Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.650
Filtrar
1.
J Environ Sci (China) ; 145: 128-138, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844313

RESUMO

Zeolites are a promising support for Pd catalysts in lean methane (CH4) combustion. Herein, three types of zeolites (H-MOR, H-ZSM-5 and H-Y) were selected to estimate their structural effects and deactivation mechanisms in CH4 combustion. We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states. Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity, with activation energy (Ea) at 73 kJ/mol, while Pd/H-ZSM-5 displayed the highest turnover frequency (TOF) at 19.6 × 10-3 sec-1, presumably owing to its large particles with more step sites providing active sites in one particle for CH4 activation. Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ ions on ion-exchange sites yielded the lowest apparent activity and TOF. Furthermore, Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition, but introducing 3 vol.% H2O caused the CH4 conversion rate on Pd/H-MOR drop from 100% to 63% and that on Pd/H-ZSM-5 decreased remarkably from 82% to 36%. The former was shown to originate from zeolite structural dealumination, and the latter principally owed to Pd aggregation and the loss of active PdO.


Assuntos
Metano , Paládio , Zeolitas , Zeolitas/química , Metano/química , Catálise , Paládio/química , Modelos Químicos
2.
J Environ Manage ; 362: 121346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824884

RESUMO

The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.


Assuntos
Carbono , Hidrogênio , Nitratos , Nitrogênio , Águas Residuárias , Nitrogênio/química , Águas Residuárias/química , Hidrogênio/química , Carbono/química , Catálise , Nitratos/química , Cobre/química , Paládio/química , Poluentes Químicos da Água/química
3.
Anal Chim Acta ; 1315: 342825, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879210

RESUMO

BACKGROUND: Non-invasive indirect blood glucose monitoring can be realized by detecting low concentrations of glucose (0.05-5 mM) in tears, but sensitive optical indicators are required. The intensity of the phosphorescence of a candidate optical indicator, palladium hematoporphyrin monomethyl ether (Pd-HMME), is increased by oxygen consumption under sealed conditions in the presence of glucose and glucose oxidase. However, the glucose detection limit based on this mechanism is high (800 µM) because the phosphorescence is completely quenched under ambient oxygen conditions and hence a large amount of glucose is required to reduce the oxygen levels such that the phosphorescence signal is detectable. RESULTS: To improve the glucose detection limit of Pd-HMME phosphorescence-based methods, the triplet protector imidazole was introduced, and strong phosphorescence was observed under ambient oxygen conditions. Detectable phosphorescence enhancement occurred at low glucose concentrations (<200 µM). Linear correlation between the phosphorescence intensity and glucose concentration was observed in the range of 30-727 µM (R2 = 99.9 %), and the detection limit was ∼10 µM. The glucose sensor has a fast response time (∼90 s) and excellent selectivity for glucose. SIGNIFICANCE AND NOVELTY: These results indicate the potential of the developed optical indicator for fast, selective, and reliable low-concentration glucose sensing.


Assuntos
Limite de Detecção , Medições Luminescentes , Medições Luminescentes/métodos , Hematoporfirinas/química , Hematoporfirinas/análise , Paládio/química , Glucose/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glicemia/análise , Imidazóis/química , Técnicas Biossensoriais/métodos , Oxigênio/química , Humanos
4.
J Environ Manage ; 363: 121257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850913

