Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Planta ; 248(1): 139-154, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29623472

RESUMO

MAIN CONCLUSION: Downregulation in the expression of the signal recognition particle 43 (SRP43) gene in tobacco conferred a truncated photosynthetic light-harvesting antenna (TLA property), and resulted in plants with a greater leaf-to-stem ratio, improved photosynthetic productivity and canopy biomass accumulation under high-density cultivation conditions. Evolution of sizable arrays of light-harvesting antennae in all photosynthetic systems confers a survival advantage for the organism in the wild, where sunlight is often the growth-limiting factor. In crop monocultures, however, this property is strongly counterproductive, when growth takes place under direct and excess sunlight. The large arrays of light-harvesting antennae in crop plants cause the surface of the canopies to over-absorb solar irradiance, far in excess of what is needed to saturate photosynthesis and forcing them to engage in wasteful dissipation of the excess energy. Evidence in this work showed that downregulation by RNA-interference approaches of the Nicotiana tabacum signal recognition particle 43 (SRP43), a nuclear gene encoding a chloroplast-localized component of the photosynthetic light-harvesting assembly pathway, caused a decrease in the light-harvesting antenna size of the photosystems, a corresponding increase in the photosynthetic productivity of chlorophyll in the leaves, and improved tobacco plant canopy biomass accumulation under high-density cultivation conditions. Importantly, the resulting TLA transgenic plants had a substantially greater leaf-to-stem biomass ratio, compared to those of the wild type, grown under identical agronomic conditions. The results are discussed in terms of the potential benefit that could accrue to agriculture upon application of the TLA-technology to crop plants, entailing higher density planting with plants having a greater biomass and leaf-to-stem ratio, translating into greater crop yields per plant with canopies in a novel agronomic configuration.


Assuntos
Proteínas de Cloroplastos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Nicotiana/metabolismo , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Partícula de Reconhecimento de Sinal/metabolismo , Biomassa , Proteínas de Cloroplastos/genética , Regulação para Baixo , Fotossíntese , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/fisiologia , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
2.
Elife ; 42015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25993558

RESUMO

Upon endoplasmic reticulum (ER) stress, the transmembrane endoribonuclease Ire1α performs mRNA cleavage reactions to increase the ER folding capacity. It is unclear how the low abundant Ire1α efficiently finds and cleaves the majority of mRNAs at the ER membrane. Here, we reveal that Ire1α forms a complex with the Sec61 translocon to cleave its mRNA substrates. We show that Ire1α's key substrate, XBP1u mRNA, is recruited to the Ire1α-Sec61 translocon complex through its nascent chain, which contains a pseudo-transmembrane domain to utilize the signal recognition particle (SRP)-mediated pathway. Depletion of SRP, the SRP receptor or the Sec61 translocon in cells leads to reduced Ire1α-mediated splicing of XBP1u mRNA. Furthermore, mutations in Ire1α that disrupt the Ire1α-Sec61 complex causes reduced Ire1α-mediated cleavage of ER-targeted mRNAs. Thus, our data suggest that the Unfolded Protein Response is coupled with the co-translational protein translocation pathway to maintain protein homeostasis in the ER during stress conditions.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sistemas de Translocação de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Sistemas CRISPR-Cas , Células HEK293 , Células HeLa , Homeostase/fisiologia , Humanos , Imunoprecipitação , Oligonucleotídeos/genética , Fosforilação , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Canais de Translocação SEC
3.
PLoS Biol ; 11(12): e1001735, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24358019

RESUMO

All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ(32), the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ(32) localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ(32) directly and transports it to the inner membrane. Our results show that σ(32) must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Fator sigma/fisiologia , Partícula de Reconhecimento de Sinal/fisiologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Escherichia coli/fisiologia , Homeostase/fisiologia , Dobramento de Proteína
5.
J Cell Biol ; 200(4): 397-405, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23401005

RESUMO

Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved cellular machine that cotranslationally targets proteins to a protein-conducting channel, the bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a passive recipient of the translating ribosome or actively regulates this targeting machinery remains unclear. Here we show that SecYEG drives conformational changes in the cargo-loaded SRP-SR targeting complex that activate it for GTP hydrolysis and for handover of the translating ribosome. These results provide the first evidence that SecYEG actively drives the efficient delivery and unloading of translating ribosomes at the target membrane.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Modelos Biológicos , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Peptídeos/fisiologia , Partícula de Reconhecimento de Sinal/fisiologia , Guanosina Trifosfato/metabolismo , Hidrólise , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Ribossomos/metabolismo , Ribossomos/fisiologia , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo
6.
Biochim Biophys Acta ; 1808(10): 2544-50, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21699884

