Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Clin Pharmacol Toxicol ; 125(5): 430-438, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31222944

RESUMO

The main sites of the analgesic action of oxycodone are the brain and spinal cord. The present study describes the concentrations of oxycodone and its metabolites in the brain and spinal cord after epidural administration to the ewe. Twenty pregnant ewes undergoing laparotomy were randomized into two groups to receive epidural oxycodone: infusion group (n = 10, 0.1 mg·kg-1 bolus followed by continuous infusion of 0.05 mg·kg-1 ·h-1 for five days) or repeated boluses group (n = 10, 0.2 + 2x0.1 mg·kg-1 bolus followed by a 0.2 mg·kg-1 bolus every 12 hours for five days). After five days of oxycodone administration, arterial blood samples were collected, the sheep were killed, and a CSF sample and tissue samples from the cortex, thalamus, cerebellum and spinal cord were obtained for the quantification of oxycodone and its main metabolites. The median plasma and CSF concentrations of oxycodone were 9.0 and 14.2 ng·mL-1 after infusion and 0.4 and 1.1 ng·mL-1 after repeated boluses. In the infusion group, the cortex, thalamus and cerebellum oxycodone concentrations were 4-8 times higher and in the spinal cord 1310 times higher than in plasma. In the repeated boluses group, brain tissue concentrations were similar in the three areas, and in the spinal cord were 720 times higher than in plasma. Oxymorphone was the main metabolite detected, which accumulated in the brain and spinal cord tissue. In conclusion, first, accumulation of oxycodone and oxymorphone in the CNS was observed, and second, high spinal cord concentrations suggest that epidural oxycodone may provide segmental analgesia.


Assuntos
Analgésicos Opioides/farmacocinética , Química Encefálica , Oxicodona/farmacocinética , Oximorfona/farmacocinética , Medula Espinal/química , Analgesia/métodos , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/sangue , Analgésicos Opioides/líquido cefalorraquidiano , Animais , Cerebelo/química , Córtex Cerebral/química , Feminino , Injeções Epidurais , Modelos Animais , Oxicodona/administração & dosagem , Oxicodona/sangue , Oxicodona/líquido cefalorraquidiano , Oximorfona/sangue , Oximorfona/líquido cefalorraquidiano , Gravidez , Ovinos , Tálamo/química , Distribuição Tecidual
2.
Eur J Pharm Sci ; 112: 168-179, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29133240

RESUMO

Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human, and to predict drug concentration-time profiles in multiple CNS compartments on available human data of four drugs (acetaminophen, oxycodone, morphine and phenytoin). Values of the system-specific parameters in the rat CNS PBPK model were replaced by corresponding human values. The contribution of active transporters for the four selected drugs was scaled based on differences in expression of the pertinent transporters in both species. Model predictions were evaluated with available pharmacokinetic (PK) data in human brain extracellular fluid and/or cerebrospinal fluid, obtained under physiologically healthy CNS conditions (acetaminophen, oxycodone, and morphine) and under pathophysiological CNS conditions where CNS physiology could be affected (acetaminophen, morphine and phenytoin). The human CNS PBPK model could successfully predict their concentration-time profiles in multiple human CNS compartments in physiological CNS conditions within a 1.6-fold error. Furthermore, the model allowed investigation of the potential underlying mechanisms that can explain differences in CNS PK associated with pathophysiological changes. This analysis supports the relevance of the developed model to allow more effective selection of CNS drug candidates since it enables the prediction of CNS target-site concentrations in humans, which are essential for drug development and patient treatment.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Acetaminofen/sangue , Acetaminofen/líquido cefalorraquidiano , Acetaminofen/farmacocinética , Animais , Transporte Biológico , Lesões Encefálicas Traumáticas/metabolismo , Fármacos do Sistema Nervoso Central/líquido cefalorraquidiano , Fármacos do Sistema Nervoso Central/farmacocinética , Epilepsia/metabolismo , Humanos , Morfina/sangue , Morfina/líquido cefalorraquidiano , Morfina/farmacocinética , Oxicodona/sangue , Oxicodona/líquido cefalorraquidiano , Oxicodona/farmacocinética , Fenitoína/líquido cefalorraquidiano , Fenitoína/farmacocinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...