RESUMO

The redesigned engineering building of nanocomposite (NCP) depends on metal oxides of palladium oxide (PdO) nanoparticles (NPs) conjugate with the n-type semiconductor of strontium oxide (SrO) NPs on the electron carrier surface of graphene oxide (GO) and reduce graphene oxide (rGO) nanosheet is the main target of the current work. The low efficiency of PdO (n-type) and SrO (p-type) gave an overview of the increasing generation electron efficiency via building the ohmic area on the GO and rGO surface using the Z-scheme mechanism. The efficiency of the NCP surface for destroying organic pollutants such as mixed dyes of Rhodamine B and methylene blue (RhB/MB), as against insecticides like imidacloprid, and the removal of heavy metals such as chromium ions was studied. The production of clean water against pollutants materials was investigated through adsorption and photocatalytic processes, electrochemical, and spectroscopy methods to detect the activity of NCP. The rate constant of the adsorption pollutants is 0.1776 min-1 (MB), 0.3489 min-1 (RhB), 0.3627 min-1 (imidacloprid), and 0.5729 min-1 (Cr3+). The photocatalytic rate recorded at 0.01218 min-1 (MB), 0.0096 min-1 (RhB), appeared degradation rate at 0.0086 min-1 (imidacloprid), 0.0019 min-1 (Cr6+), and 0.0471 min-1 (Cr3+). The adsorption and photocatalytic efficiency of nanocatalyst (NCP) was calculated at 91% (RhB), 93% (MB), 73% (imidacloprid), 63% (Cr3+), while the photocatalytic efficiency is 63% (RhB), 94% (MB), 86% (imidacloprid), 33% (Cr3+). The recyclability of NCP was tested for five cycles, and the efficiency was discovered at 55% after the fifth cycle. The cytotoxicity of NCP was studied to detect the safety of the fabricated materials. The study validates that the fabricated nanocomposite exhibits great potential as an innovative material for producing clean water.


Assuntos
Grafite , Paládio , Paládio/química , Adsorção , Catálise , Grafite/química , Estrôncio/química , Poluentes Químicos da Água/química , Óxidos/química , Rodaminas/química , Nanopartículas/química , Técnicas Eletroquímicas
5.
Anal Chim Acta ; 1309: 342698, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772661

RESUMO

BACKGROUND: The lateral flow immunoassay (LFIA) is widely employed as a point-of-care testing (POCT) technique. However, its limited sensitivity hinders its application in detecting biomarkers with low abundance. Recently, the utilization of nanozymes has been implemented to enhance the sensitivity of LFIA by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The catalytic performance of nanozymes plays a crucial role in influencing the sensitivity of LFIA. RESULTS: The Cornus officinalis Sieb. et Zucc-Pd@Pt (CO-Pd@Pt) nanozyme with good peroxidase-like activity was synthesized herein through a facile one-pot method employing Cornus officinalis Sieb. et Zucc extract as a reducing agent. The morphology and composition of the CO-Pd@Pt nanozyme were characterized using TEM, SEM, XRD, and XPS. As a proof of concept, the as-synthesized CO-Pd@Pt nanozyme was utilized in LFIA (CO-Pd@Pt-LFIA) for the detection of human chorionic gonadotropin (hCG). Compared to conventional gold nanoparticles-based LFIA (AuNPs-LFIA), CO-Pd@Pt-LFIA demonstrated a significant enhancement in the limit of detection (LOD, 0.08 mIU/mL), which is approximately 160 times lower than that of AuNPs-LFIA. Furthermore, experiments evaluating accuracy, precision, selectivity, interference, and stability have confirmed the practical applicability of CO-Pd@Pt-LFIA for hCG content determination. SIGNIFICANCE: The present study presents a novel approach for the synthesis of bimetallic nanozymes through environmentally friendly methods, utilizing plant extracts as both protective and reducing agents. Additionally, an easily implementable technique is proposed to enhance signal detection in lateral flow immunoassays.


Assuntos
Paládio , Platina , Paládio/química , Platina/química , Imunoensaio/métodos , Humanos , Nanopartículas Metálicas/química , Limite de Detecção , Peroxidase/química , Peroxidase/metabolismo , Benzidinas/química , Catálise , Oxirredução
6.
Luminescence ; 39(5): e4773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757733

