this end, the structures of oligo-Iz, d[A1Iz2A3OXOG4A5]*d[T5C4T3C2T1], and oligo-Oz, d[A1Oz2A3OXOG4A5]*d[T5C4T3C2T1], were optimized at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the aqueous phase using the ONIOM methodology; all the discussed energies were obtained at the M06-2X/6-31++G** level of theory. The non-equilibrated and equilibrated solvent-solute interactions were taken into consideration. The following results were found: (A) In all the discussed cases, OXOdG showed a higher predisposition to radical cation formation, and B) the excess electron migration toward Iz and Oz was preferred. However, in the case of oligo-Oz, the electron transfer from Oz2 to complementary C4 was noted during vertical to adiabatic anion relaxation, while for oligo-Iz, it was settled exclusively on the Iz2 moiety. The above was reflected in the charge transfer rate constant, vertical/adiabatic ionization potential, and electron affinity energy values, as well as the charge and spin distribution. It can be postulated that imidazolone moiety formation within the CDL ds-oligo structure and its conversion to oxazolone can significantly influence the charge migration process, depending on the C2 carbon hybridization sp2 or sp3. The above can confuse the single DNA damage recognition and removal processes, cause an increase in mutagenesis, and harm the effectiveness of anticancer therapy.


Assuntos
Dano ao DNA , Imidazóis , Imidazóis/química , Oxazolona/química , 8-Hidroxi-2'-Desoxiguanosina/química , DNA/química , Modelos Moleculares , Desoxiguanosina/química , Desoxiguanosina/análogos & derivados , Termodinâmica
3.
Int Immunopharmacol ; 133: 112110, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652960

RESUMO

Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.


Assuntos
Colite Ulcerativa , Oxazolona , Transdução de Sinais , Vildagliptina , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Colo/efeitos dos fármacos , Citocinas/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Modelos Animais de Doenças , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Vildagliptina/farmacologia , Vildagliptina/uso terapêutico
4.
Future Med Chem ; 16(10): 963-981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38639393

RESUMO

Aim: Over the last few decades, therapeutic needs have led to a search for safer COX-2 inhibitors with potential anti-inflammatory and analgesic activity. Materials & methods: A new series of oxazolone and imidazolone derivatives 3a-c and 4a-r were synthesized and evaluated as anti-inflammatory and analgesic agents. COX-1/COX-2 isozyme selectivity testing and molecular docking were performed. Results: All compounds showed good activities comparable to those of the reference, celecoxib. The most active compounds 3a, 4a, 4c, 4e and 4f showed promising gastric tolerability with an ulcer index lower than that of celecoxib. The molecular docking of p-methoxyphenyl derivative 4c showed alkyl interaction with the side pocket His75 of COX-2 and achieved the best anti-inflammatory activity, with a COX-2 selectivity index better than that of celecoxib.


[Box: see text].


Assuntos
Analgésicos , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Imidazóis , Simulação de Acoplamento Molecular , Oxazolona , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Animais , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 1/metabolismo , Relação Estrutura-Atividade , Oxazolona/química , Oxazolona/farmacologia , Edema/tratamento farmacológico , Edema/induzido quimicamente , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Camundongos , Ratos , Masculino , Estrutura Molecular , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/síntese química , Carragenina
5.
Anal Chem ; 96(7): 3077-3086, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38344941

RESUMO

Isoaspartic acid (isoAsp) is a common protein modification that spontaneously arises from asparagine or aspartic acid and has been linked to various diseases and health conditions. However, current methods for identifying isoAsp sites in proteins often suffer from ambiguity and have not gained widespread adoption. We developed a novel method that exclusively labels isoAsp with deuterium. This method capitalizes on the unique structural characteristics of isoAsp residues, which possess a free α-carboxyl group and can form an oxazolone ring. Once the oxazolone ring forms, it facilitates racemization at the Cα-position, incorporating a deuteron from a D2O solvent. The sites of deuterium-incorporated isoAsp in proteins can be unequivocally determined by comparing the precursor and product ion masses of the peptides from proteins reacted in H2O and D2O. The effectiveness of this method has been demonstrated through its application to model proteins lysozyme and rituximab. Furthermore, we have confirmed that the isoAsp deuterium-labeling reaction efficiently labels both l- and d-isoAsp without distinction, as well as isoglutamic acid (isoGlu), for which no effective detection methods currently exist.


