Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808880

RESUMO

Peroxisome proliferator activated receptor beta/delta (PPARß/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARß/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARß/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARß/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L-165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARß/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARß/δ agonists leads to a significant increase in Pdk-4 and Angptl-4 mRNA expression, which is significantly decreased in the presence of PPARß/δ antagonists. Docking using computational chemistry methods indicates that PPARß/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARß/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARß/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARß/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARß/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.


Assuntos
PPAR delta/química , PPAR beta/química , Animais , Benzamidas/química , Benzamidas/farmacologia , Sítios de Ligação , Biomarcadores , Expressão Gênica , Mediadores da Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Masculino , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Óxido Nítrico/metabolismo , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , PPAR delta/genética , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , PPAR beta/genética , Ligação Proteica , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Tiazóis/química , Tiazóis/farmacologia
2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924880

RESUMO

The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARß/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 µg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARß/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARß/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARß/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.


Assuntos
Tecido Adiposo Branco/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Leptina/fisiologia , PPAR gama/metabolismo , PPAR beta/metabolismo , Animais , Hipotálamo/metabolismo , Infusões Intraventriculares , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , PPAR gama/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Ratos Wistar , Sulfonas , Tiofenos
3.
Metabolism ; 115: 154453, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249043

RESUMO

BACKGROUND: Cardiovascular disease in obese individuals with type 2 diabetes is often associated with hyperleptinemia and leptin resistance, while other studies support that leptin has cardioprotective effects. Besides, the role of leptin in regulating cardiac atrophy or hypertrophy remains to be clearly defined. In fact, in rats with normal leptin sensitivity, the molecular underpinnings of the effects of central leptin regulating cardiac structural pathways remain poorly understood. OBJECTIVE: Hence, we assessed the effects of intracerebroventricular (icv) leptin infusion on cardiac remodeling analyzing FOXO1/3 and mTORC1 pathways, focusing special attention to PPARß/δ as mediator of central leptin's effects on cardiac metabolism. METHODS: Male 3-months-old Wistar rats, infused with icv leptin (0.2 µg/day) for 7 days, were daily co-treated intraperitoneally with the specific PPARß/δ antagonist GSK0660, at 1 mg/kg per day along leptin treatment. RESULTS: Central leptin regulated dynamically, in an opposite manner, the network between FOXOs and mTORC1 and induced an atrophy-related gene program in cardiac tissue. Leptin activated the anti-hypertrophic kinase GSK3ß and increased the protein levels of muscle-specific ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/Atrogin-1 involved in limiting cardiac hypertrophy. FOXO1 activity and the expression of their target genes, Sod2 and Lpl, were also increased in the heart upon central leptin infusion. Besides, Beclin-1 and LC3B-II, gene products of the autophagic pathway response, were upregulated, while the content and expression levels of phenotypic markers of cardiac hypertrophy as ANP and ß-myosin heavy chain, gene product of Myh7 were significantly decreased. On the other hand, mTORC1 activity and OXPHOS protein levels were decreased suggesting a key role of central leptin preventing cardiac oxidative stress. In fact, the content of carbonylated proteins, TBARS and ROS/RSN were not increased in cardiac tissue in response to central leptin infusion. Finally, the pharmacological inhibition of PPARß/δ, via in vivo administration of the selective antagonist GSK0660, blunted the induction of FOXO1/3, Atrogin-1, MuRF1 and GSK3ß in the heart mediated by icv leptin infusion. CONCLUSIONS: Our results demonstrate that, in lean rats with normal leptin sensitivity, central leptin regulates nutrient sensing pathways in heart contributing to balance cardiac remodeling through the anti- and pro-hypertrophic programs, and in this process is involved PPARß/δ.


