Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 892
Filtrar
1.
Anal Methods ; 16(28): 4873-4879, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38973381

RESUMO

A tungsten disulfide (WS2) nanosheet-based aptamer sensor was developed to detect patulin (PAT). The 5'-end of the PAT aptamer was modified with a cyanine 3 (Cy3) fluorophore, which self-assembled on WS2 nanosheets. The interaction between the Cy3 fluorophore at the 5'-end of the PAT aptamer and the WS2 nanosheets resulted in reduced fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET). The introduction of PAT into this sensing system led to hybridization with the PAT aptamer, forming a G-quadruplex/PAT complex with low affinity for the WS2 nanosheet surface. This hybridization increased the distance between the Cy3 fluorophore and the WS2 nanosheets, inhibiting FRET and producing a strong FL signal. Under optimal experimental conditions, the FL intensity of the sensing system demonstrated an excellent linear correlation with PAT concentrations ranging from 0.5 to 40.0 ng mL-1, and it achieved a detection limit (S/N = 3) of 0.23 ng mL-1. This sensing system offers enhanced specificity for PAT detection and has the potential for broad application in detecting other toxins by substituting the sequence of the recognition aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Transferência Ressonante de Energia de Fluorescência , Nanoestruturas , Patulina , Patulina/análise , Patulina/química , Aptâmeros de Nucleotídeos/química , Nanoestruturas/química , Transferência Ressonante de Energia de Fluorescência/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Compostos de Tungstênio/química , Corantes Fluorescentes/química , Carbocianinas/química
2.
Fungal Biol ; 128(4): 1885-1897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876541

RESUMO

Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.


Assuntos
Patulina , Penicillium , Pyrus , Meios de Cultura/química , Umidade , Concentração de Íons de Hidrogênio , Patulina/biossíntese , Patulina/metabolismo , Penicillium/metabolismo , Penicillium/crescimento & desenvolvimento , Penicillium/genética , Penicillium/isolamento & purificação , Pyrus/microbiologia , Temperatura
3.
Toxins (Basel) ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922133

RESUMO

Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can reliably and efficiently determine patulin levels. In this work, we developed an automated sample preparation workflow followed by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) detection to identify and quantify patulin in a single method, further expanding testing capabilities for monitoring patulin in foods compared to traditional optical methods. Using a robotic sample preparation system, apple juice, apple cider, apple puree, apple-based baby food, applesauce, fruit rolls, and fruit jam were fortified with 13C-patulin and extracted using dichloromethane (DCM) without human intervention, followed by an LC-APCI-MS/MS analysis in negative ionization mode. The method achieved a limit of quantification of 4.0 ng/g and linearity ranging from 2 to 1000 ng/mL (r2 > 0.99). Quantitation was performed with isotope dilution using 13C-patulin as an internal standard and solvent calibration standards. Average recoveries (relative standard deviations, RSD%) in seven spike matrices were 95% (9%) at 10 ng/g, 110% (5%) at 50 ng/g, 101% (7%) at 200 ng/g, and 104% (4%) at 1000 ng/g (n = 28). The ranges of within-matrix and between-matrix variability (RSD) were 3-8% and 4-9%, respectively. In incurred samples, the identity of patulin was further confirmed with a comparison of the information-dependent acquisition-enhanced product ion (IDA-EPI) MS/MS spectra to a reference standard. The metrological traceability of the patulin measurements in an incurred apple cider (21.1 ± 8.0 µg/g) and apple juice concentrate (56.6 ± 15.6 µg/g) was established using a certified reference material and calibration data to demonstrate data confidence intervals (k = 2, 95% confidence interval).


