Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 14(1): 2004071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35104196

RESUMO

Pediocin PA-1 is a class IIa bacteriocin that is particularly effective against the foodborne pathogen Listeria monocytogenes. The loss of activity of PA-1 pediocin due to methionine oxidation is one of the challenges that limit the wider application of the bacteriocin. In this study, we heterologously expressed an oxidation resistant form of pediocin PA-1, i.e., pediocin M31L, and compared its activity to that of native pediocin PA-1 and to penocin A, a pediocin-like bacteriocin that displays a narrower antimicrobial spectrum. Minimal inhibitory concentration assays revealed that pediocin M31L was as effective as PA-1 and more effective than synthetic penocin A against Listeria with negligible activity against a range of obligate anaerobic commensal gut bacterial species. The anti-Listeria activity of these pediocins was also assessed in a simulated human distal colon model assay using the L. monocytogenes, spiked at 6.5 ± 0.13 Log CFU/mL, as a bioindicator. At 24 h, pediocin M31L and penocin A (2.6 µM) reduced Listeria counts to 3.5 ± 0.4 and 3.64 ± 0.62 Log CFU/mL, respectively, whereas Listeria counts were considerably higher, i.e. 7.75 ± 0.43 Log CFU/mL, in the non-bacteriocin-containing control. Ultimately, it was established that synthetic penocin A and the stable pediocin M31L derivative, heterologously produced, display effective anti-Listeria activity in a human gut environment.


Assuntos
Antibacterianos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Pediocinas/farmacologia , Antibacterianos/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Listeria monocytogenes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxirredução , Pediocinas/química
2.
Appl Environ Microbiol ; 88(3): e0199221, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34851716

RESUMO

Bacteriocins are ribosomally synthesized bacterial antimicrobial peptides that have a narrow spectrum of antibacterial activity against species closely related to the producers. Pediocin-like (or class IIa) bacteriocins (PLBs) exhibit antibacterial activity against several Gram-positive bacterial strains by forming pores in the cytoplasmic membrane of target cells with a specific receptor, the mannose phosphotransferase system (man-PTS). In this study, we report the cryo-electron microscopy structures of man-PTS from Listeria monocytogenes alone and its complex with pediocin PA-1, the first and most extensively studied representative PLB, at resolutions of 3.12 and 2.45 Å, respectively. The structures revealed that the binding of pediocin PA-1 opens the Core domain of man-PTS away from its Vmotif domain, creating a pore through the cytoplasmic membranes of target cells. During this process, the N-terminal ß-sheet region of pediocin PA-1 can specifically attach to the extracellular surface of the man-PTS Core domain, whereas the C-terminal half penetrates the membrane and cracks the man-PTS like a wedge. Thus, our findings shed light on a design of novel PLBs that can kill the target pathogenic bacteria. IMPORTANCE Listeria monocytogenes is a ubiquitous microorganism responsible for listeriosis, a rare but severe disease in humans, who become infected by ingesting contaminated food products (i.e., dairy, meat, fish, and vegetables): the disease has a fatality rate of 33%. Pediocin PA-1 is an important commercial additive used in food production to inhibit Listeria species. The mannose phosphotransferase system (man-PTS) is responsible for the sensitivity of Listeria monocytogenes to pediocin PA-1. In this study, we report the cryo-EM structures of man-PTS from Listeria monocytogenes alone and its complex with pediocin PA-1 at resolutions of 3.12 and 2.45 Å, respectively. Our results facilitate the understanding of the mode of action of class IIa bacteriocins as an alternative to antibiotics.