Assuntos
Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Leptina/farmacologia , Miocárdio/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiomegalia/metabolismo , Coração/efeitos dos fármacos , Masculino , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Ratos , Ratos Wistar , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Tiofenos/farmacologia
4.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339154

RESUMO

Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARß (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARß ligands possessed the strongest effect. The PPARß agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARß agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARß ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARß ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Astrócitos/metabolismo , Interleucina-10/metabolismo , Oxilipinas/metabolismo , PPAR gama/agonistas , PPAR beta/agonistas , Fator de Necrose Tumoral alfa/metabolismo , Anilidas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenofibrato/farmacologia , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 4/metabolismo , Oxazóis/farmacologia , PPAR gama/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Ratos , Ratos Wistar , Rosiglitazona/farmacologia , Tiazóis/farmacologia , Tirosina/análogos & derivados , Tirosina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Clin Endocrinol Metab ; 105(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594141

RESUMO

CONTEXT: Implantation is a reproductive bottleneck in women, regulated by fluctuations in ovarian steroid hormone concentrations. However, other nuclear receptor ligands are modifiers of endometrial differentiation leading to successful pregnancy. In the present study we analyzed the effects of peroxisome-proliferator-activated receptor ß/δ (PPARß/δ) activation on established cellular biomarkers of human endometrial differentiation (decidualization). OBJECTIVE: The objective of this work is to test the effects of PPARß/δ ligation on human endometrial cell differentiation. DESIGN: Isolated primary human endometrial stromal cells (ESCs) were treated with synthetic (GW0742) or natural (all trans-retinoic acid, RA) ligands of PPARß/δ, and also with receptor antagonists (GSK0660, PT-S58, and ST247) in the absence or presence of decidualizing hormones (10 nM estradiol, 100 nM progesterone, and 0.5 mM dibutyryl cAMP [3',5'-cyclic adenosine 5'-monophosphate]). In some cases interleukin (IL)-1ß was used as an inflammatory stimulus. Time course and dose-response relationships were evaluated to determine effects on panels of well characterized in vitro biomarkers of decidualization. RESULTS: PPARß/δ, along with estrogen receptor α (ERα) and PR-A and PR-B, were expressed in human endometrial tissue and isolated ESCs. GW0742 treatment enhanced hormone-mediated ESC decidualization in vitro as manifested by upregulation of prolactin, insulin-like growth factor-binding protein 1, IL-11, and vascular endothelial growth factor (VEGF) secretion and also increased expression of ERα, PR-A and PR-B, and connexin 43 (Cx43). RA treatment also increased VEGF, ERα, PR-A, and PR-B and an active, nonphosphorylated isoform of Cx43. IL-1ß and PPARß/δ antagonists inhibited biomarkers of endometrial differentiation. CONCLUSION: Ligands that activate PPARß/δ augment the in vitro expression of biomarkers of ESC decidualization. By contrast, PPARß/δ antagonists impaired decidualization markers. Drugs activating these receptors may have therapeutic benefits for embryonic implantation.


Assuntos
Endométrio/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Células Estromais/efeitos dos fármacos , Tiazóis/farmacologia , Adulto , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Decídua/efeitos dos fármacos , Decídua/fisiologia , Endométrio/citologia , Endométrio/fisiologia , Feminino , Humanos , Infertilidade Feminina/tratamento farmacológico , Ligantes , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , PPAR delta/antagonistas & inibidores , PPAR delta/metabolismo , PPAR beta/antagonistas & inibidores , PPAR beta/metabolismo , Células Estromais/fisiologia , Sulfonas/farmacologia , Tiofenos/farmacologia , Regulação para Cima/efeitos dos fármacos
6.
Theriogenology ; 152: 36-46, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32361305