RESUMO

Two Schiff base probes (S1 and S2) were prepared and synthesized by incorporating thienopyrimidine into salicylaldehyde or 3-ethoxysalicylaldehyde individually, with the aim of detecting Ga3+ and Pd2+ sequentially. Upon chelation with Ga3+, S1 and S2 exhibited fluorescence enhancement in DMSO/H2O buffer. Both S1-Ga3+ and S2-Ga3+ were quenched by Pd2+. The limit of detection for S1 in response to Ga3+ and Pd2+ was 2.86 × 10-7 and 4.4 × 10-9 M, respectively. For S2, the limit of detection for Ga3+ and Pd2+ was 4.15 × 10-8 and 3.0 × 10-9 M, respectively. Furthermore, the complexation ratios of both S1 and S2 with Ga3+ and Pd2+ were determined to be 1:2 through Job's plots, ESI-MS analysis, and theoretical calculations. Two molecular logic gates were constructed, leveraging the response behaviors of S1 and S2. Moreover, the potential utility of S1 and S2 for monitoring Ga3+ and Pd2+ in domestic water was verified.


Assuntos
Corantes Fluorescentes , Gálio , Paládio , Pirimidinas , Bases de Schiff , Bases de Schiff/química , Paládio/química , Pirimidinas/química , Pirimidinas/análise , Gálio/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Espectrometria de Fluorescência , Estrutura Molecular
7.
Chemistry ; 30(28): e202401199, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38695718

RESUMO

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Paládio/química , Metano/análogos & derivados , Metano/química , Metano/farmacologia
8.
ACS Appl Mater Interfaces ; 16(21): 27511-27522, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752668

RESUMO

Electron transfer is considered to be a typical parameter that affects the catalytic activity of nanozymes. However, there is still controversy regarding whether higher or lower electron transfer numbers are beneficial for improving the catalytic activity of nanozymes. To address this issue, we propose the introduction of Pd doping as an important electron regulation strategy to tune electron transfer between Pt and ZIF-8 carriers (PtxPd1@ZIF-8). We observe a volcano-shaped relationship between the electron transfer number and catalytic activity, reaching its peak at Pt4Pd1@ZIF-8. Mechanism studies indicate that as the electron transfer number from Pt to ZIF-8 carriers increases, the d-band center of the active site Pt increases, reducing the occupancy of antibonding states and enhancing the adsorption capacity of the key intermediate (*O). However, a further increase in the adsorption of *O energy makes it difficult to desorb and participate in the next reaction, thus exhibiting volcanic activity. The optimized Pt4Pd1@ZIF-8 nanozyme is applied to develop an immunoassay for the detection of zearalenone, achieving a detection limit of 0.01 µg/L, which is 6 times higher than that of the traditional enzyme-linked immunosorbent assay. This work not only reveals the potential regulatory mechanism of electron transfer on the catalytic activity of nanozymes but also improves the performance of nanozyme-based biosensors.


Assuntos
Estruturas Metalorgânicas , Paládio , Platina , Catálise , Platina/química , Paládio/química , Estruturas Metalorgânicas/química , Transporte de Elétrons , Imunoensaio/métodos
9.
Environ Sci Pollut Res Int ; 31(23): 34661-34674, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713350

RESUMO

Rapid passivation and aggregation of nanoscale zero-valent iron (nZVI) seriously limit its performance in the remediation of different contaminants from wastewater. To overcome such issues, in the present study, nano-palladium/iron (nPd/Fe) was simultaneously improved by biochar (BC) prepared from discarded peanut shells and green complexing agent sodium citrate (SC). For this purpose, a composite (SC-nPd/Fe@BC) was successfully synthesized to remove 2,4-dichlorophenol (2,4-DCP) from wastewater. In the SC-nPd/Fe@BC, BC acts as a carrier with dispersed nPd/Fe particles to effectively prevent its agglomeration, and increased the specific surface area of the composite, thereby improving the reactivity and stability of nPd/Fe. Characterization results demonstrated that the SC-nPd/Fe@BC composites were well dispersed, and the agglomeration was weakened. The formation of the passivation layer on the surface of the particles was inhibited, and the mechanism of SC and BC improving the reactivity of nPd/Fe was clarified. Different factors were found to influence the reductive dichlorination of 2,4-DCP, including Pd loading, Fe:C, SC addition, temperature, initial pH, and initial pollutant concentration. The dechlorination results revealed that the synergistic effect of the BC and SC made the removal efficiency and dechlorination rate of 2,4-DCP by SC-nPd/Fe@BC reached to 96.0 and 95.6%, respectively, which was better than that of nPd/Fe (removal: 46.2%, dechlorination: 45.3%). Kinetic studies explained that the dechlorination reaction of 2,4-DCP and the data were better represented by the pseudo-first-order kinetic model. The reaction rate constants followed the order of SC-nPd/Fe@BC (0.0264 min-1) > nPd/Fe@BC (0.0089 min-1) > SC-nPd/Fe (0.0081 min-1) > nPd/Fe (0.0043 min-1). Thus, SC-nPd/Fe@BC was capable of efficiently reducing 2,4-DCP and the dechlorination efficiency of BC and SC synergistically assisted composite on 2,4-DCP was much better than that of SC-nPd/Fe, nPd/Fe@BC and nPd/Fe. Findings suggested that SC-nPd/Fe@BC can be promising for efficient treatment of chlorinated pollutants.