Assuntos
Oxazolona , Peptídeos , Deutério , Sequência de Aminoácidos , Peptídeos/química , Espectrometria de Massas/métodos , Proteínas , Ácido Isoaspártico/análise , Ácido Isoaspártico/química , Ácido Isoaspártico/metabolismo
6.
Curr Protoc ; 4(2): e993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372429

RESUMO

Eosinophilic esophagitis (EoE) is an emerging chronic T helper type 2 (Th2)-associated, allergic, and immune-mediated disease, characterized histologically by eosinophil-predominant mucosal inflammation and clinically by esophageal dysfunction. Over the past years, the prevalence of EoE has dramatically increased globally. Until recently, most studies of EoE focused on using human biopsies, which are also used for diagnostic purposes, or esophageal epithelial cell lines, which led to major advances in the understanding of EoE. Despite this, a robust mouse model that mimics human disease is still crucial for both understanding disease pathogenesis and as a preclinical model for testing future therapeutics. Herein, we describe a highly reproducible and robust model of EoE that can be performed using wild-type mice by ear sensitization with oxazolone (OXA) followed by intraesophageal challenges. Experimental EoE elicited by OXA mimics the main histopathological features of human EoE, including intraepithelial eosinophilia, epithelial and lamina propria thickening, basal cell hyperplasia, and fibrosis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of EoE in mice using oxazolone Support Protocol 1: Preparing the mouse esophagus for histological analysis Support Protocol 2: Assessment of epithelial and lamina propria thickness using H&E staining Support Protocol 3: Assessment of eosinophilic infiltration using anti-MBP and basal cell proliferation using anti-Ki-67 staining Support Protocol 4: Flow cytometry of mouse esophageal samples Support Protocol 5: ELISA on protein lysates of esophageal samples.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Camundongos , Animais , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/patologia , Oxazolona , Eosinófilos/metabolismo , Eosinófilos/patologia
7.
J Microbiol Biotechnol ; 34(4): 765-773, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247218

RESUMO

Ozone, a highly reactive oxidant molecule, is widely used as a complementary therapy for various skin diseases, including wound healing, pressure ulcers, diabetic foot, and infections. However, there is limited research on the effectiveness of ozone for atopic dermatitis (AD). Ozonated sunflower oil (OSO) is an active ingredient obtained from partially ozonated sunflower oil (SO). OSO markedly reduced the LPS-induced increase in IL-1ß and nitric oxide (NO) levels in RAW 264.7 mouse macrophage cells. Oxazolone (OXZ) was applied to hairless mice to induce AD-like skin symptoms and immune response. OSO significantly alleviated the OXZ-induced increases in the number of infiltrating mast cells, epidermal thickness, AD symptoms, thymic stromal lymphopoietin (TSLP), and filaggrin, as well as the serum levels of NO, IgE, IL-1ß, and TNF-α. Furthermore, OSO inhibited the IL-4/STAT3/MAPK pathway and the expression of NF-κB. Our results suggest that OSO treatment could relieve AD-mediated skin damage through its anti-inflammatory and antioxidant activities. Therefore, it can be used as a therapeutic agent against AD-related skin diseases.


Assuntos
Citocinas , Dermatite Atópica , Lipopolissacarídeos , Óxido Nítrico , Oxazolona , Ozônio , Óleo de Girassol , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Células RAW 264.7 , Citocinas/metabolismo , Oxazolona/toxicidade , Óxido Nítrico/metabolismo , Imunoglobulina E/sangue , NF-kappa B/metabolismo , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Interleucina-1beta/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Linfopoietina do Estroma do Timo , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Filagrinas , Interleucina-4/metabolismo , Anti-Inflamatórios/farmacologia
8.
Proc Natl Acad Sci U S A ; 121(2): e2309360120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165938