RESUMO

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor family of ligand-dependent transcription factors. PPARs have been shown to be important regulators of female reproductive functions, including conceptus development and placenta formation. This study examines the effect of PPARß/δ and PPARγ agonists and antagonists on (1) the synthesis of prostaglandin (PG) E2, interleukin (IL) 6, interferon (IFN) γ, and tumor necrosis factor (TNF) α and (2) the mRNA expression of genes encoding nutrient transporters and/or binding proteins in Day 15 conceptus trophoblast cells. The study also examines whether PPAR agonist-modulated IL6, IFNγ, and TNFα secretion is mediated via mitogen-activated protein kinase (MAPK) pathways. Trophoblast cells were exposed to L-165,041 (a PPARß/δ agonist) or rosiglitazone (a PPARγ agonist) in the presence or absence of GSK3787 (a PPARß/δ antagonist) or GW9662 (a PPARγ antagonist) or in the presence or absence of U0126 (a MAPK inhibitor). Rosiglitazone stimulated PGE synthase and IFNG mRNA expression in trophoblast cells and enhanced PGE2 concentrations in the incubation medium. Moreover, cells treated with rosiglitazone exhibited increased abundance of the solute carrier organic anion transporter family member 2A1 (SLCO2A1, a PG transporter) and of fatty acid binding protein (FABP) 5 transcripts. All these effects were abolished by the addition of GW9662, which indicates that the action of rosiglitazone is PPARγ-dependent in the studied cells. L-165,041 inhibited TNFα synthesis and decreased the mRNA expression of FABP3 and IL6 in trophoblast cells. However, this effect was not abolished by the addition of GSK3787 into the incubation medium, suggesting that L-165,041 action is independent of PPARß/δ. The inhibitory effect of L-165,041 on TNFα concentration and the stimulatory effect of rosiglitazone on IFNγ accumulation in the medium were not observed in the presence of the MAPK inhibitor, suggesting that the action of both agonists may be mediated by MAPKs. In conclusion, PPARß/δ and PPARγ agonists are differentially involved in the trophoblast expression of genes related to conceptus development and implantation in pigs. Furthermore, L-165,041 and rosiglitazone may have PPAR-dependent and -independent effects in conceptus trophoblast cells.


Assuntos
Benzamidas/farmacologia , Citocinas/metabolismo , Dinoprostona/metabolismo , Fenoxiacetatos/farmacologia , Rosiglitazona/farmacologia , Sulfonas/farmacologia , Trofoblastos/efeitos dos fármacos , Anilidas/farmacologia , Animais , Butadienos/farmacologia , Proteínas de Transporte , Células Cultivadas , Citocinas/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Nitrilas/farmacologia , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , Gravidez , Suínos , Trofoblastos/metabolismo
7.
J Clin Invest ; 130(5): 2220-2236, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32202512

RESUMO

Lipid-rich myelin forms electrically insulating, axon-wrapping multilayers that are essential for neural function, and mature myelin is traditionally considered metabolically inert. Surprisingly, we discovered that mature myelin lipids undergo rapid turnover, and quaking (Qki) is a major regulator of myelin lipid homeostasis. Oligodendrocyte-specific Qki depletion, without affecting oligodendrocyte survival, resulted in rapid demyelination, within 1 week, and gradually neurological deficits in adult mice. Myelin lipids, especially the monounsaturated fatty acids and very-long-chain fatty acids, were dramatically reduced by Qki depletion, whereas the major myelin proteins remained intact, and the demyelinating phenotypes of Qki-depleted mice were alleviated by a high-fat diet. Mechanistically, Qki serves as a coactivator of the PPARß-RXRα complex, which controls the transcription of lipid-metabolism genes, particularly those involved in fatty acid desaturation and elongation. Treatment of Qki-depleted mice with PPARß/RXR agonists significantly alleviated neurological disability and extended survival durations. Furthermore, a subset of lesions from patients with primary progressive multiple sclerosis were characterized by preferential reductions in myelin lipid contents, activities of various lipid metabolism pathways, and expression level of QKI-5 in human oligodendrocytes. Together, our results demonstrate that continuous lipid synthesis is indispensable for mature myelin maintenance and highlight an underappreciated role of lipid metabolism in demyelinating diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Doenças Desmielinizantes/metabolismo , Metabolismo dos Lipídeos , Bainha de Mielina/metabolismo , PPAR beta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Bainha de Mielina/genética , Bainha de Mielina/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , PPAR beta/antagonistas & inibidores , PPAR beta/genética , Proteínas de Ligação a RNA/genética
8.
Molecules ; 25(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102354