Assuntos
Carvão Vegetal , Clorofenóis , Ferro , Paládio , Clorofenóis/química , Paládio/química , Ferro/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Ácido Cítrico/química , Águas Residuárias/química
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124408, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723464

RESUMO

To investigate the structure and bioactivity relationship, six Pd(II)/Pt(II) complexes with N-isobutylglycine (L1) and cyclohexylglycine (L2) as N^O amino acid bidentate ligands, 1,10'-phenanthroline (phen) and 2,2'-bipyridine (bipy) as N^N donor ligands, and [Pd(L1)(bipy)]NO3 (1), [Pd(L2)(bipy)]NO3 (2), [Pd(L1)(phen)]NO3 (3), [Pd(L2)(phen)]NO3·2H2O (4), [Pt(L1)(phen)]NO3 (5), along with [Pt(L2)(phen)]NO3 (6) were prepared and then characterized. The geometry of each compound was validated by doing a DFT calculation. Furthermore, tests were conducted on the complexes' water solubilities and lipophilicity. All bipy complexes had superior aqueous solubility and less lipophilicity in comparison with phen complexes, as well as complexes containing cyclohexyl-glycine compared to isobutyl-glycine complexes, probably because of the steric effects and polarity of cyclohexylglycine. The in-vitro anticancer activities of these compounds were examined against HCT116, A549, and MCF7 cancerous cell lines. Data revealed that all Pd/Pt complexes demonstrate higher anticancer activity than carboplatin, and complexes 3 and 4 are more cytotoxic than cisplatin against the HCT116 cell line, particularly against MCF7 cancerous cells. In addition, among all compounds, complex 4 has more anticancer ability than oxaliplatin. Due to different solubility and lipophilicity behavior, the accumulation of Pt complexes and clinical Pt drugs in each cancerous cell was investigated. The binding capabilities of these complexes to DNA, as the main target in chemotherapy, occur through minor grooves and intercalate into DNA, which was done using absorption, fluorescence, and circular dichroism spectroscopy. Finally, the docking simulation study showed the mode of DNA bindings is in good agreement with the spectral binding data.


Assuntos
Antineoplásicos , Complexos de Coordenação , Glicina , Paládio , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Glicina/química , Glicina/análogos & derivados , Glicina/farmacologia , Paládio/química , Paládio/farmacologia , Ligantes , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Platina/química , Platina/farmacologia , DNA/metabolismo , DNA/química , Solubilidade
11.
Org Lett ; 26(22): 4818-4823, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38809781

RESUMO

We have successfully accomplished a catalytic asymmetric total synthesis of entecavir, a first-line antihepatitis B virus medication. The pivotal aspect of our strategy lies in the utilization of a Pd-catalyzed enyne borylative cyclization reaction, enabling the construction of a highly substituted cyclopentene scaffold with exceptional stereoselectivity. Additionally, we efficiently accessed the crucial 1,3-diol enyne system early in our synthetic route through a diarylprolinol organocatalyzed enantioselective cross-aldol reaction and Re-catalyzed allylic alcohol relocation. By strategically integrating these three catalytic protocols, we established a practical pathway for acquiring valuable densely heteroatom-substituted cyclopentene cores.