RESUMO

Peptide formation from amino acids is thermodynamically unfavorable but a recent study provided evidence that the reaction occurs at the air/solution interfaces of aqueous microdroplets. Here, we show that i) the suggested amino acid complex in microdroplets undergoes dehydration to form oxazolone; ii) addition of water to oxazolone forms the dipeptide; and iii) reaction of oxazolone with other amino acids forms tripeptides. Furthermore, the chirality of the reacting amino acids is preserved in the oxazolone product, and strong chiral selectivity is observed when converting the oxazolone to tripeptide. This last fact ensures that optically impure amino acids will undergo chain extension to generate pure homochiral peptides. Peptide formation in bulk by wet-dry cycling shares a common pathway with the microdroplet reaction, both involving the oxazolone intermediate.


Assuntos
Oxazolona , Peptídeos , Peptídeos/química , Aminoácidos/química , Dipeptídeos , Água/química
9.
Inflammopharmacology ; 32(1): 667-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902927

RESUMO

The inflammatory response in ulcerative colitis (UC) could be relieved by the conventional immunomodulatory agents; 5-aminosalicylic acid, corticosteroids, or azathioprine. However, the low remission rates and the intolerance to these agents necessitate investigation of gene expression signature in UC that could influence the therapeutic efficacy of drugs, as well as the interference with persistence genes by novel therapeutic option. Three microarray datasets (GSE66407, GSE38713 and GSE14580) from the NCBI-GEO database were utilized. Differentially expressed genes between samples of patients with UC and healthy ones were analyzed using R software. In addition, in vivo study using oxazolone-induced UC in BALB/c mice was carried out to investigate the proposed therapeutic efficacy of dichloroacetate (DCA). The bioinformatics analysis revealed the persistence of NLRP3, NFATC1, and IL1B in UC despite treatment with common therapeutic agents. DCA administration to oxazolone-treated mice showed remarkable interference with those persistence genes. Western blotting analysis for NLRP3, NFATC1, nuclear/total NF-κB, and cleaved caspase-1 revealed the ability of DCA to reduce the expression levels of these proteins in oxazolone-treated mice. Additionally, the inflammatory cytokines IL-1ß and IL-13 were reduced in colonic tissue by DCA treatment. The therapeutic efficacy of DCA was further confirmed by the apparent reduction in histopathological scoring, disease activity index, and the normalization of colon length. Therefore, DCA could be suggested as a novel and promising therapeutic option in UC based on its ability to interfere with the persistence of NFATC1/NLRP3/IL1B signaling. That merits further safety/toxicological pre-clinical assessment and update of bioavailability/metabolism data prior to clinical investigation.


Assuntos
Colite Ulcerativa , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxazolona/farmacologia , NF-kappa B , Acetatos , Biologia Computacional , Fatores de Transcrição NFATC , Interleucina-1beta
10.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069436

RESUMO

The protective roles of extracellular vesicles derived from human umbilical cord mesenchymal stem cells against oxazolone-induced damage in the immortalized human keratinocyte cell line HaCaT were investigated. The cells were pretreated with or without UCMSC-derived extracellular vesicles 24 h before oxazolone exposure. The pretreated UVMSC-EVs showed protective activity, elevating cell viability, reducing intracellular ROS, and reducing the changes in the mitochondrial membrane potential compared to the cells with a direct oxazolone treatment alone. The UCMSC-EVs exhibited anti-inflammatory activity via reducing the inflammatory cytokines IL-1ß and TNF-α. A mechanism study showed that the UCMSC-EVs increased the protein expression levels of SIRT1 and P53 and reduced P65 protein expression. It was concluded that UVMSC-EVs can induce the antioxidant defense systems of HaCaT cells and that they may have potential as functional ingredients in anti-aging cosmetics for skin care.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Oxazolona , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
11.
Molecules ; 28(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959813