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with three isoforms (PPARα, PPARß/δ, PPARγ) and can regulate pain, anxiety, and cognition. However, their role in conditioned fear and pain-fear interactions has not yet been investigated. Here, we investigated the effects of systemically administered PPAR antagonists on formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA), and conditioned fear in the presence of nociceptive tone in rats. Twenty-three and a half hours following fear conditioning to context, male Sprague-Dawley rats received an intraplantar injection of formalin and intraperitoneal administration of vehicle, PPARα (GW6471), PPARß/δ (GSK0660) or PPARγ (GW9662) antagonists, and 30 min later were re-exposed to the conditioning arena for 15 min. The PPAR antagonists did not alter nociceptive behaviour or fear-conditioned analgesia. The PPARα and PPARß/δ antagonists prolonged context-induced freezing in the presence of nociceptive tone without affecting its initial expression. The PPARγ antagonist potentiated freezing over the entire trial. In conclusion, pharmacological blockade of PPARα and PPARß/δ in the presence of formalin-evoked nociceptive tone, impaired short-term, within-trial fear-extinction in rats without affecting pain response, while blockade of PPARγ potentiated conditioned fear responding. These results suggest that endogenous signalling through these three PPAR isoforms may reduce the expression of conditioned fear in the presence of nociceptive tone.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Medo/efeitos dos fármacos , Dor Nociceptiva/tratamento farmacológico , PPAR alfa/genética , PPAR delta/genética , PPAR gama/genética , PPAR beta/genética , Analgesia/métodos , Anilidas/farmacologia , Animais , Extinção Psicológica/efeitos dos fármacos , Formaldeído/administração & dosagem , Reação de Congelamento Cataléptica/efeitos dos fármacos , Expressão Gênica , Masculino , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/fisiopatologia , Dor Nociceptiva/psicologia , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , PPAR delta/antagonistas & inibidores , PPAR delta/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , PPAR beta/antagonistas & inibidores , PPAR beta/metabolismo , Ratos , Ratos Sprague-Dawley , Sulfonas/farmacologia , Tiofenos/farmacologia , Tirosina/análogos & derivados , Tirosina/farmacologia
9.
Exp Eye Res ; 190: 107885, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758977

RESUMO

Diabetic retinopathy (DR) is triggered by retinal cell damage stimulated by the diabetic milieu, including increased levels of intraocular free fatty acids. Free fatty acids may serve as an initiator of inflammatory cytokine release from Müller cells, and the resulting cytokines are potent stimulators of retinal endothelial pathology, such as leukostasis, vascular permeability, and basement membrane thickening. Our previous studies have elucidated a role for peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in promoting several steps in the pathologic cascade in DR, including angiogenesis and expression of inflammatory mediators. Furthermore, PPARß/δ is a known target of lipid signaling, suggesting a potential role for this transcription factor in fatty acid-induced retinal inflammation. Therefore, we hypothesized that PPARß/δ stimulates both the induction of inflammatory mediators by Müller cells as well the paracrine induction of leukostasis in endothelial cells (EC) by Müller cell inflammatory products. To test this, we used the PPARß/δ inhibitor, GSK0660, in primary human Müller cells (HMC), human retinal microvascular endothelial cells (HRMEC) and mouse retina. We found that palmitic acid (PA) activation of PPARß/δ in HMC leads to the production of pro-angiogenic and/or inflammatory cytokines that may constitute DR-relevant upstream paracrine inflammatory signals to EC and other retinal cells. Downstream, EC transduce these signals and increase their synthesis and release of chemokines such as CCL8 and CXCL10 that regulate leukostasis and other cellular events related to vascular inflammation in DR. Our results indicate that PPARß/δ inhibition mitigates these upstream (MC) as well as downstream (EC) inflammatory signaling events elicited by metabolic stimuli and inflammatory cytokines. Therefore, our data suggest that PPARß/δ inhibition is a potential therapeutic strategy against early DR pathology.


Assuntos
Células Ependimogliais/efeitos dos fármacos , Leucostasia/prevenção & controle , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Retinite/prevenção & controle , Sulfonas/farmacologia , Tiofenos/farmacologia , Adulto , Animais , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Ependimogliais/metabolismo , Humanos , Inflamação , Leucostasia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Palmíticos/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos dos fármacos , Retina/metabolismo , Retinite/metabolismo
10.
Int J Neurosci ; 129(11): 1053-1065, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31215291

RESUMO

Aim: Alzheimer's disease (AD) is characterized by oxidative stress, neuroinflammation and progressive cognitive decline. Abscisic acid (ABA) is produced in a variety of mammalian tissues, including brain. It has anti-inflammatory and antioxidant effects and elicits a positive effect on spatial learning and memory performance. Here, the possible protective effect of ABA was evaluated in streptozotocin (STZ)-induced AD rat model which were injected intracerebroventriculary (i.c.v.) with STZ (3 mg/kg). Material and Methods: The STZ-treated animals received ABA (10 µg/rat, i.c.v.), ABA plus PPARß/δ receptor antagonist (GSK0660, 80 nM/rat) or ABA plus selective inhibitor of PKA (KT5720, 0.5 µg/rat) for 14 d. Learning and memory were determined using Morris water maze (MWM) and passive avoidance (PA) tests. Results: The data showed that STZ produced a significant learning and memory deficit in both MWM and PA tests. ABA significantly prevented the learning and memory impairment in STZ-treated rats. However, ABA effects were blocked by GSK0660 and KT5720. Conclusion: The data indicated that ABA attenuates STZ-induced learning and memory impairment and PPAR-ß/δ receptors and PKA signaling are involved, at least in part, in the ABA mechanism.