Assuntos
Antivirais , Ciclopentanos , Guanina , Vírus da Hepatite B , Ciclopentanos/química , Ciclopentanos/síntese química , Catálise , Antivirais/química , Antivirais/síntese química , Estereoisomerismo , Estrutura Molecular , Guanina/química , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Ciclização , Paládio/química
12.
ACS Sens ; 9(5): 2395-2401, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38722860

RESUMO

PdNi alloy thin films demonstrate exceptional hydrogen sensing performance and exhibit significant potential for application in surface acoustic wave (SAW) hydrogen sensors. However, the long-term stability of SAW H2 sensors utilizing PdNi films as catalysts experiences a substantial decrease during operation. In this paper, X-ray photoelectron spectroscopy (XPS) is employed to investigate the failure mechanisms of PdNi thin films under operational conditions. The XPS analysis reveals that the formation of PdO species on PdNi thin films plays a crucial role in the failure of hydrogen sensing. Additionally, density functional theory (DFT) calculations indicate that hydrogen atoms encounter a diffusion energy barrier during the penetration process from the PdNiOx surface to the subsurface region. The identification of PdNi film failure mechanisms through XPS and DFT offers valuable insights into the development of gas sensors with enhanced long-term stability. Guided by these mechanisms, we propose a method to restore the hydrogen sensing response time and magnitude to a certain extent by reducing the partially oxidized surface of the PdNi alloy under a hydrogen atmosphere at 70 °C, thereby restoring Pd to its metallic state with zero valence.


Assuntos
Hidrogênio , Níquel , Oxirredução , Paládio , Som , Hidrogênio/química , Paládio/química , Níquel/química , Propriedades de Superfície , Teoria da Densidade Funcional , Espectroscopia Fotoeletrônica , Ligas/química
13.
ACS Sens ; 9(5): 2529-2539, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38723609

RESUMO

Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.


Assuntos
Silicatos de Alumínio , Hidrogênio , Nanopartículas Metálicas , Paládio , Paládio/química , Hidrogênio/química , Catálise , Nanopartículas Metálicas/química , Silicatos de Alumínio/química , Temperatura , Propriedades de Superfície
14.
Bioelectrochemistry ; 158: 108728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733721

RESUMO

Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 µg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Nanopartículas Metálicas , Paládio , Platina , Prata , Grafite/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Platina/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Paládio/química , Prata/química , Níquel/química , Polietilenoimina/química , Cobalto/química , Reprodutibilidade dos Testes
15.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791348

RESUMO

Hybrid nanomaterials have attracted considerable interest in biomedicine because of their fascinating characteristics and wide range of applications in targeted drug delivery, antibacterial activity, and cancer treatment. This study developed a gelatin-coated Titanium oxide/palladium (TiO2/Pd) hybrid nanomaterial to enhance the antibacterial and anticancer capabilities. Morphological and structural analyses were conducted to characterize the synthesized hybrid nanomaterial. The surface texture of the hybrid nanomaterials was examined by high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The FE-SEM image revealed the bulk of the spherically shaped particles and the aggregated tiny granules. Energy dispersive X-ray spectroscopy (EDS) revealed Ti, Pd, C, and O. X-ray diffraction (XRD) revealed the gelatin-coated TiO2/Pd to be in the anatase form. Fourier transform infrared spectroscopy examined the interactions among the gelatin-coated TiO2/Pd nanoparticles. The gelatin-coated TiO2/Pd nanomaterials exhibited high antibacterial activity against Escherichia coli (22 mm) and Bacillus subtilis (17 mm) compared to individual nanoparticles, confirming the synergistic effect. More importantly, the gelatin-coated TiO2/Pd hybrid nanomaterial exhibited remarkable cytotoxic effects on A549 lung cancer cells which shows a linear increase with the concentration of the nanomaterial. The hybrid nanomaterials displayed higher toxicity to cancer cells than the nanoparticles alone. Furthermore, the cytotoxic activity against human cancer cells was verified by the generation of reactive oxygen species and nuclear damage. Therefore, gelatin-coated TiO2/Pd nanomaterials have potential uses in treating cancer and bacterial infections.


