Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(5): 2639-52, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26699641

RESUMO

UNLABELLED: High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE: Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral replication, our findings suggest that HPV may utilize ATM activity to ensure localization of recombination factors to productively replicating viral genomes. The finding that E7 increases the levels of Rad51 and BRCA1 suggests that E7 contributes to productive replication by providing DNA repair factors required for viral DNA synthesis. Our studies not only imply a role for recombination in the regulation of productive HPV replication but provide further insight into how HPV manipulates the DDR to facilitate the productive phase of the viral life cycle.


Assuntos
Proteína BRCA1/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 31/fisiologia , Rad51 Recombinase/metabolismo , Replicação Viral , Células Cultivadas , Células Epiteliais/virologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Papillomavirus Humano 31/crescimento & desenvolvimento , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Reparo de DNA por Recombinação , Transcrição Gênica , Regulação para Cima
2.
PLoS One ; 8(7): e68379, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861898

RESUMO

Human papillomavirus (HPV) infection is the leading cause of cervical cancer world-wide. Here, we show that native HPV particles produced in a differentiated epithelium have developed different strategies to infect the host. Using biochemical inhibition assays and glycosaminoglycan (GAG)-negative cells, we show that of the four most common cancer-causing HPV types, HPV18, HPV31, and HPV45 are largely dependent on GAGs to initiate infection. In contrast, HPV16 can bind and enter through a GAG-independent mechanism. Infections of primary human keratinocytes, natural host cells for HPV infections, support our conclusions. Further, this renders the different virus types differentially susceptible to carrageenan, a microbicide targeting virus entry. Our data demonstrates that ordered maturation of papillomavirus particles in a differentiating epithelium may alter the virus entry mechanism. This study should facilitate a better understanding of the attachment and infection by the main oncogenic HPV types, and development of inhibitors of HPV infection.


Assuntos
Glicosaminoglicanos/metabolismo , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 31/metabolismo , Queratinócitos/virologia , Carragenina/farmacologia , Linhagem Celular , Cloratos/farmacologia , Feminino , Glicosaminoglicanos/deficiência , Heparina/farmacologia , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/crescimento & desenvolvimento , Papillomavirus Humano 18/efeitos dos fármacos , Papillomavirus Humano 18/crescimento & desenvolvimento , Papillomavirus Humano 31/efeitos dos fármacos , Papillomavirus Humano 31/crescimento & desenvolvimento , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Especificidade da Espécie , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
3.
J Virol ; 85(10): 4982-92, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367897

RESUMO

Numerous epidemiological studies have implicated cigarette smoking as a cofactor in the progression to cervical cancer. Tobacco-associated hydrocarbons have been found in cervical mucus, suggesting a possible interaction with human papillomavirus (HPV)-infected cells. The polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) is a major component of cigarette smoke condensate that has received significant attention due to its ability to induce carcinogenesis. We have previously demonstrated by conventional methods for determining viral titer that high concentrations of BaP increase HPV31b titers within the context of organotypic raft cultures compared with the level for vehicle controls. However, a definitive mechanism for explaining this increase in viral titer was lacking. Here, we show that BaP treatment activates the Ras-Raf-Mek1/2-Erk1/2 signaling pathway. The importance of Erk1/2 pathway activation to the BaP-mediated increase in viral titer was determined by Erk pathway inhibition with multiple Erk1/2 pathway inhibitors. Finally, BaP treatment activated p90RSK and its downstream target CDK1. These data indicate that the Erk1/2 signaling pathway plays an important role in mediating the response to BaP treatment that ultimately leads to increased viral titers.


Assuntos
Benzo(a)pireno/toxicidade , Papillomavirus Humano 31/efeitos dos fármacos , Papillomavirus Humano 31/crescimento & desenvolvimento , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Viral , Linhagem Celular , Histocitoquímica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...