Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 42(10): 1425-1431, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31418901

RESUMO

The zebrafish (Danio rerio) is a popular vertebrate model organism used in a wide range of research fields. Mycobacteriosis, caused by Mycobacterium species, is particularly concerning because it is a common disease associated with chronic infections in these fish. Infections are also a source of uncontrolled experimental variance that may influence research results. Live feeds for zebrafish are common and include paramecia (Paramecium caudatum), brine shrimp (Artemia franciscana) and rotifers (Branchionus spp.). Although nutritionally beneficial, live feeds may pose a biosecurity risk. In this study, we investigate transmission of Mycobacterium chelonae and Mycobacterium marinum through these three live feeds. We show that all three live feeds ingest both M. marinum and M. chelonae and can transmit mycobacterial infections to zebrafish. This observation emphasizes the need for live feeds to be included in the consideration of potential biosecurity risks. This study is of importance to other beyond the zebrafish community, including those of additional aquatic models and those using live feeds for other types of aquaculture.


Assuntos
Ração Animal/microbiologia , Doenças dos Peixes/transmissão , Infecções por Mycobacterium não Tuberculosas/veterinária , Mycobacterium chelonae/fisiologia , Mycobacterium marinum/fisiologia , Peixe-Zebra , Animais , Artemia/microbiologia , Dieta/veterinária , Feminino , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Masculino , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/transmissão , Paramecium caudatum/microbiologia , Prevalência , Rotíferos/microbiologia
2.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663701

RESUMO

Due to their transparency, genetic tractability, and ease of maintenance, zebrafish (Danio rerio) have become a widely-used vertebrate model for infectious diseases. Larval zebrafish naturally prey on the unicellular protozoan Paramecium caudatum. This protocol describes the use of P. caudatum as a vehicle for food-borne infection in larval zebrafish. P. caudatum internalize a wide range of bacteria and bacterial cells remain viable for several hours. Zebrafish then prey on P. caudatum, the bacterial load is released in the foregut upon digestion of the paramecium vehicle, and the bacteria colonize the intestinal tract. The protocol includes a detailed description of paramecia maintenance, loading with bacteria, determination of bacterial degradation and dose, as well as infection of zebrafish by feeding with paramecia. The advantage of using this method of food-borne infection is that it closely mimics the mode of infection observed in human disease, leads to more robust colonization compared to immersion protocols, and allows the study of a wide range of pathogens. Food-borne infection in the zebrafish model can be used to investigate bacterial gene expression within the host, host-pathogen interactions, and hallmarks of pathogenicity including bacterial burden, localization, dissemination and morbidity.


Assuntos
Doenças Transmitidas por Alimentos/parasitologia , Paramecium caudatum/fisiologia , Peixe-Zebra/parasitologia , Animais , Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Larva/parasitologia , Paramecium caudatum/microbiologia , Comportamento Predatório , Peixe-Zebra/microbiologia
3.
Microb Ecol ; 77(3): 748-758, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30105505

RESUMO

Symbioses between bacteria and eukaryotes are widespread and may have significant impact on the evolutionary history of symbiotic partners. The order Rickettsiales is a lineage of intracellular Alphaproteobacteria characterized by an obligate association with a wide range of eukaryotic hosts, including several unicellular organisms, such as ciliates and amoebas. In this work, we characterized the Rickettsiales symbionts associated with two different genotypes of the freshwater ciliate Paramecium caudatum originated from freshwater environments in distant geographical areas. Phylogenetic analyses based on 16S rRNA gene showed that the two symbionts are closely related to each other (99.4% identity), belong to the family Rickettsiaceae, but are far-related with respect to previously characterized Rickettsiales. Consequently, they were assigned to a new species of a novel genus, namely "Candidatus Spectririckettsia obscura." Screening on a database of short reads from 16S rRNA gene amplicon-based profiling studies confirmed that bacterial sequences related to the new symbiont are preferentially retrieved from freshwater environments, apparently with extremely scarce occurrence (< 0.1% positive samples). The present work provides new information on the still under-explored biodiversity of Rickettsiales, in particular those associated to ciliate host cells.