Assuntos
Bacteriocinas , Listeria monocytogenes , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Bacteriocinas/metabolismo , Microscopia Crioeletrônica , Humanos , Listeria monocytogenes/metabolismo , Manose/metabolismo , Pediocinas/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo
3.
PLoS One ; 16(9): e0251951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473709

RESUMO

The purpose of this study was to explore potential mechanisms of cytotoxicity towards HeLa and HT29 cells displayed by Pediocin PA-1. We did this by carrying out sequence alignments and 3D modelling of related bacteriocins which have been studied in greater detail: Microcin E492, Enterocin AB heterodimer and Divercin V41. Microcin E492 interacts with Toll-Like Receptor 4 in order to activate an apoptosis reaction, sequence alignment showed a high homology between Pediocin PA-1 and Microcin E492 whereas 3D modelling showed Pediocin PA-1 interacting with TLR-4 in a way reminiscent of Microcin E492. Furthermore, Pediocin PA-1 had the highest homology with the Enterocin heterodimer, particularly chain A; Enterocin has also shown to cause an apoptotic response in cancer cells. Based on this we are led to strongly believe Pediocin PA-1 interacts with TLRs in order to cause cell death. If this is the case, it would explain the difference in cytotoxicity towards HeLa over HT29 cells, due to difference in expression of particular TLRs. Overall, we believe Pediocin PA-1 exhibits a dual effect which is dose dependant, like that of Microcin. Unfortunately, due to the COVID-19 pandemic, we were unable to carry out experiments in the lab, and the unavailability of important data meant we were unable to provide and validate out solid conclusions, but rather suggestions. However, bioinformatic analysis is still able to provide information regarding structure and sequence analysis to draw plausible and evidence based conclusions. We have been able to highlight interesting findings and how these could be translated into future research and therapeutics in order to improve the quality of treatment and life of cancer patients.


Assuntos
Bacteriocinas/química , Bacteriocinas/farmacologia , Pediocinas/química , Pediocinas/farmacologia , Conformação Proteica , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Bacteriocinas/genética , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Modelos Moleculares , Pandemias , Pediocinas/genética , SARS-CoV-2/fisiologia , Homologia de Sequência de Aminoácidos , Receptor 4 Toll-Like/metabolismo
4.
Protein Pept Lett ; 28(10): 1115-1126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34139970

RESUMO

AIMS: To encapsulate a purified bacteriocin into a nanovesicles and check its antibacterial effect. BACKGROUND: Although the use of nano-encapsulated bacteriocins in food matrices is poorly reported, encapsulated nisin can reduce L. monocytogenes counts in whole and skimmed milk and in soft cheese. OBJECTIVE: The present study deals with the extraction and purification of a bacteriocin from an isolated strain Pediococcus pentosaceus KC692718. A comparative study of the effect of free pediocin and liposome encapsulated pediocin against Listeria sp. was performed. METHODS: The purification of the extracted cell free supernatant was subjected to ammonium sulphate precipitation, cation exchange chromatography followed by gel permeation chromatography. The bacteriocin activity and protein concentration were determined using Lowry's method. The characterization of the pure pediocin was done. Liposome like nanovesicle was constructed and the stability of the liposome encapsulated pediocin was checked. Finally, the antibacterial effect was comparatively studied of the free pediocin, liposome, and liposome encapsulated pediocin simultaneously. RESULTS: The pediocin of 3.6kDa was purified with a specific activity of 898.8. AU/mg. It remained stable from pH 2.0-8.0 was found to be moderately stable above 80°C and remain stable for one month when stored at -20°C. The encapsulated pediocin showed stability since it retained 50% of its initial activity. The encapsulated pediocin showed 89% of encapsulation efficiency. CONCLUSION: The encapsulated pediocin not only improved pediocin stability but also enhanced the controlled release of the antimicrobial substances, enough for inhibiting the foodborne pathogen L. monocytogenes.