RESUMO

We synthesized seven (Z)-benzylidene-2-(E)-styryloxazol-5(4H)-ones derivatives of cinnamic acid and evaluated the ability of these compounds to inhibit human acetylcholinesterase (hAChE). The most potent compound was evaluated for cognitive improvement in short-term memory. The seven compounds reversibly inhibited the hAChE between 51 and 75% at 300 µM, showed an affinity (Ki) from 2 to 198 µM, and an IC50 from 9 to 246 µM. Molecular docking studies revealed that all binding moieties are involved in the non-covalent interactions with hAChE for all compounds. In addition, in silico pharmacokinetic analysis was carried out to predict the compounds' blood-brain barrier (BBB) permeability. The most potent inhibitor of hAChE significantly improved cognitive impairment in a modified Y-maze test (5 µmol/kg) and an Object Recognition Test (10 µmol/kg). Our results can help the rational design of hAChE inhibitors to work as potential candidates for treating cognitive disorders.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Animais , Camundongos , Humanos , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Oxazolona , Inibidores da Colinesterase/química , Modelos Animais de Doenças , Cognição , Relação Estrutura-Atividade
12.
Gut Microbes ; 15(2): 2271151, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37889696

RESUMO

Delivery by cesarean section (CS) is associated with an altered gut microbiota (GM) colonization and a higher risk of later chronic inflammatory diseases. Studies investigating the association between CS and atopic dermatitis (AD) are contradictive and often biased by confounding factors. The aim of this study was therefore to provide experimental evidence for the association between CS and AD in a mouse model and clarify the role of the GM changes associated with CS. It was hypothesized that CS-delivered mice, and human CS-GM transplanted mice develop severe dermatitis due to early dysbiosis. BALB/c mice delivered by CS or vaginally (VD) as well as BALB/c mice transplanted with GM from CS or VD human donors were challenged with oxazolone on the ear. The severity of dermatitis was evaluated by ear thickness and clinical and histopathological assessment which were similar between all groups. The immune response was assessed by serum IgE concentration, local cytokine response, and presence of immune cells in the draining lymph node. Both CS-delivered mice and mice inoculated with human CS-GM had a higher IgE concentration. A higher proportion of Th2 cells were also found in the CS-GM inoculated mice, but no differences were seen in the cytokine levels in the affected ears. In support of the experimental findings, a human cohort analysis from where the GM samples were obtained found that delivery mode did not affect the children's risk of developing AD. In conclusion, CS-GM enhanced a Th2 biased immune response, but had no effect on oxazolone-induced dermatitis in mice.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Criança , Camundongos , Humanos , Animais , Feminino , Gravidez , Oxazolona/toxicidade , Cesárea/efeitos adversos , Disbiose , Dermatite Atópica/induzido quimicamente , Citocinas , Imunoglobulina E , Camundongos Endogâmicos BALB C
13.
J Am Soc Mass Spectrom ; 34(8): 1576-1583, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37402129

RESUMO

The fragmentation characteristics of b7 ions produced from proline-containing heptapeptides have been studied in detail. The study has utilized the following C-terminally amidated model peptides: PA6, APA5, A2PA4, A3PA3, A4PA2, A5PA, A6P, PYAGFLV, PAGFLVY, PGFLVYA, PFLVYAG, PLVYAGF, PVYAGFL, YPAGFLV, YAPGFLV, YAGPFLV, YAGFPLV, YAGFLPV, YAGFLVP, PYAFLVG, PVLFYAG, A2PXA3, and A2XPA3 (where X = C, D, F, G, L, V, and Y, respectively). The results have shown that b7 ions undergo head-to-tail cyclization and form a macrocyclic structure. Under the collision-induced dissociation (CID) condition, it generates nondirect sequence ions regardless of the position of the proline and the neighboring amino acid residues. This study highlights the unusual and unique fragmentation behavior of proline-containing heptapeptides. Following the head-to-tail cyclization, the ring opens up and places the proline residue in the N-terminal position while forming a regular oxazolone form of b2 ions for all peptide series. Then, the fragmentation reaction pathway is followed by the elimination of proline with its C-terminal neighbor residue as an oxazolone (e.g., PXoxa) for all proline-containing peptide series.