Assuntos
Paramecium caudatum/microbiologia , Rickettsiales/fisiologia , Simbiose , Brasil , DNA Bacteriano/genética , Índia , Filogenia , RNA Ribossômico 16S/genética , Rickettsiales/genética , Rickettsiales/isolamento & purificação
4.
Evolution ; 69(4): 1069-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25756600

RESUMO

Evolutionary transitions from parasitism toward beneficial or mutualistic associations may encompass a change from horizontal transmission to (strict) vertical transmission. Parasites with both vertical and horizontal transmission are amendable to study factors driving such transitions. In a long-term experiment, microcosm populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata were exposed to three growth treatments, manipulating vertical transmission opportunities over ca. 800 host generations. In inoculation tests, horizontal transmission propagules produced by parasites from a "high-growth" treatment, with elevated host division rates increasing levels of parasite vertical transmission, showed a near-complete loss of infectivity. A similar reduction was observed for parasites from a treatment alternating between high growth and low growth (i.e., low levels of population turn-over). Parasites from a low-growth treatment had the highest infectivity on all host genotypes tested. Our results complement previous findings of reduced investment in horizontal transmission and increased vertical transmissibility of high-growth parasites. We explain the loss of horizontal transmissibility by epidemiological feedbacks and resistance evolution, reducing the frequency of susceptible hosts in the population and thereby decreasing the selective advantage of horizontal transmission. This illustrates how environmental conditions may push parasites with a mixed transmission mode toward becoming vertically transmitted nonvirulent symbionts.


Assuntos
Evolução Biológica , Holosporaceae/patogenicidade , Interações Hospedeiro-Patógeno/genética , Paramecium caudatum/microbiologia , Seleção Genética , Genótipo , Paramecium caudatum/genética , Fenótipo
5.
J Anim Ecol ; 84(3): 723-733, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25382389

RESUMO

Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non-host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction.


Assuntos
Cilióforos/fisiologia , Cadeia Alimentar , Holosporaceae/fisiologia , Paramecium caudatum/fisiologia , Serratia/fisiologia , Animais , Comportamento Animal , Interações Hospedeiro-Patógeno , Paramecium caudatum/microbiologia , Dinâmica Populacional , Comportamento Predatório
6.
FEMS Microbiol Lett ; 359(1): 16-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25115770

RESUMO

We present draft genome sequences of three Holospora species, hosted by the ciliate Paramecium caudatum; that is, the macronucleus-specific H. obtusa and the micronucleus-specific H. undulata and H. elegans. We investigate functions of orthologous core genes conserved across the three Holospora species, which may be essential for the infection and survival in the host nucleus.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Holosporaceae/genética , Paramecium caudatum/microbiologia , Análise de Sequência de DNA , Núcleo Celular/microbiologia , Sequência Conservada , Holosporaceae/isolamento & purificação , Dados de Sequência Molecular
7.
Proc Biol Sci ; 280(1769): 20131747, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966645

RESUMO

Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host-parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5 °C) and permissive (23 °C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise.


Assuntos
Meio Ambiente , Holosporaceae/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Processos Estocásticos , Temperatura , Fatores de Tempo
8.
Ecol Lett ; 15(3): 186-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22221658

RESUMO

Epidemiology in host meta-populations depends on parasite ability to disperse between, establish and persist in distinct sub-populations of hosts. We studied the genetic factors determining the short-term establishment, and long-term maintenance, of pathogens introduced by infected hosts (i.e. carriers) into recipient populations. We used experimental populations of the freshwater ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Parasite short-term spread (approximately one horizontal transmission cycle) was affected mainly by carrier genotype, and its interactions with parasite and recipient genotypes. By contrast, parasite longer term spread (2-3 horizontal transmission cycles) was mostly determined by parasite isolate. Importantly, measures of parasite short-term success (reproductive number, R) were not good predictors for longer term prevalence, probably because of the specific interactions between host and parasite genotypes. Analogous to variation in vectorial capacity and super-spreader occurrence, two crucial components of epidemiology, we show that carrier genotype can also affect disease spread within meta-populations.