Assuntos
Contaminação de Alimentos , Sucos de Frutas e Vegetais , Malus , Patulina , Robótica , Espectrometria de Massas em Tandem , Patulina/análise , Malus/química , Sucos de Frutas e Vegetais/análise , Cromatografia Líquida , Contaminação de Alimentos/análise , Frutas/química
4.
Food Microbiol ; 122: 104532, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839238

RESUMO

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Assuntos
Genoma Fúngico , Família Multigênica , Micotoxinas , Penicillium , Filogenia , Metabolismo Secundário , Penicillium/genética , Penicillium/metabolismo , Micotoxinas/metabolismo , Micotoxinas/genética , Contaminação de Alimentos/análise , Patulina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nozes/microbiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Microbiologia de Alimentos , Corylus/microbiologia , Compostos Heterocíclicos de 4 ou mais Anéis , Indóis , Piperazinas
5.
Toxicology ; 506: 153863, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878878

RESUMO

Patulin (PAT), the most common mycotoxin, is widespread in foods and beverages which poses a serious food safety issue to human health. Our previous research confirmed that exposure to PAT can lead to acute kidney injury (AKI). Curcumin is the most abundant active ingredient in turmeric rhizome with various biological activities. The aim of this study is to investigate whether curcumin can prevent the renal injury caused by PAT, and to explore potential mechanisms. In vivo, supplementation with curcumin attenuated PAT-induced ferroptosis. Mechanically, curcumin inhibited autophagy, led to the accumulation of p62 and its interaction with Keap1, promoted the nuclear translocation of nuclear factor E2 related factor 2 (Nrf2), and increased the expression of antioxidant stress factors in the process of ferroptosis. These results have also been confirmed in HKC cell experiments. Furthermore, knockdown of Nrf2 in HKC cells abrogated the protective effect of curcumin on ferroptosis. In conclusion, we confirmed that curcumin mitigated PAT-induced AKI by inhibiting ferroptosis via activation of the p62/Keap1/Nrf2 pathway. This study provides new potential targets and ideas for the prevention and treatment of PAT.


Assuntos
Curcumina , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Patulina , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Curcumina/farmacologia , Ferroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Masculino , Patulina/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Proteína Sequestossoma-1/metabolismo , Linhagem Celular , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Artigo em Inglês | MEDLINE | ID: mdl-38913828

RESUMO

Mycotoxins are secondary fungal metabolites harmful to humans and animals. Patulin (PAT) is a toxin found in different food products but especially in apples and their derivative products. The most common fungi producers of this compound are Aspergillus clavatus and Penicillium expansum. The production of patulin, as other mycotoxins, can be impacted by diverse phenomena such as water and nutrient availability, UV exposure, and the presence of antagonistic organisms. Consequently, gaining a comprehensive understanding of climate and environmental conditions is a crucial step in combating patulin contamination. In this study, moulds were isolated from 40 apple samples collected from seven locations across Hungary: Csenger, Damak, Pallag, Lövopetri, Nagykálló, and Újfehértó. A total of 183 moulds were morphologically identified, with 67 isolates belonging to the Alternaria, 45 to the Aspergillus, and 13 to the Penicillium groups. The location possessed a higher influence than farming method on the distribution of mould genera. Despite the requirement of higher temperature, Aspergillus species dominated only for the region of Újfehértó with approximately 50% of the isolates belonging to the genus. Four of the seven locations assessed: Csenger, Debrecen-Pallag, Nyírtass and Nagykálló, were dominated by Alternaria species. All isolates belonging to the genera Aspergillus and Penicillium were tested for the presence of the isoepoxidone dehydrogenase (idh) gene, a key player in the patulin metabolic pathway. To guarantee patulin production, this ability was confirmed with TLC assays. The only Aspergillus strain that presented a positive result was the strain Aspergillus clavatus B9/6, originated from the apple cultivar Golden Reinders grown in Debrecen-Pallag by integrated farming. Of the Penicillium isolates only one strain, B10/6, presented a band of the right size (500-600 bp) for the idh gene. Further sequencing of the ITS gene showed that this strain should be classified as Talaromyces pinophilus. The TLC tests confirmed this microorganism as the only patulin producer under the studied conditions for its cluster.