Assuntos
Ácido Abscísico/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Aprendizagem/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/administração & dosagem , Doença de Alzheimer/induzido quimicamente , Animais , Antibióticos Antineoplásicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Carbazóis/farmacologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Pirróis/farmacologia , Ratos , Ratos Wistar , Estreptozocina/farmacologia , Sulfonas/farmacologia , Tiofenos/farmacologia
11.
Neuropharmacology ; 140: 150-161, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30086290

RESUMO

Activation of peroxisome proliferator-activated receptor beta/delta (PPAR-ß/δ), a nuclear receptor acting as a transcription factor, was shown to be protective in various models of neurological diseases. However, there is no information about the role of PPAR-ß/δ as well as its molecular mechanisms in neonatal hypoxia-ischemia (HI). In the present study, we hypothesized that PPAR-ß/δ agonist GW0742 can activate miR-17-5p, consequently inhibiting TXNIP and ASK1/p38 pathway leading to attenuation of apoptosis. Ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. GW0742 was administered intranasally 1 and 24 h post HI. PPAR-ß/δ receptor antagonist GSK3787 was administered intranasally 1 h before and 24 h after HI, antimir-17-5p and TXNIP CRISPR activation plasmid were administered intracerebroventricularly 24 and 48 h before HI, respectively. Brain infarct area measurement, neurological function tests, western blot, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Fluoro-Jade C and immunofluorescence staining were conducted. GW0742 reduced brain infarct area, brain atrophy, apoptosis, and improved neurological function at 72 h and 4 weeks post HI. Furthermore, GW0742 treatment increased PPAR-ß/δ nuclear expression and miR-17-5p level and reduced TXNIP in ipsilateral hemisphere after HI, resulting in inhibition of ASK1/p38 pathway and attenuation of apoptosis. Inhibition of PPAR-ß/δ receptor and miR-17-5p and activation of TXNIP reversed the protective effects. For the first time, we provide evidence that intranasal administration of PPAR-ß/δ agonist GW0742 attenuated neuronal apoptosis at least in part via PPAR-ß/δ/miR-17/TXNIP pathway. GW0742 could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy (HIE).


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , MicroRNAs/fisiologia , PPAR delta/fisiologia , PPAR beta/fisiologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Neurônios/patologia , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , PPAR delta/biossíntese , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , PPAR beta/biossíntese , Ratos , Transdução de Sinais/fisiologia , Sulfonas/farmacologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico
12.
J Dairy Res ; 85(3): 295-302, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29941059

RESUMO

The hypothesis of the study was that inhibition of PPARß/δ increases glucose uptake and lactose synthesis in bovine mammary epithelial cells by reducing the expression of the glucose transporter mRNA destabiliser calreticulin. Three experiments were conducted to test the hypothesis using immortalised bovine mammary alveolar (MACT) and primary bovine mammary (PBMC) cells. In Experiment 1, the most effective dose to inhibit PPARß/δ activity among two synthetic antagonists (GSK-3787 and PT-s58) was assessed using a gene reporter assay. In Experiment 2, the effect on glucose uptake and lactose synthesis was evaluated by measuring glucose and lactose in the media and expression of related key genes upon modulation of PPARß/δ using GSK-3787, the synthetic PPARß/δ agonist GW-501516, or a combination of the two in cells cultivated in plastic. In Experiment 3, the same treatments were applied to cells cultivated in Matrigel and glucose and lactose in media were measured. In Experiment 1 it was determined that a significant inhibition of PPARß/δ in the presence or absence of fetal bovine serum was achieved with ≥ 1000 nm GSK-3787 but no significant inhibition was observed with PT-s58. In Experiment 2, inhibition of PPARß/δ had no effect on glucose uptake and lactose synthesis but they were both increased by GW-501516 in PBMC. The mRNA abundance of PPARß/δ target gene pyruvate dehydrogenase kinase 4 was increased but transcription of calreticulin was decreased (only in MACT cells) by GW-501516. Treatment with GSK-3787 did not affect the transcription of measured genes. No effects on glucose uptake or lactose synthesis were detected by modulation of PPARß/δ activity on cells cultivated in Matrigel. The above data do not provide support for the original hypothesis and suggest that PPARß/δ does not play a major role in glucose uptake and lactose synthesis in bovine mammary epithelial cells.