Assuntos
Holosporaceae/patogenicidade , Interações Hospedeiro-Patógeno/genética , Paramecium caudatum/genética , Paramecium caudatum/microbiologia , Infecções Bacterianas/transmissão , Água Doce/parasitologia , Genótipo
10.
Evolution ; 65(12): 3462-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22133218

RESUMO

Evolutionary costs of parasite resistance arise if genes conferring resistance reduce fitness in the absence of parasites. Thus, parasite-mediated selection may lead to increased resistance and a correlated decrease in fitness, whereas relaxed parasite-mediated selection may lead to reverse evolution of increased fitness and a correlated decrease in resistance. We tested this idea in experimental populations of the protozoan Paramecium caudatum and the parasitic bacterium Holospora undulata. After eight years, resistance to infection and asexual reproduction were compared among paramecia from (1) "infected" populations, (2) uninfected "naive" populations, and (3) previously infected, parasite-free "recovered" populations. Paramecia from "infected" populations were more resistant (+12%), but had lower reproduction (-15%) than "naive" paramecia, indicating an evolutionary trade-off between resistance and fitness. Recovered populations showed similar reproduction to naive populations; however, resistance of recently (<3 years) recovered populations was similar to paramecia from infected populations, whereas longer (>3 years) recovered populations were as susceptible as naive populations. This suggests a weak, convex trade-off between resistance and fitness, allowing recovery of fitness, without complete loss of resistance, favoring the maintenance of a generalist strategy of intermediate fitness and resistance. Our results indicate that (co)evolution with parasites can leave a genetic signature in disease-free populations.


Assuntos
Evolução Biológica , Resistência à Doença/genética , Holosporaceae/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/genética , Reprodução , Fatores de Tempo
11.
Proc Biol Sci ; 278(1723): 3412-20, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21450730

RESUMO

The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host-parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range.


Assuntos
Meio Ambiente , Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Temperatura , Análise de Variância , Animais , Genótipo , Modelos Estatísticos , Paramecium caudatum/genética , Dinâmica Populacional , Fatores de Tempo
12.
Biol Lett ; 7(3): 327-9, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20961885

RESUMO

Parasitic infection can modify host mobility and consequently their dispersal capacity. We experimentally investigated this idea using the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. We compared the short-distance dispersal of infected and uninfected populations in interconnected microcosms. Infection reduced the proportion of hosts dispersing, with levels differing among host clones. Host populations with higher densities showed lower dispersal, possibly owing to social aggregation behaviour. Parasite isolates that depleted host populations most had the lowest impact on host dispersal. Parasite-induced modification of dispersal may have consequences for the spatial distribution of disease, host and parasite genetic population structure, and coevolution.


Assuntos
Holosporaceae/fisiologia , Interações Hospedeiro-Parasita , Paramecium caudatum/microbiologia , Dinâmica Populacional
13.
FEMS Microbiol Ecol ; 74(2): 353-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20722731

RESUMO

Under certain conditions, otherwise parasitic organisms may become beneficial to their host. Parasite-mediated heat and osmotic stress resistance have been demonstrated for Paramecium caudatum, infected by several species of parasitic bacteria of the genus Holospora. Here, using the micronucleus-specific bacterium Holospora undulata, we investigate how infection mediates the response of two genotypes (clones 'K8' and 'VEN') of P. caudatum to heat (35 °C) and osmotic (0.24% NaCl) stress. In contrast to previous findings, we find no evidence for heat stress protection in infected individuals. We do, however, show an effect of symbiont-mediated osmotic stress resistance for the K8 clone, with infected individuals having higher survival than their uninfected counterparts up to 24 h after the onset of salt exposure. Despite this, both infected and uninfected individuals of the VEN clone showed higher survival rates than clone K8 individuals under osmotic stress. Thus, it would seem that parasite-mediated stress protection is restricted to certain combinations of host genotypes and types of stress and does not represent a general phenomenon in this system.


Assuntos
Holosporaceae/fisiologia , Especificidade de Hospedeiro , Temperatura Alta , Osmose , Paramecium caudatum/microbiologia , Genótipo , Paramecium caudatum/genética , Salinidade , Estresse Fisiológico
14.
J Evol Biol ; 23(6): 1195-205, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20406349

RESUMO

Sign and magnitude of local adaptation in host-parasite systems may vary with ecological, epidemiological or genetic parameters. To investigate the role of host genetic background, we established long-term experimental populations of different genotypes of the protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. We observed the evolution of an overall pattern of parasite local maladaptation for infectivity, indicating a general coevolutionary disadvantage of this parasite. Maladaptation extended to host populations with the same genetic background, similar to extending from the local to a higher regional level in natural populations. Patterns for virulence were qualitatively similar, but with less statistical support. A nonsignificant correlation with levels of (mal)adaptation for infectivity suggests independent evolution of these traits. Our results indicate similar (co)evolutionary trajectories in populations with different genetic backgrounds. Nonetheless, the correlated clines of genetic distance and parasite performance illustrate how genetic background can shape spatial gradients of local adaptation.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno , Paramecium caudatum/microbiologia , Animais , Holosporaceae/patogenicidade , Paramecium caudatum/fisiologia , Virulência
15.
Evolution ; 64(7): 2126-38, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20163449