Assuntos
Aspergillus , Malus , Patulina , Penicillium , Patulina/análise , Penicillium/metabolismo , Penicillium/isolamento & purificação , Malus/química , Malus/microbiologia , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Aspergillus/química , Hungria , Contaminação de Alimentos/análise , Microbiologia de Alimentos
7.
Food Chem ; 456: 139994, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38914035

RESUMO

Patulin is one of the mycotoxins frequently detected in apples and derivatives, representing a major food safety risk. This study aimed to validate a high-performance liquid chromatography (HPLC) method with an ultraviolet (UV) detector for patulin quantification and assess its occurrence in apple beverages marketed in Morocco. The validation parameters showed satisfactory results with adequate linearity (R > 0.997), a relative standard deviation below 2.5%, repeatability between 3.6 and 7.1%, reproducibility between 3.9 and 11.5%, a limit of quantification (LOQ) of 4 µg/L, and recoveries close to 100% for three levels. Analysis of 30 samples revealed patulin levels ranging from 0 to 16.36 µg/L, with 50% of samples showing negative levels. All positive results remained below the regulatory maximum limit of 50 µg/L. These findings affirm the efficacy of the HPLC proposed method in ensuring compliance with patulin regulations in apple beverages, underlining its importance in safeguarding food safety.


Assuntos
Contaminação de Alimentos , Malus , Patulina , Patulina/análise , Malus/química , Cromatografia Líquida de Alta Pressão , Marrocos , Contaminação de Alimentos/análise , Bebidas/análise , Frutas/química , Sucos de Frutas e Vegetais/análise
8.
Food Chem ; 454: 139619, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38811285

RESUMO

In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.


Assuntos
Quitosana , Sucos de Frutas e Vegetais , Hidrogéis , Queratinas , Lacticaseibacillus rhamnosus , Malus , Patulina , Quitosana/química , Malus/química , Sucos de Frutas e Vegetais/análise , Lacticaseibacillus rhamnosus/química , Hidrogéis/química , Patulina/química , Patulina/isolamento & purificação , Queratinas/química , Queratinas/isolamento & purificação , Probióticos/química , Contaminação de Alimentos/análise
9.
Appl Environ Microbiol ; 90(6): e0029924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786360

RESUMO

Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE: Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.


Assuntos
Hidrolases de Éster Carboxílico , Erwinia amylovora , Malus , Patulina , Patulina/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Malus/microbiologia , Erwinia amylovora/genética , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/enzimologia , Erwinia amylovora/metabolismo , Doenças das Plantas/microbiologia , Penicillium/genética , Penicillium/enzimologia , Penicillium/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Interações Microbianas , Percepção de Quorum , Lactonas/metabolismo , Lactonas/farmacologia
10.
ACS Sens ; 9(6): 3377-3386, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38783424

RESUMO

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.


Assuntos
Compostos de Cádmio , Técnicas Eletroquímicas , Ouro , Patulina , Pontos Quânticos , Semicondutores , Análise Espectral Raman , Telúrio , Análise Espectral Raman/métodos , Telúrio/química , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Patulina/análise , Ouro/química , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Nanotubos/química , Itérbio/química , Malus/química , Nanocompostos/química
11.
Arch Toxicol ; 98(7): 2143-2152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806716

RESUMO

Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.


Assuntos
Metilação de DNA , Epigênese Genética , Rim , Patulina , Transdução de Sinais , Animais , Masculino , Camundongos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Patulina/toxicidade , Transdução de Sinais/efeitos dos fármacos
12.
Toxicon ; 244: 107768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768831

RESUMO

Patulin (PAT) is the most common mycotoxin found in moldy fruits and their derived products, and is reported to cause diverse toxic effects, including hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, immunotoxicity, gastrointestinal toxicity and dermal toxicity. The cell death induction by PAT is suggested to be a key cellular mechanism involved in PAT-induced toxicities. Accumulating evidence indicates that the multiple forms of cell death are induced in response to PAT exposure, including apoptosis, autophagic cell death, pyroptosis and ferroptosis. Mechanistically, the cell death induction by PAT is associated the oxidative stress induction via reducing the antioxidant capacity or inducing pro-oxidant NADPH oxidase, the activation of mitochondrial pathway via regulating BCL-2 family proteins, the disruption of iron metabolism through ferritinophagy-mediated ferritin degradation, and the induction of the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome/caspase-1/gasdermin D (GSDMD) pathway. In this review article, we summarize the present understanding of the cell death induction by PAT, discuss the potential signaling pathways underlying PAT-induced cell death, and propose the issues that need to be addressed to promote the development of cell death-based approach to counteract PAT-induced toxicities.