Assuntos
Oxazolona , Prolina , Prolina/química , Peptídeos/química , Íons/química , Ciclização
14.
J Immunol ; 211(4): 551-562, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37341508

RESUMO

Dermal regulatory T cells (Tregs) are essential for maintenance of skin homeostasis and control of skin inflammatory responses. In mice, Tregs in the skin are characterized by high expression of CD103, the αE integrin. Evidence indicates that CD103 promotes Treg retention within the skin, although the mechanism underlying this effect is unknown. The main ligand of CD103, E-cadherin, is predominantly expressed by cells in the epidermis. However, because Tregs are predominantly located within the dermis, the nature of the interactions between E-cadherin and CD103-expressing Tregs is unclear. In this study, we used multiphoton intravital microscopy to examine the contribution of CD103 to Treg behavior in resting and inflamed skin of mice undergoing oxazolone-induced contact hypersensitivity. Inhibition of CD103 in uninflamed skin did not alter Treg behavior, whereas 48 h after inducing contact hypersensitivity by oxazolone challenge, CD103 inhibition increased Treg migration. This coincided with E-cadherin upregulation on infiltrating myeloid leukocytes in the dermis. Using CD11c-enhanced yellow fluorescent protein (EYFP) × Foxp3-GFP dual-reporter mice, inhibition of CD103 was found to reduce Treg interactions with dermal dendritic cells. CD103 inhibition also resulted in increased recruitment of effector CD4+ T cells and IFN-γ expression in challenged skin and resulted in reduced glucocorticoid-induced TNFR-related protein expression on Tregs. These results demonstrate that CD103 controls intradermal Treg migration, but only at later stages in the inflammatory response, when E-cadherin expression in the dermis is increased, and provide evidence that CD103-mediated interactions between Tregs and dermal dendritic cells support regulation of skin inflammation.


Assuntos
Dermatite de Contato , Linfócitos T Reguladores , Animais , Camundongos , Caderinas/metabolismo , Dermatite de Contato/metabolismo , Inflamação/metabolismo , Cadeias alfa de Integrinas/metabolismo , Oxazolona/metabolismo , Linfócitos T Reguladores/metabolismo
15.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375389

RESUMO

This paper describes the synthesis of new heterocycles from oxazol-5(4H)-one and 1,2,4-triazin-6(5H)-one classes containing a phenyl-/4-bromophenylsulfonylphenyl moiety. The oxazol-5(4H)-ones were obtained via condensation of 2-(4-(4-X-phenylsulfonyl)benzamido)acetic acids with benzaldehyde/4-fluorobenzaldehyde in acetic anhydride and in the presence of sodium acetate. The reaction of oxazolones with phenylhydrazine, in acetic acid and sodium acetate, yielded the corresponding 1,2,4-triazin-6(5H)-ones. The structures of the compounds were confirmed using spectral (FT-IR, 1H-NMR, 13C-NMR, MS) and elemental analysis. The toxicity of the compounds was evaluated on Daphnia magna Straus crustaceans and on the budding yeast Saccharomyces cerevisiae. The results indicate that both the heterocyclic nucleus and halogen atoms significantly influenced the toxicity against D. magna, with the oxazolones being less toxic than triazinones. The halogen-free oxazolone had the lowest toxicity, and the fluorine-containing triazinone exhibited the highest toxicity. The compounds showed low toxicity against yeast cells, apparently due to the activity of plasma membrane multidrug transporters Pdr5 and Snq2. The predictive analyses indicated an antiproliferative effect as the most probable biological action. The PASS prediction and CHEMBL similarity studies show evidence that the compounds could inhibit certain relevant oncological protein kinases. These results correlated with toxicity assays suggest that halogen-free oxazolone could be a good candidate for future anticancer investigations.