RESUMO

In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select for higher vertical transmissibility and possibly lower virulence. We tested this idea in experimental populations of the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. Serial dilution produced constant host population growth and frequent vertical transmission. Consistent with predictions, evolved parasites from this "high-growth" treatment had higher fidelity of vertical transmission and lower virulence than parasites from host populations constantly kept near their carrying capacity ("low-growth treatment"). High-growth parasites also produced fewer, but more infectious horizontal transmission stages, suggesting the compensation of trade-offs between vertical and horizontal transmission components in this treatment. These results illustrate how environmentally driven changes in host demography can promote evolutionary divergence of parasite life history and transmission strategies.


Assuntos
Evolução Biológica , Transmissão de Doença Infecciosa , Holosporaceae/fisiologia , Paramecium caudatum/crescimento & desenvolvimento , Paramecium caudatum/microbiologia , Seleção Genética , Análise de Variância , Holosporaceae/patogenicidade , Dinâmica Populacional , Virulência
16.
Protist ; 160(2): 205-19, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19231281

RESUMO

Holospora obtusa, an alpha-proteobacterium, is an obligate endonuclear pathogen of the ciliate Paramecium caudatum. It is engulfed by the host cell in the course of phagocytosis but soon escapes from the phagosome and is transported across the host cell cytoplasm to the paramecium macronucleus. Electron microscopy reveals a comet-like tail resembling that of Listeria trailing after H. obtusa in the host cytoplasm. In this study we investigated the role of the host cell actin and Arp3 in the process of infection with Holospora. Cytochalasin D treatment significantly reduced the rate of nuclear infection. Using immunocytochemistry and experimental infection of GFP-actin-transfected paramecia we demonstrated that the Paramecium actin1-1 took part in the bacterial escape from the phagosome, its trafficking in the cytoplasm and entry into the host macronucleus. Rapid assembly/disassembly of actin filaments in P. caudatum led to quick loss of actin1-1 from the trails left by H. obtusa. Immunocytochemistry using anti-bovine Arp3 antibodies demonstrated the presence of Arp3 in these trails. Our data indicate that details of H. obtusa infection are rather similar to those of Listeria and Rickettsia.


Assuntos
Citoesqueleto de Actina/microbiologia , Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno , Paramecium caudatum/microbiologia , Animais , Núcleo Celular/microbiologia
17.
FEMS Microbiol Lett ; 280(1): 21-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18179589

RESUMO

Holospora obtusa is a macronucleus-specific endosymbiotic bacterium of the ciliate Paramecium caudatum. We report the secretion of a 63-kDa periplasmic protein of an infectious form of the bacterium into the macronucleus of its host. Indirect immunofluorescence microscopy with five monoclonal antibodies against the 63-kDa protein demonstrated that, soon after the bacterial invasion into the host macronucleus, the protein was detected in the infected macronucleus and that levels of the protein increased dramatically within one day of infection. The use of inhibitors for host and bacterial protein synthesis illustrated that, in early infection of H. obtusa, not only the pre-existing but also a newly synthesized 63-kDa protein was secreted into the host macronucleus. A partial amino acid sequence of the protein was determined, and a gene encoding the 63-kDa protein was cloned. The deduced amino acid sequence shows that this protein is a novel protein.


Assuntos
Proteínas de Bactérias/metabolismo , Holosporaceae/fisiologia , Macronúcleo/microbiologia , Paramecium caudatum/microbiologia , Proteínas Periplásmicas/metabolismo , Simbiose , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/análise , Anticorpos Monoclonais/análise , Proteínas de Bactérias/análise , Clonagem Molecular , Holosporaceae/citologia , Holosporaceae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Paramecium caudatum/fisiologia , Proteínas Periplásmicas/análise , Inibidores da Síntese de Proteínas/farmacologia , Análise de Sequência de Proteína
18.
J Eukaryot Microbiol ; 55(6): 515-21, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19120797