Assuntos
Morte Celular , Patulina , Patulina/toxicidade , Humanos , Morte Celular/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Inflamassomos/metabolismo
13.
J Agric Food Chem ; 72(22): 12798-12809, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772384

RESUMO

Patulin (PAT) is a mycotoxin produced by Penicillium species, which often contaminates fruit and fruit-derived products, posing a threat to human health and food safety. This work aims to investigate the detoxification of PAT by Kluyveromyces marxianus YG-4 (K. marxianus YG-4) and its application in apple juice. The results revealed that the detoxification effect of K. marxianus YG-4 on PAT includes adsorption and degradation. The adsorption binding sites were polysaccharides, proteins, and some lipids on the cell wall of K. marxianus YG-4, and the adsorption groups were hydroxyl groups, amino acid side chains, carboxyl groups, and ester groups, which were combined through strong forces (ion interactions, electrostatic interactions, and hydrogen bonding) and not easily eluted. The degradation active substance was an intracellular enzyme, and the degradation product was desoxypatulinic acid (DPA) without cytotoxicity. K. marxianus YG-4 can also effectively adsorb and degrade PAT in apple juice. The contents of organic acids and polyphenols significantly increased after detoxification, significantly improving the quality of apple juice. The detoxification ability of K. marxianus YG-4 toward PAT would be a novel approach for the elimination of PAT contamination.


Assuntos
Sucos de Frutas e Vegetais , Kluyveromyces , Malus , Patulina , Kluyveromyces/metabolismo , Kluyveromyces/química , Patulina/metabolismo , Patulina/química , Malus/química , Malus/metabolismo , Sucos de Frutas e Vegetais/análise , Contaminação de Alimentos/análise , Adsorção
14.
Ecotoxicol Environ Saf ; 276: 116270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574645

RESUMO

Mycotoxin contamination has become a major food safety issue and greatly threatens human and animal health. Patulin (PAT), a common mycotoxin in the environment, is exposed through the food chain and damages the gastrointestinal tract. However, its mechanism of enterotoxicity at the genetic and metabolic levels remains to be elucidated. Herein, the intestinal histopathological and biochemical indices, transcriptome, and metabolome of C57BL/6 J mice exposed to different doses of PAT were successively assessed, as well as the toxicokinetics of PAT in vivo. The results showed that acute PAT exposure induced damaged villi and crypts, reduced mucus secretion, decreased SOD and GSH-Px activities, and enhanced MPO activity in the small intestine and mild damage in the colon. At the transcriptional level, the genes affected by PAT were dose-dependently altered in the small intestine and fluctuated in the colon. PAT primarily affected inflammation-related signaling pathways and oxidative phosphorylation in the small intestine and immune responses in the colon. At the metabolic level, amino acids decreased, and extensive lipids accumulated in the small intestine and colon. Seven metabolic pathways were jointly affected by PAT in two intestinal sites. Moreover, changes in PAT products and GST activity were detected in the small intestinal tissue but not in the colonic tissue, explaining the different damage degrees of the two sites. Finally, the integrated results collectively explained the toxicological mechanism of PAT, which damaged the small intestine directly and the colon indirectly. These results paint a clear panorama of intestinal changes after PAT exposure and provide valuable information on the exposure risk and toxic mechanism of PAT.