RESUMO

Signal sequence non-optimal codons have been shown to be important for the folding and efficient export of maltose binding protein (MBP), a SecB dependent protein. In this study, we analysed the importance of signal sequence non-optimal codons of TolB, a signal recognition particle (SRP) dependent exported protein. The protein production levels of wild type TolB (TolB-wt) and a mutant allele of TolB in which all signal sequence non-optimal codons were changed to a synonymous optimal codon (TolB-opt), revealed that TolB-opt production was 12-fold lower than TolB-wt. This difference could not be explained by changes in mRNA levels, or plasmid copy number, which was the same in both strains. A directed evolution genetic screen was used to select for mutants in the TolB-opt signal sequence that resulted in higher levels of TolB production. Analysis of the 46 independent TolB mutants that reverted to wild type levels of expression revealed that at least four signal sequence non-optimal codons were required. These results suggest that non-optimal codons may be required for the folding and efficient export of all proteins exported via the Sec system, regardless of whether they are dependent on SecB or SRP for delivery to the inner membrane.


Assuntos
Evolução Molecular Direcionada , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Partícula de Reconhecimento de Sinal/fisiologia , Sequência de Bases , Western Blotting , Códon , Primers do DNA , Proteínas de Escherichia coli/genética , Proteínas Periplásmicas/genética , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Nat Struct Mol Biol ; 18(5): 614-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21499241

RESUMO

The ubiquitous SecY-Sec61 complex translocates nascent secretory proteins across cellular membranes and integrates membrane proteins into lipid bilayers. Several structures of mostly detergent-solubilized Sec complexes have been reported. Here we present a single-particle cryo-EM structure of the SecYEG complex in a membrane environment, bound to a translating ribosome, at subnanometer resolution. Using the SecYEG complex reconstituted in a so-called Nanodisc, we could trace the nascent polypeptide chain from the peptidyltransferase center into the membrane. The reconstruction allowed for the identification of ribosome-lipid interactions. The rRNA helix 59 (H59) directly contacts the lipid surface and appears to modulate the membrane in immediate vicinity to the proposed lateral gate of the protein-conducting channel (PCC). On the basis of our map and molecular dynamics simulations, we present a model of a signal anchor-gated PCC in the membrane.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Ribossomos/química , Microscopia Crioeletrônica , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Transporte Proteico , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal/fisiologia
8.
J Biol Chem ; 285(28): 21655-61, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20498370

RESUMO

The biosynthesis of most membrane proteins is directly coupled to membrane insertion, and therefore, molecular chaperones are not required. The light-harvesting chlorophyll a,b-binding proteins (LHCPs) present a prominent exception as they are synthesized in the cytoplasm, and after import into the chloroplast, they are targeted and inserted into the thylakoid membrane. Upon arrival in the stroma, LHCPs form a soluble transit complex with the chloroplast signal recognition particle (cpSRP) consisting of an SRP54 homolog and the unique cpSRP43 composed of three chromodomains and four ankyrin repeats. Here we describe that cpSRP43 alone prevents aggregation of LHCP by formation of a complex with nanomolar affinity, whereas cpSRP54 is not required for this chaperone activity. Other stromal chaperones like trigger factor cannot replace cpSRP43, which implies that LHCPs require a specific chaperone. Although cpSRP43 does not have an ATPase activity, it can dissolve aggregates of LHCPs similar to chaperones of the Hsp104/ClpB family. We show that the LHCP-cpSRP43 interaction is predominantly hydrophobic but strictly depends on an intact DPLG motif between the second and third transmembrane region. The cpSRP43 ankyrin repeats that provide the binding site for the DPLG motif are sufficient for the chaperone function, whereas the chromodomains are dispensable. Taken together, we define cpSRP43 as a highly specific chaperone for LHCPs in addition to its established function as a targeting factor for this family of membrane proteins.