Assuntos
Bovinos , Glucose/metabolismo , Lactose/biossíntese , Glândulas Mamárias Animais/metabolismo , PPAR delta/fisiologia , PPAR beta/fisiologia , Animais , Benzamidas/farmacologia , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Proteínas Quinases/genética , RNA Mensageiro/análise , Sulfonas/farmacologia
13.
Eur J Pharmacol ; 832: 75-80, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29778745

RESUMO

The phytohormone abscisic acid exists in animal tissues particularly in the brain. However, its neurophysiological effects have not yet been fully clarified. This study was designed to evaluate the possible antinociceptive effects of abscisic acid on animal models of pain and determine its possible signaling mechanism. Tail-flick, hot-plate and formalin tests were used to assess the nociceptive threshold. All experiments were carried out on male Wistar rats. To determine the role of Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) and opioid receptors on the induction of abscisic acid antinociception, specific antagonists were injected 15 min before abscisic acid. The data showed that abscisic acid (5, 10 and 15 µg/rat, i.c.v.) significantly decreased pain responses in formalin test. In addition, it could also produce dose-dependent antinociceptive effect in tail-flick and hot-plate tests. Administration of PPARß/δ antagonist (GSK0660, 80 nM, i.c.v.) significantly attenuated the antinociceptive effect of abscisic acid in all tests. The antinociceptive effects of abscisic acid were completely inhibited by naloxone (6 µg, i.c.v.) during the time course of tail-flick and hot-plate tests. The results indicated that the central injection of abscisic acid has potent pain-relieving property which is mediated partly via the PPAR ß/δ and opioid signaling.


Assuntos
Ácido Abscísico/farmacologia , Analgésicos/farmacologia , PPAR delta/metabolismo , PPAR beta/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
14.
J Endocrinol ; 236(1): 43-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109080

RESUMO

The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor ß/δ (PPARß/δ, encoded by Pparb/d) and their target genes, adipose triglyceride lipase (encoded by Pnpla2, herefater referred to as Atgl), hormone sensitive lipase (encoded by Lipe, herefater referred to as Hsl), pyruvate dehydrogenase kinase 4 (Pdk4) and acyl CoA oxidase 1 (Acox1), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 (Scd1) and diacylglycerol acyltransferase 1 (Dgat1) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal ß-oxidation. Finally, the pharmacological inhibition of PPARß/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARß/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight.


Assuntos
Coração/efeitos dos fármacos , Leptina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Miocárdio/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Glucose/metabolismo , Infusões Intraventriculares , Masculino , Coativadores de Receptor Nuclear/metabolismo , Oxirredução , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Palmitatos/metabolismo , Distribuição Aleatória , Ratos Wistar , Sulfonas , Tiofenos , Triglicerídeos/metabolismo
15.
J Physiol Biochem ; 74(1): 35-45, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29198059

RESUMO

Caffeine has been shown to stimulate multiple major regulators of cell energetics including AMP-activated protein kinase (AMPK) and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Additionally, caffeine induces peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial biogenesis. While caffeine enhances oxidative metabolism, experimental concentrations often exceed physiologically attainable concentrations through diet. This work measured the effects of low-level caffeine on cellular metabolism and gene expression in myotubes, as well as the dependence of caffeine's effects on the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARß/δ). C2C12 myotubes were treated with various doses of caffeine for up to 24 h. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Cellular metabolism was determined via oxygen consumption and extracellular acidification rate. Caffeine significantly induced regulators of mitochondrial biogenesis and oxidative metabolism. Mitochondrial staining was suppressed in PPARß/δ-inhibited cells which was rescued by concurrent caffeine treatment. Caffeine-treated cells also displayed elevated peak oxidative metabolism which was partially abolished following PPARß/δ inhibition. Similar to past observations, glucose uptake and GLUT4 content were elevated in caffeine-treated cells, however, glycolytic metabolism was unaltered following caffeine treatment. Physiological levels of caffeine appear to enhance cell metabolism through mechanisms partially dependent on PPARß/δ.