Assuntos
Metabolômica , Camundongos Endogâmicos C57BL , Patulina , Transcriptoma , Animais , Patulina/toxicidade , Camundongos , Transcriptoma/efeitos dos fármacos , Masculino , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia
15.
Toxins (Basel) ; 16(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668602

RESUMO

Patulin contamination has become a bottleneck problem in the safe production of fruit products, although biodegradation technology shows potential application value in patulin control. In the present study, the patulin biodegradation mechanism in a probiotic yeast, Pichia guilliermondii S15-8, was investigated. Firstly, the short-chain dehydrogenase PgSDR encoded by gene A5D9S1 was identified as a patulin degradation enzyme, through RNA sequencing and verification by qRT-PCR. Subsequently, the exogenous expression system of the degradation protein PgSDR-A5D9S1 in E. coli was successfully constructed and demonstrated a more significant patulin tolerance and degradation ability. Furthermore, the structure of PgSDR-A5D9S1 and its active binding sites with patulin were predicted via molecular docking analysis. In addition, the heat-excited protein HSF1 was predicted as the transcription factor regulating the patulin degradation protein PgSDR-A5D9S1, which may provide clues for the further analysis of the molecular regulation mechanism of patulin degradation. This study provides a theoretical basis and technical support for the industrial application of biodegradable functional strains.


Assuntos
Biodegradação Ambiental , Patulina , Pichia , Patulina/metabolismo , Pichia/metabolismo , Pichia/genética , Simulação de Acoplamento Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
16.
Food Chem ; 451: 139421, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663244

RESUMO

Patulin (PAT) is a hazardous mycotoxin frequently occurs in fruit industry. A reusable g-C3N4-SH@KG composite aerogel for PAT removal in a novel "dark adsorption-light regeneration" mode was prepared by thiol(-SH) functionalization and konjac glucomannan (KG) immobilization. The g-C3N4-SH@KG was characterized by SEM, FT-IR, XPS and UV-Vis DRS, and its PAT adsorption and photocatalytic regeneration behaviors and mechanisms were investigated. The g-C3N4-SH@KG exhibited good regeneration performance, maintaining 83% of PAT initial adsorption capacity (0.92 mg/g) after 5 "adsorption-regeneration" cycles. The adsorption process was endothermic and spontaneous. •OH and h+ generated by photocatalysis were the main substances that degraded PAT into two products and regenerated -SH. The g-C3N4-SH@KG could effectively remove PAT without negative impact on juice quality. The study provided a new strategy for the regeneration of thiol-functionalized PAT adsorbents, and a new idea for the application of non-selective photocatalysis in the control of food contaminations.


Assuntos
Sucos de Frutas e Vegetais , Malus , Mananas , Patulina , Malus/química , Mananas/química , Sucos de Frutas e Vegetais/análise , Patulina/química , Patulina/isolamento & purificação , Adsorção , Contaminação de Alimentos/análise , Catálise , Géis/química
17.
Food Chem Toxicol ; 186: 114556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432441

RESUMO

Mycotoxins can be found in food and feed storage as well as in several kinds of foodstuff and are capable of harming mammals and some of them even in small doses. This study investigated on the undifferentiated neuronal cell line SH-SY5Y the effects of two mycotoxins: patulin (PAT) and citrinin (CTN), which are predominantly produced by fungi species Penicillium and Aspergillus. Here, the individual and combined cytotoxicity of PAT and CTN was investigated using the cytotoxic assay MTT. Our findings indicate that after 24 h of treatment, the IC50 value for PAT is 2.01 µM, which decreases at 1.5 µM after 48 h. In contrast, CTN did not attain an IC50 value at the tested concentration. Therefore, we found PAT to be the more toxic compared to CTN. However, the combined treatment suggests an additive toxic effect. With 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) DCFH-DA assay, ROS generation was demonstrated after CTN treatment, but PAT showed only small changes. The mixture presented a very constant behavior over time. Finally, the median-effect/combination index (CI-) isobologram equation demonstrated an additive effect after 24 h, but an antagonistic effect after 48 h for the interaction of the two mycotoxins.