Assuntos
Complexos de Proteínas Captadores de Luz/fisiologia , Fotossíntese , Partícula de Reconhecimento de Sinal/fisiologia , Motivos de Aminoácidos , Anquirinas/química , Sítios de Ligação , Membrana Celular/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos , Cloroplastos/metabolismo , Proteínas de Choque Térmico/química , Complexos de Proteínas Captadores de Luz/química , Chaperonas Moleculares/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Partícula de Reconhecimento de Sinal/química
9.
Microbiology (Reading) ; 156(Pt 5): 1342-1350, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20110295

RESUMO

The signal recognition particle (SRP) is a ribonucleoprotein complex that targets proteins for secretion in a co-translational manner. While originally thought to be essential in all bacteria, recent data show that the SRP is dispensable in at least some streptococcal species. The SRP from the human pathogen group A Streptococcus (GAS, Streptococcus pyogenes) is predicted to be composed of protein Ffh and 4.5S RNA. Deletion of ffh alters the secretion of several GAS proteins, and leads to a severe reduction in virulence. Here, we report that mutation of the gene encoding 4.5S RNA results in phenotypes both similar to and distinct from that observed following ffh mutation. Similarities include a reduction in secretion of the haemolysin streptolysin O, and attenuation of virulence as assessed by a murine soft tissue infection model. Differences include a reduction in transcript levels for the genes encoding streptolysin O and NAD-glycohydrolase, and the reduced secretion of the SpeB protease. Several differences in transcript abundance between the parental and mutant strain were shown to be dependent on the sensor-kinase-encoding gene covS. Using growth in human saliva as an ex vivo model of upper respiratory tract infection we identified that 4.5S RNA mutation leads to a 10-fold reduction in colony-forming units over time, consistent with the 4.5S RNA contributing to GAS growth and persistence during upper respiratory tract infections. Finally, we determined that the 4.5S RNA was essential for GAS to cause lethal infections in a murine bacteraemia model of infection. The data presented extend our knowledge of the contribution of the SRP to the virulence of an important Gram-positive pathogen.


Assuntos
RNA Bacteriano/fisiologia , Partícula de Reconhecimento de Sinal/fisiologia , Streptococcus pyogenes/patogenicidade , Animais , Bacteriemia/microbiologia , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Mutagênese , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Saliva/microbiologia , Células-Tronco , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Virulência/genética
10.
FEBS J ; 276(17): 4891-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19664056

RESUMO

The mechanosensitive channel with large conductance (MscL) of Escherichia coli is formed by a homopentameric assembly of MscL proteins. Here, we describe MscL biogenesis as determined using in vivo approaches. Evidence is presented that MscL is targeted to the inner membrane via the signal recognition particle (SRP) pathway, and is inserted into the lipid bilayer independently of the Sec machinery. This is consistent with published data. Surprisingly, and in conflict with earlier data, YidC is not critical for membrane insertion of MscL. In the absence of YidC, assembly of the homopentameric MscL complex was strongly reduced, suggesting a late role for YidC in the biogenesis of MscL. The data are consistent with the view that YidC functions as a membrane-based chaperone 'module' to facilitate assembly of a subset of protein complexes in the inner membrane of E. coli.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Canais Iônicos/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Membranas Intracelulares/metabolismo , Canais Iônicos/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Multimerização Proteica , Partícula de Reconhecimento de Sinal/fisiologia
11.
Biol Chem ; 390(8): 775-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19558326

RESUMO

Protein targeting by the signal recognition particle (SRP) is universally conserved and starts with the recognition of a signal sequence in the context of a translating ribosome. SRP54 and FtsY, two multidomain proteins with guanosine triphosphatase (GTPase) activity, are the central elements of the SRP system. They have to coordinate the presence of a signal sequence with the presence of a vacant translocation channel in the membrane. For coordination the two GTPases form a unique, nearly symmetric heterodimeric complex in which the activation of GTP hydrolysis plays a key role for membrane insertion of substrate proteins. Recent results are integrated in an updated perception of the order of events in SRP-mediated protein targeting.


Assuntos
Transporte Proteico/genética , Partícula de Reconhecimento de Sinal/fisiologia , Animais , Proteínas de Bactérias/fisiologia , Cloroplastos/metabolismo , Proteínas de Escherichia coli/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Moleculares , Receptores Citoplasmáticos e Nucleares/fisiologia
12.
Biol Chem ; 390(8): 701-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19361278

RESUMO

The key enzymes that catalyze the insertion of proteins into membranes are the Sec translocase and the YidC membrane insertase. Recent insights into the structure and functional intermediates of these enzymes have provided a first molecular glimpse of how they help the newly synthesized proteins to enter the membrane bilayer. In this process, the new proteins undergo a number of specific interactions in the cytoplasm and at the membrane surface before they insert into the bilayer and translocate their external domains across the membrane. The components involved in this pathway recognize each other at the molecular level, forming a route the membrane protein can move along.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Transporte Proteico/fisiologia , Canais de Translocação SEC , Proteínas SecA , Partícula de Reconhecimento de Sinal/fisiologia
13.
Proc Natl Acad Sci U S A ; 106(6): 1754-9, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19174514