Assuntos
Antibacterianos , Antineoplásicos , Escherichia coli , Gelatina , Nanoestruturas , Paládio , Titânio , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Gelatina/química , Paládio/química , Paládio/farmacologia , Escherichia coli/efeitos dos fármacos , Nanoestruturas/química , Células A549 , Bacillus subtilis/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Difração de Raios X , Nanopartículas Metálicas/química
16.
Anal Chem ; 96(23): 9653-9658, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38807045

RESUMO

PdPt nanosheets decorated on SnS2 nanosheets (i.e., PdPt@SnS2 NSs) were fabricated for a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of miRNA-21 based on catalytic hairpin assembly (CHA) cycles. The PdPt@SnS2 NSs serve as both the main luminophore and a highly effective coreaction accelerator in the ECL biosensor. In the CHA cycles, more miRNA-21 is captured, and the performance of the ECL biosensor is improved. When miRNA-21 is present, the hairpin chain DNA1 (i.e., H1) is opened, and the ferrocene (Fc)-modified hairpin chain DNA2 (i.e., Fc-H2) hybridizes with as-opened H1 by replacing miRNA-21 to stimulate CHA cycles of miRNA-21. During the CHA cycles, Fc-H2 quenches the ECL signal to monitor miRNA-21. As a result, the ECL biosensor shows ultrasensitive and highly selective detection of miRNA-21 from 1 aM to 1 nM with a detection limit (LOD) of 0.02 aM. In addition, the ECL biosensor exhibits excellent practicality for miRNA-21 detection in human serum samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Paládio , Platina , Platina/química , Humanos , MicroRNAs/sangue , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Paládio/química , Limite de Detecção , Compostos de Estanho/química , Sulfetos/química , Nanoestruturas/química
17.
Environ Sci Technol ; 58(23): 10357-10367, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38728016

RESUMO

The urgent environmental concern of methane abatement, attributed to its high global warming potential, necessitates the development of methane oxidation catalysts (MOC) with enhanced low-temperature activity and durability. Herein, an iridium-doped PdOx nanoparticle supported on silicalite-1 zeolite (PdIr/S-1) catalyst was synthesized and applied for methane catalytic combustion. Comprehensive characterizations confirmed the atomically dispersed nature of iridium on the surface of PdOx nanoparticles, creating an Ir4f-O-Pdcus microstructure. The atomically doped Ir transferred more electrons to adjacent oxygen atoms, modifying the electronic structure of PdOx and thus enhancing the redox ability of the PdIr/S-1 catalysts. This electronic modulation facilitated methane adsorption on the Pd site of Ir4f-O-Pdcus, reducing the energy barrier for C-H bond cleavage and thereby increasing the reaction rate for methane oxidation. Consequently, the optimized PdIr0.1/S-1 showed outstanding low-temperature activity for methane combustion (T50 = 276 °C) after aging and maintained long-term stability over 100 h under simulated exhaust conditions. Remarkably, the novel PdIr0.1/S-1 catalyst demonstrated significantly enhanced activity even after undergoing harsh hydrothermal aging at 750 °C for 16 h, significantly outperforming the conventional Pd/Al2O3 catalyst. This work provides valuable insights for designing efficient and durable MOC catalysts, addressing the critical issue of methane abatement.