Assuntos
Citrinina , Fluoresceínas , Neuroblastoma , Patulina , Animais , Humanos , Linhagem Celular , Citrinina/toxicidade , Mamíferos , Patulina/toxicidade , Patulina/metabolismo , Micotoxinas/química , Micotoxinas/metabolismo
18.
Anal Chim Acta ; 1299: 342442, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499422

RESUMO

Self-powered electrochemical sensors based on photofuel cells have attracted considerable research interest because their unique advantage of not requiring an external electric source, but their application in portable and multiplexed targets assay is limited by the inherent mechanism. In this work, a portable self-powered sensor constructed with multichannel photofuel cells was developed for the ratiometric detection of mycotoxins, namely ochratoxin A (OTA) and patulin (PAT). The spatially resolved CdS/Bi2S3-modified photoanodes and a shared Prussian Blue cathode were integrated on an etched indium-tin oxide slide to fabricate the multichannel photofuel cell. The aptamers of OTA and PAT were covalently bonded to individual photoanode regions to build sensitive interfaces, and the specific recognition of analytes impaired the output performance of constructed PFC. Accordingly, ratiometric sensing of OTA and PAT was achieved by utilizing the output performance of a control PFC as a reference signal. This approach effectively eliminates the impact of light intensity on the accuracy of the detection. Under the optimal conditions, the proposed sensing chip exhibited linear ranges of 2.0-1000 nM and 5.0-500 nM for OTA and PAT, respectively. The detection limits (3 S/N) were determined to be 0.25 nM for OTA and 0.27 nM for PAT. The developed ratiometric sensing method demonstrated good selectivity and stability in the simultaneous detection of OTA and PAT. It was successfully utilized for the analysis of OTA and PAT real samples. This work provides a new perspective for construction of portable and ratiometric self-powered sensing platform.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Micotoxinas , Ocratoxinas , Patulina , Micotoxinas/análise , Ocratoxinas/análise , Patulina/análise , Luz , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
19.
J Agric Food Chem ; 72(11): 5993-6005, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450613

RESUMO

Pseudocapacitive nanomaterials have recently gained significant attention in electrochemical biosensors due to their rapid response, long cycle life, high surface area, biomolecule compatibility, and superior energy storage capabilities. In our study, we introduce the potential of using Ni-NiO nanofilm's pseudocapacitive traits as transducer signals in electrochemical aptasensors. Capitalizing on the innate affinity between histidine and nickel, we immobilized histidine-tagged streptavidin (HTS) onto Ni-NiO-modified electrodes. Additionally, we employed a biolayer interferometry-based SELEX to generate biotinylated patulin aptamers. These aptamers, when placed on Ni-NiO-HTS surfaces, make a suitable biosensing platform for rapid patulin mycotoxin detection in apple juice using electrochemical amperometry in microseconds. The novelty lies in optimizing pseudocapacitive nanomaterials structurally and electrochemically, offering the potential for redox mediator-free electrochemical aptasensors. Proof-of-concept is conducted by applying this surface for the ultrasensitive detection of a model analyte, patulin mycotoxin. The aptamer-functionalized bioelectrode showed an excellent linear response (10-106 fg/mL) and an impressive detection limit (1.65 fg/mL, +3σ of blank signal). Furthermore, reproducibility tests yielded a low relative standard deviation of 0.51%, indicating the good performance of the developed biosensor. Real sample analysis in freshly prepared apple juice revealed no significant difference (P < 0.05) in current intensity between spiked and real samples. The sensor interface maintained excellent stability for up to 2 weeks (signal retention 96.45%). The excellent selectivity, stability, and sensitivity of the electrochemical aptasensor exemplify the potential for using nickel-based pseudocapacitive nanomaterials for a wide variety of electrochemical sensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Malus , Nanoestruturas , Patulina , Malus/química , Níquel/química , Histidina , Reprodutibilidade dos Testes , Nanoestruturas/química , Oxirredução , Técnicas Eletroquímicas , Limite de Detecção , Aptâmeros de Nucleotídeos/química
20.
Arch Microbiol ; 206(4): 166, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485821

RESUMO

Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.


Assuntos
Patulina , Penicillium , Patulina/metabolismo , Patulina/farmacologia , Aspergillus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Penicillium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...