RESUMO

The "GTPase switch" paradigm, in which a GTPase switches between an active, GTP-bound state and an inactive, GDP-bound state through the recruitment of nucleotide exchange factors (GEFs) or GTPase activating proteins (GAPs), has been used to interpret the regulatory mechanism of many GTPases. A notable exception to this paradigm is provided by two GTPases in the signal recognition particle (SRP) and the SRP receptor (SR) that control the co-translational targeting of proteins to cellular membranes. Instead of the classical "GTPase switch," both the SRP and SR undergo a series of discrete conformational rearrangements during their interaction with one another, culminating in their reciprocal GTPase activation. Here, we show that this series of rearrangements during SRP-SR binding and activation provide important control points to drive and regulate protein targeting. Using real-time fluorescence, we showed that the cargo for SRP--ribosomes translating nascent polypeptides with signal sequences--accelerates SRP.SR complex assembly over 100-fold, thereby driving rapid delivery of cargo to the membrane. A series of subsequent rearrangements in the SRP x SR GTPase complex provide important driving forces to unload the cargo during late stages of protein targeting. Further, the cargo delays GTPase activation in the SRP.SR complex by 8-12 fold, creating an important time window that could further improve the efficiency and fidelity of protein targeting. Thus, the SRP and SR GTPases, without recruiting external regulatory factors, constitute a self-sufficient system that provides exquisite spatial and temporal control of a complex cellular process.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Peptídeos/química , Partícula de Reconhecimento de Sinal/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/fisiologia
15.
J Mol Biol ; 381(3): 581-93, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18617187

RESUMO

Two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of newly synthesized proteins to the endoplasmic reticulum or plasma membrane. During the protein targeting reaction, the 4.5S SRP RNA accelerates the association between the two GTPases by 400-fold. Using fluorescence resonance energy transfer, we demonstrate here that formation of a stable SRP x SR complex involves two distinct steps: a fast initial association between SRP and SR to form a GTP-independent early complex and then a GTP-dependent conformational rearrangement to form the stable final complex. We also found that the 4.5S SRP RNA significantly stabilizes the early GTP-independent intermediate. Furthermore, mutational analyses show that there is a strong correlation between the ability of the mutant SRP RNAs to stabilize the early intermediate and their ability to accelerate SRP x SR complex formation. We propose that the SRP RNA, by stabilizing the early intermediate, can give this transient intermediate a longer life time and therefore a higher probability to rearrange to the stable final complex. This provides a coherent model that explains how the 4.5S RNA exerts its catalytic role in SRP x SR complex assembly.


Assuntos
RNA Ribossômico/química , Receptores Citoplasmáticos e Nucleares/química , Receptores de Peptídeos/química , Partícula de Reconhecimento de Sinal/química , Catálise , Retículo Endoplasmático/fisiologia , Proteínas de Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , GTP Fosfo-Hidrolases/fisiologia , Mutação , RNA Bacteriano , RNA Ribossômico/genética , RNA Ribossômico/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Peptídeos/fisiologia , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/fisiologia
16.
J Mol Biol ; 375(4): 1098-112, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18067920

RESUMO

Human cytidine deaminase apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F), like APOBEC3G, has broad antiviral activity against diverse retroelements, including Vif-deficient human immunodeficiency virus (HIV)-1. Its antiviral functions are known to rely on its virion encapsidation and be suppressed by HIV-1 Vif, which recruits Cullin5-based E3 ubiquitin ligases. However, the factors that mediate A3F virion packaging have not yet been identified. In this study, we demonstrate that A3F specifically interacts with cellular signal recognition particle (SRP) RNA (7SL RNA), which is selectively packaged into HIV-1 virions. Efficient packaging of 7SL RNA as well as A3F was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. Reducing 7SL RNA packaging by overexpression of SRP19 protein inhibited A3F virion packaging. Although A3F has been shown to interact with P bodies and viral genomic RNA, our data indicated that P bodies and HIV-1 genomic RNA were not required for A3F packaging. Thus, in addition to its well-known function in SRPs, 7SL RNA, which is encapsidated into diverse retroviruses, also participates in the innate antiviral function of host cytidine deaminases.