Assuntos
Cafeína/metabolismo , Regulação da Expressão Gênica , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Animais , Benzamidas/farmacologia , Bioensaio , Linhagem Celular , Técnicas de Cocultura , Regulação da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/enzimologia , Dinâmica Mitocondrial/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/agonistas , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Biogênese de Organelas , Concentração Osmolar , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , PPAR delta/antagonistas & inibidores , PPAR delta/metabolismo , PPAR beta/antagonistas & inibidores , PPAR beta/metabolismo , Smegmamorpha , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Sulfonas/farmacologia
16.
Aging (Albany NY) ; 8(9): 1952-1978, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27622388

RESUMO

Peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARß/δ activation on ocular tissues affected in the disease. PPARß/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARß/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparß/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARß/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARß/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARß/δ may be a suitable strategy for treatment of different clinical sub-types of AMD.


Assuntos
Degeneração Macular/metabolismo , Neovascularização Patológica/metabolismo , PPAR beta/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Idoso , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Eletrorretinografia , Feminino , Humanos , Macaca mulatta , Degeneração Macular/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neovascularização Patológica/genética , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , PPAR beta/genética , Fenótipo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonas/farmacologia , Tiazóis/farmacologia , Tiofenos/farmacologia , Adulto Jovem
17.
Bioorg Med Chem Lett ; 26(16): 3978-83, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450788

RESUMO

Activation of peroxisome proliferator-activated receptors (PPARs) plays a crucial role in cellular energy metabolism that directly impacts mitochondrial biogenesis. In this study, we demonstrate that syringaresinol, a pharmacological lignan extracted from Panax ginseng berry, moderately binds to and activates PPARß with KD and EC50 values of 27.62±15.76µM and 18.11±4.77µM, respectively. Subsequently, the expression of peroxisome proliferator-activated receptor γ coactivator-1α together with PPARß transcriptional targets, mitochondrial carnitine palmitoyltransferase 1 and uncoupling protein 2, was also enhanced in terms of both mRNA and protein levels. The activation of these proteins induced mitochondrial biogenesis by enrichment of mitochondrial replication and density within C2C12 myotubes. Importantly, knockdown of PPARß reduced the syringaresinol-induced protein expression followed by the significant reduction of mitochondrial biogenesis. Taken together, our results indicate that syringaresinol induces mitochondrial biogenesis by activating PPARß pathway.


Assuntos
Furanos/química , Lignanas/química , Mitocôndrias/efeitos dos fármacos , PPAR beta/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular , Furanos/isolamento & purificação , Furanos/farmacologia , Expressão Gênica/efeitos dos fármacos , Lignanas/isolamento & purificação , Lignanas/farmacologia , Camundongos , Mitocôndrias/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , PPAR beta/antagonistas & inibidores , PPAR beta/genética , Panax/química , Panax/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
18.
Biochem Pharmacol ; 110-111: 25-36, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179975