RESUMO

The bacterium Holospora is an endonuclear symbiont of the ciliate Paramecium. Previously, we reported that paramecia bearing the macronuclear-specific symbiont Holospora obtusa survived better than symbiont-free paramecia, even under high temperatures unsuitable for growth. The paramecia with symbionts expressed high levels of hsp70 mRNAs even at 25 degrees C, a usual growth temperature. We report herein that paramecia bearing the micronuclear-specific symbiont Holospora elegans also acquire the heat-shock resistance. Even after the removal of the bacteria from the hosts by treatment with penicillin, the resulting aposymbiotic paramecia nevertheless maintained their heat shock-resistant nature for over 1 yr. Like symbiotic paramecia, these aposymbiotic paramecia also expressed high levels of both hsp60 and hsp70 mRNAs even at 25 degrees C. Moreover, analysis by fluorescent in situ hybridization with a probe specific for Holospora 16S rRNA revealed that the 16S rRNA of H. elegans was expressed around the nucleoli of the macronucleus in the aposymbiotic cells. This result suggests the possible transfer of Holospora genomic DNA from the micronucleus into the macronucleus in symbiotic paramecia. Perhaps this exogenous DNA could trigger the aposymbiotic paramecia to induce a stress response, inducing higher expression of Hsp60 and Hsp70, and thus conferring heat-shock resistance.


Assuntos
Expressão Gênica , Resposta ao Choque Térmico , Holosporaceae/fisiologia , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/microbiologia , Paramecium caudatum/microbiologia , Animais , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Holosporaceae/genética , Micronúcleo Germinativo/metabolismo , Paramecium caudatum/genética , Paramecium caudatum/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Simbiose
19.
Evolution ; 60(6): 1177-86, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16892968

RESUMO

Host-parasite coevolution is often described as a process of reciprocal adaptation and counter adaptation, driven by frequency-dependent selection. This requires that different parasite genotypes perform differently on different host genotypes. Such genotype-by-genotype interactions arise if adaptation to one host (or parasite) genotype reduces performance on others. These direct costs of adaptation can maintain genetic polymorphism and generate geographic patterns of local host or parasite adaptation. Fixation of all-resistant (or all-infective) genotypes is further prevented if adaptation trades off with other host (or parasite) life-history traits. For the host, such indirect costs of resistance refer to reduced fitness of resistant genotypes in the absence of parasites. We studied (co)evolution in experimental microcosms of several clones of the freshwater protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. After two and a half years of culture, inoculation of evolved and naive (never exposed to the parasite) hosts with evolved and founder parasites revealed an increase in host resistance, but not in parasite infectivity. A cross-infection experiment showed significant host clone-by-parasite isolate interactions, and evolved hosts tended to be more resistant to their own (local) parasites than to parasites from other hosts. Compared to naive clones, evolved host clones had lower division rates in the absence of the parasite. Thus, our study indicates de novo evolution of host resistance, associated with both direct and indirect costs. This illustrates how interactions with parasites can lead to the genetic divergence of initially identical populations.


Assuntos
Evolução Molecular Direcionada/métodos , Holosporaceae/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Animais , Variação Genética , Genótipo , Holosporaceae/genética , Interações Hospedeiro-Parasita , Paramecium caudatum/genética , Seleção Genética
20.
Protoplasma ; 226(3-4): 147-53, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16333573

RESUMO

Holospora obtusa is a Gram-negative bacterium inhabiting the macronucleus of the ciliate Paramecium caudatum. Experimental infection with H. obtusa was carried out under nocodazole treatment. Nocodazole has been shown to cause disassembly of the cytoplasmic microtubules radiating from the cytopharynx and postoral fibers in P. caudatum. Treatment with this drug did not prevent the ingestion of both prey bacteria and H. obtusa, but it reduced the phagosome number and affected cyclosis. In situ hybridization revealed infectious forms of this endobiont very close to the macronucleus, but never inside it. These results indicate that disassembly of microtubules does not impair transportation of the infectious forms of H. obtusa in the cytoplasm, but that it completely blocks the invasion of the nucleus by the bacteria.


Assuntos
Holosporaceae/efeitos dos fármacos , Macronúcleo/microbiologia , Nocodazol/farmacologia , Paramecium caudatum/microbiologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/microbiologia , Animais , Corrente Citoplasmática/efeitos dos fármacos , Holosporaceae/isolamento & purificação , Imuno-Histoquímica , Hibridização In Situ , Macronúcleo/ultraestrutura , Microtúbulos/efeitos dos fármacos , Microtúbulos/microbiologia , Paramecium caudatum/ultraestrutura , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...