Assuntos
Citosina Desaminase/imunologia , Citosina Desaminase/metabolismo , HIV-1/imunologia , RNA Citoplasmático Pequeno/fisiologia , RNA Viral/metabolismo , Partícula de Reconhecimento de Sinal/fisiologia , Vírion/imunologia , Montagem de Vírus/imunologia , Linhagem Celular , Estruturas Citoplasmáticas/metabolismo , Citosina Desaminase/genética , Dactinomicina/farmacologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Rim/citologia , Modelos Biológicos , Mutação , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , Transfecção , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
17.
Curr Biol ; 17(22): R980-2, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18029258

RESUMO

Co-translational protein targeting by the signal recognition particle (SRP) relies on a complex series of structural rearrangements in the SRP and its receptor (SR). In order to precisely coordinate the individual steps, the GTPases of the SRP and the SR form a unique complex in which GTP hydrolysis is activated in a composite active site. A recent study provides new insights on the link between the GTPases and protein translocation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Partícula de Reconhecimento de Sinal/fisiologia , Proteínas de Bactérias/fisiologia , Ativação Enzimática/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Transporte Proteico/fisiologia , Partícula de Reconhecimento de Sinal/química , Thermus/enzimologia
18.
J Virol ; 81(23): 13112-24, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881443

RESUMO

Cytidine deaminase APOBEC3G (A3G) has broad antiviral activity against diverse retroviruses and/or retrotransposons, and its antiviral functions are believed to rely on its encapsidation into virions in an RNA-dependent fashion. However, the cofactors of A3G virion packaging have not yet been identified. We demonstrate here that A3G selectively interacts with certain polymerase III (Pol III)-derived RNAs, including Y3 and 7SL RNAs. Among A3G-binding Pol III-derived RNAs, 7SL RNA was preferentially packaged into human immunodeficiency virus type 1 (HIV-1) particles. Efficient packaging of 7SL RNA, as well as A3G, was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. A3G mutants that had reduced 7SL RNA binding but maintained wild-type levels of mRNA and tRNA binding were packaged poorly and had impaired antiviral activity. Reducing 7SL RNA packaging by overexpression of SRP19 proteins inhibited 7SL RNA and A3G virion packaging and impaired its antiviral function. Thus, 7SL RNA that is encapsidated into diverse retroviruses is a key cofactor of the antiviral A3G. This selective interaction of A3G with certain Pol III-derived RNAs raises the question of whether A3G and its cofactors may have as-yet-unidentified cellular functions.


Assuntos
Citidina Desaminase/imunologia , Citidina Desaminase/metabolismo , HIV-1/imunologia , RNA Citoplasmático Pequeno/fisiologia , Partícula de Reconhecimento de Sinal/fisiologia , Montagem de Vírus/imunologia , Desaminase APOBEC-3G , Linhagem Celular , Citidina Desaminase/genética , Humanos , Mutação , Produtos do Gene gag do Vírus da Imunodeficiência Humana
20.
J Mol Biol ; 368(3): 677-90, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17368481

RESUMO

The conserved signal recognition particle targets ribosomes synthesizing presecretory proteins to the endoplasmic reticulum membrane. Key to the activity of SRP is its ability to bind the ribosome at distant locations, the signal sequence exit and elongation factor-binding sites. These contacts are made by the S and Alu domains of SRP, respectively. We tested earlier secondary structure predictions of the Saccharomyces cerevisiae SRP RNA, scR1, and provide and test a consensus structure. The structure contains four non-conserved insertions, helices 9-12, into the core SRP RNA fold, and an extended helix 7. Using a series of scR1 mutants lacking part or all of these structural elements, we find that they are important for the RNA in both function and assembly of the RNP. About 20% of the RNA, corresponding to the outer regions of these helices, is dispensable for function. Further, we examined the role of several features within the S-domain section of the core, helix 5, and find that its length and flexibility are important for proper SRP function and become essential in the absence of helix 10, 11 and/or 7 regions. Overall, the genetic data indicate that regions of scR1 distant in both primary sequence and secondary structure have interrelated roles in the function of the complex, and possibly mediate communication between Alu and S domains during targeting.


Assuntos
N-Glicosil Hidrolases/química , Conformação de Ácido Nucleico , RNA Fúngico/química , Proteínas de Saccharomyces cerevisiae/química , Partícula de Reconhecimento de Sinal/química , Sequência de Bases , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Dados de Sequência Molecular , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/fisiologia , RNA Fúngico/genética , RNA Fúngico/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...