Assuntos
Irídio , Metano , Nanopartículas , Oxirredução , Metano/química , Irídio/química , Catálise , Nanopartículas/química , Zeolitas/química , Paládio/química
18.
J Control Release ; 370: 677-690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740093

RESUMO

The low oxidation level and immunosuppressive microenvironment within hypoxic tumor tissue are critical factors contributing to the inefficacy of various anti-tumor strategies. Herein, we have designed a novel intravenous injection nanoplatform to conduct electro-immunotherapy, based on phospholipid-modified PtPd nanocrystals loaded with the immunoregulator IPI549 (LP@Pt-Pd@IPI549 nanoparticles, LPPI). LPPI responds to reactive oxygen species (ROS), triggering a cascade of therapeutic effects that overcome hypoxia-related resistance and effectively eradicate hypoxic tumors. Firstly, under electric field exposure, LPPI relied on water rather than oxygen to generate abundant ROS under hypoxic conditions for tumor electrodynamic therapy (EDT). Moreover, the generated ROS further induced the disintegration of the outer phospholipid membrane of LPPI, leading to the release of the immunoregulator and inhibition of myeloid-derived suppressor cells (MDSCs), triggering cascade immune responses. Additionally, the immunomodulatory effects of IPI549, in synergy with the immunogenic cell death (ICD) induced by EDT, reversed the immunosuppressive microenvironment contributing to tumor resistance. In summary, EDT transiently killed tumor cells while simultaneously generating antigen release, instigating an adaptive immune response for electro-immunotherapy, resulting in a potent and long-lasting tumor inhibition effect.


Assuntos
Imunoterapia , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Imunoterapia/métodos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Camundongos Endogâmicos C57BL , Platina/química , Camundongos , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Oxigênio/administração & dosagem , Paládio/química , Paládio/administração & dosagem , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Fosfolipídeos/química , Fosfolipídeos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química
19.
Nano Lett ; 24(22): 6634-6643, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38742828

RESUMO

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.


Assuntos
Hiperuricemia , Compostos de Manganês , Óxidos , Urato Oxidase , Hiperuricemia/tratamento farmacológico , Urato Oxidase/química , Urato Oxidase/uso terapêutico , Urato Oxidase/metabolismo , Óxidos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Animais , Catálise , Ácido Úrico/química , Camundongos
20.
Int J Biol Macromol ; 270(Pt 1): 132331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750843

RESUMO

Most of the transition metal ions and organic dyes are toxic in nature. Therefore, their removal from water is imperative for human health. For this purpose, various types of systems have been developed to tackle either transition metal ions or organic dyes individually. A core-shell microgel system is introduced which is capable of effectively removing both types (toxic organic dyes and transition metal ions) of pollutants. A long-rod-shaped silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) S@P(CS-NIPAM-MAA) S@P(CNM) core-shell microgel system was developed by free radical precipitation polymerization method (FRPPM). S@P(CNM) was utilized as an adsorbent for extracting palladium (II) (Pd (II)) ions from water under different concentrations of S@P(CNM), several agitation times, palladium (II) ion content, and pH levels. The adsorption data of Pd (II) ions on S@P(CNM) was evaluated by various adsorption isotherms. The kinetic study was investigated by employing pseudo-2nd order (Ps2O), Elovich model (ElM), intra-particle diffusion (IPDM), and pseudo-1st order (Ps1O). Additionally, palladium nanoparticles (Pd NPs) were generated via in-situ reduction of adsorbed Pd (II) ions within the P(CNM) shell region of S@P(CNM). The resulting Pd NPs loaded S@P(CNM) exhibited the capability to reduce organic pollutants like methyl orange (MeO), 4-nitrophenol (4NiP), methylene blue (MeB), and Rhodamine B (RhB) from aqueous medium. 0.766 min-1, 0.433 min-1, 0.682 min-1, and 1.140 min-1 were the values of pseudo 1st order rate constant (kobs) for catalytic reduction of MeB, 4NiP, MeO, and RhB respectively. The S@Pd-P(CNM) system exhibits significant catalytic potential for various organic transformations.


Assuntos
Quitosana , Nanopartículas Metálicas , Paládio , Dióxido de Silício , Poluentes Químicos da Água , Paládio/química , Quitosana/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Nanopartículas Metálicas/química , Cinética , Acrilamidas/química , Géis/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Metacrilatos/química , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...