RESUMO

Bacterial endotoxin lipopolysaccharide (LPS) activates inflammatory pathways, induces cytokine expression in the endothelium, augments reactive oxygen species (ROS) production in the vascular wall, and induces endothelial dysfunction. The aim of the present study was to analyze the effects of peroxisome proliferator-activated receptor (PPAR)ß/δ activation on LPS-induced inflammation, oxidative stress and endothelial dysfunction and to determine whether uncoupling protein-2 (UCP2) plays a role in these effects. In vivo, the PPARß/δ agonist GW0742 treatment prevented the LPS-induced reduction in aortic relaxation, the increase in vascular ROS production, the upregulation of NOX1, NOX2, p47(phox), and p22(phox) mRNA levels, and the endoplasmic reticulum (ER) stress markers in mice. We show that in mouse aortic endothelial cells (MAECs), GW0742 prevented the decreased A23187-stimulated nitric oxide (NO) production, and the increased intracellular ROS levels caused by exposure to LPS in vitro. The PPARß/δ antagonist GSK0660 abolished all these in vivo and in vitro protective effects induced by GW0742. This agonist also restored the reduced expression of UCP2 and mitofusin-2 induced by LPS. The effects of GW0742 on NO and ROS production in MAEC exposed to LPS were abolished by the UCP2 inhibitor genipin or by siRNA targeting UCP-2. Genipin also suppressed the expressional changes on NADPH oxidase and ER stress markers induced by GW0742. In conclusion, PPARß/δ activation restored the LPS-induced endothelial dysfunction by upregulation of UCP2, with the subsequent alleviation of ER stress and NADPH oxidase activity, thus reducing intracellular ROS production and increasing NO bioavailability.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , PPAR gama/metabolismo , PPAR beta/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Calcimicina/farmacologia , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , PPAR beta/genética , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfonas/farmacologia , Tiazóis/farmacologia , Tiofenos/farmacologia , Técnicas de Cultura de Tecidos , Proteína Desacopladora 2/antagonistas & inibidores , Proteína Desacopladora 2/genética
19.
J Pharmacol Exp Ther ; 358(1): 151-63, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189971

RESUMO

Activation of peroxisome proliferator-activated receptor-ß/δ (PPARß) lowers blood pressure in genetic and mineralocorticoid-induced hypertension. Regulator of G-protein-coupled receptor signaling 5 (RGS5) protein, which interferes in angiotensin II (AngII) signaling, is a target gene to PPARß The aim of the present study was to examine whether PPARß activation in resistance arteries and brain tissues prevents the elevated blood pressure in AngII-induced hypertension and evaluate the role of RGS5 in this effect. C57BL/6J male mice were divided into five groups (control mice, PPARß agonist [4-[[[2-[3-Fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy]acetic acid (GW0742)-treated mice AngII-infused mice, GW0742-treated AngII-infused mice, and AngII-infused mice treated with GW0742 plus PPARß antagonist 3-[[[2-Methoxy-4-(phenylamino)phenyl]amino]sulfonyl]-2-thiophenecarboxylic acid methyl ester (GSK0660)) and were followed for 3 weeks. GW0742 prevented the increase in both arterial blood pressure and plasma noradrenaline levels and the higher reduction of blood pressure after ganglionic blockade, whereas it reduced the mesenteric arterial remodeling and the hyper-responsiveness to vasoconstrictors (AngII and endothelin-1) in AngII-infused mice. These effects were accompanied by an inhibition of NADPH oxidase expression and activity in the brain. Gene expression profiling revealed a marked loss of brainstem and vascular RGS5 in AngII-infused mice, which was restored by GW0742. GW0742-induced effects were abolished by GSK0660. Small interfering RNA targeting RGS5 caused augmented contractile response to AngII in resistance mesenteric arteries and blunted the inhibitory effect of GW0742 on this response. In conclusion, GW0742 exerted antihypertensive effects, restoring sympathetic tone and vascular structure and function in AngII-infused mice by PPARß activation in brain and vessels inhibiting AngII signaling as a result of RGS5 upregulation.


Assuntos
Angiotensina II/farmacologia , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , PPAR beta/agonistas , Proteínas RGS/metabolismo , Tiazóis/uso terapêutico , Animais , Anti-Hipertensivos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/patologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Norepinefrina/sangue , PPAR beta/antagonistas & inibidores , Proteínas RGS/genética , Sulfonas/farmacologia , Tiazóis/administração & dosagem , Tiofenos/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
20.
ChemMedChem ; 11(5): 488-96, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26864558

RESUMO

Based on 3-(((4-(hexylamino)-2-methoxyphenyl)amino)sulfonyl)-2-thiophenecarboxylic acid methyl ester (ST247, compound 2), a recently described peroxisome proliferator-activated receptor (PPAR)ß/δ-selective inverse agonist, we designed and synthesized a series of structurally related ligands. The structural modifications presented herein ultimately resulted in a series of ligands that display increased cellular activity relative to 2. Moreover, with methyl 3-(N-(2-(2-ethoxyethoxy)-4-(hexylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (PT-S264, compound 9 u), biologically relevant plasma concentrations in mice were achieved. The compounds presented in this study will provide useful novel tools for future investigations addressing the role of PPARß/δ in physiological and pathophysiological processes.


Assuntos
PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Desenho de Fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...