Assuntos
Oxazolona , Triazinas , Oxazolona/química , Triazinas/toxicidade , Acetato de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae
16.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108745

RESUMO

The irradiation of 2-aryl-4-(E-3'-aryl-allylidene)-5(4H)-oxazolones 1 with blue light (456 nm) in the presence of [Ru(bpy)3](BF4)2 (bpy = 2,2'-bipyridine, 5% mol) gives the unstable cyclobutane-bis(oxazolones) 2 by [2+2]-photocycloaddition of two oxazolones 1. Each oxazolone contributes to the formation of 2 with a different C=C bond, one of them reacting through the exocyclic C=C bond, while the other does so through the styryl group. Treatment of unstable cyclobutanes 2 with NaOMe/MeOH produces the oxazolone ring opening reaction, affording stable styryl-cyclobutane bis(amino acids) 3. The reaction starts with formation of the T1 excited state of the photosensitizer 3[Ru*(bpy)3]2+, which reacts with S0 of oxazolones 1 through energy transfer to give the oxazolone T1 state 3(oxa*)-1, which is the reactive species and was characterized by transient absorption spectroscopy. Measurement of the half-life of 3(oxa*)-1 for 1a, 1b and 1d shows large values for 1a and 1b (10-12 µs), while that of 1d is shorter (726 ns). Density functional theory (DFT) modeling displays strong structural differences in the T1 states of the three oxazolones. Moreover, study of the spin density of T1 state 3(oxa*)-1 provides clues to understanding the different reactivity of 4-allylidene-oxazolones described here with respect to the previously reported 4-arylidene-oxazolones.


Assuntos
Ciclobutanos , Oxazolona , Aminoácidos , Reação de Cicloadição , Fármacos Fotossensibilizantes
17.
Iran J Immunol ; 20(1): 36-44, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36932908

RESUMO

Background: Allergic dermatitis (AD) is an inflammatory skin disease that arises from abnormal T lymphocyte activation. A recombinant fusion protein comprising Helicobacter pylori neutrophil-activating protein and maltose binding protein, rMBP-NAP, has been documented as a novel immunomodulatory TLR agonist. Objective: To explore the effect of the rMBP-NAP on the OXA-induced AD in a mouse model and clarify the possible action mechanism. Methods: The AD animal model was induced by repeated administration of oxazolone (OXA) in BALB/c mice. H&E staining was used to analyze the ear epidermis thickness and the number of infiltrating inflammatory cells. TB staining was used to detect mast cell infiltration in the ear tissue. ELISA was used to analyze the secretion of cytokines IL-4 and IFN-γ in peripheral blood. qRT-PCR was used to determine the expression levels of IL-4, IFN-γ, and IL-13 in ear tissue. Results: OXA induced the establishment of an AD model. After the rMBP-NAP treatment, the thickness of the ear tissue and the number of mast cells infiltrated in AD mice reduced, and the serum and ear tissue levels of IL-4 and IFN-γ increased, but the ratio of IFN-γ (rMBP-NAP group)/IL-4 (rMBP-NAP group) was greater than the ratio of IFN-γ (sensitized group)/IL-4 (sensitized group). Conclusion: The rMBP-NAP improved the disease symptoms including skin lesions in AD, alleviated the inflammation in ear tissue, and restored the Th1/2 balance by inducing a shift from the Th2 to the Th1 response. The results of our work support the use of rMBP-NAP as an immunomodulator for AD treatment in future investigations.


Assuntos
Dermatite Atópica , Proteínas Recombinantes de Fusão , Equilíbrio Th1-Th2 , Animais , Camundongos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/terapia , Interleucina-4/metabolismo , Camundongos Endogâmicos BALB C , Oxazolona , Células Th2 , Proteínas Recombinantes de Fusão/farmacologia
18.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769034

RESUMO

A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). ß-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of ß-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, ß-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa ß (NF-kß), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kß, on the other hand, significantly decreased. Using ß-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , beta-Glucanas , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Oxazolona , Aldeído Redutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta-Glucanas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Wistar , Mitocôndrias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/metabolismo
19.
J Crohns Colitis ; 17(1): 111-122, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35917251

RESUMO

BACKGROUND AND AIMS: NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS: An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS: Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4 + T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS: These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.


Assuntos
Colite , Oxazolona , Camundongos , Animais , Oxazolona/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Colite/metabolismo , Inflamação , Transdução de Sinais , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
20.
Mar Drugs ; 20(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354992

RESUMO

Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Oxazolona/toxicidade , Oxazolona/metabolismo , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , Imunoglobulina E , Extratos Vegetais/farmacologia , Administração Tópica , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...