Assuntos
Antibacterianos/química , Lipossomos/química , Pediocinas/química , Pediococcus pentosaceus/química , Antibacterianos/farmacologia , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Listeria/química , Testes de Sensibilidade Microbiana , Nisina/química , Nisina/farmacologia , Pediocinas/farmacologia , Temperatura
5.
Biochim Biophys Acta Biomembr ; 1862(10): 183346, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428447

RESUMO

Pediocin PA-1 (PA-1) is a membrane-targeting bacteriocin from lactic acid bacteria, which shows antimicrobial activity against a wide range of Gram-positive pathogens. However, the outer membrane of Gram-negative bacteria does not allow pediocin access to its target. In this work, the synergistic inhibitory mechanism of PA-1 with L-lactic acid against Gram-negative aquaculture and food pathogen Aeromonas hydrophila (A. hydrophila) was analyzed. The combined treatment of 3.5 mmol/L L-lactic acid and 50 µmol/L (or 30 µmol/L) PA-1 had strong bacteriostatic and bactericidal activity against A. hydrophila. Full wavelength scanning and ELISA assay revealed the release of lipopolysaccharide (LPS) from the outer membrane of A. hydrophila caused by L-lactic acid treatment. Laser confocal microscopic imaging of A. hydrophila with FITC-labeled pediocin PA-1 proved the accumulation of PA-1 on lactic acid-treated bacterial cells. PA-1 then caused a rapid dissipation of membrane potential (Δψ) and a proton gradient difference (ΔpH) in lactic acid-treated A. hydrophila. Pediocin PA-1 also caused an increase in the extracellular ATP level. Morphology revealed by SEM and TEM showed that combined treating with lactic acid and PA-1 induced vesicles on the cell surface, the outer and inner membrane disruption, and even cytoplasm leakage and cell lysis. The results proved a potential mechanism of the synergistic inhibition of lactic acid and PA-1 against A. hydrophila, by which L-lactic acid released the outer membrane LPS, making it possible for PA-1 to contact the plasma membrane of A. hydrophila, resulting in the dissipation of proton-motive force in the inner membrane and cell death.


Assuntos
Aeromonas hydrophila/efeitos dos fármacos , Antibacterianos/farmacologia , Ácido Láctico/farmacologia , Pediocinas/farmacologia , Aeromonas hydrophila/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Sinergismo Farmacológico , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Pediocinas/química
6.
Res Microbiol ; 171(3-4): 115-121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119904

RESUMO

Listeria ivanovii is one of the two pathogenic species within the genus Listeria, the other being Listeria monocytogenes. In this study, we generated a stable pediocin resistant mutant Liv-r1 of a L. ivanovii strain, compared phenotypic differences between the wild-type and the mutant, localised the pediocin-induced mutations in the chromosome, and analysed the mechanisms behind the bacteriocin resistance. In addition to pediocin resistance, Liv-r1 was also less sensitive to nisin. The growth of Liv-r1 was significantly reduced with glucose and mannose, but less with cellobiose. The cells of Liv-r1 adsorbed less pediocin than the wild-type cells. Consequently, with less pediocin on the cell surface, the mutant was also less leaky, as shown as the release of intracellular lactate dehydrogenase to the supernatant. The surface of the mutant cells was more hydrophobic than that of the wild-type. Whole genome sequencing revealed numerous changes in the Liv-r1 chromosome. The mutations were found e.g., in genes encoding sigma-54-dependent transcription regulator and internalin B, as well as in genes involved in metabolism of carbohydrates such as glucose and cellobiose. Genetic differences observed in the mutant may be responsible for resistance to pediocin but no direct evidence is provided.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana , Listeria/efeitos dos fármacos , Listeria/genética , Listeriose/microbiologia , Pediocinas/genética , Pediocinas/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Metabolismo dos Carboidratos , Genoma Bacteriano , Genômica/métodos , Listeria/metabolismo , Listeriose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Pediocinas/química , Sequenciamento Completo do Genoma
7.
Int J Biol Macromol ; 143: 555-572, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785295

RESUMO

Human-milk-based probiotics play a major role in the early colonization and protection of infants against gastrointestinal infection. We investigated potential probiotics in human milk. Among 41 Lactic acid bacteria (LAB) strains, four strains showed high antimicrobial activity against Escherichia coli 0157:H7, Listeria monocytogenes ATCC 15313, Bacillus cereus ATCC 14576, Staphylococcus aureus ATCC 19095, and Helicobacter pylori. The selected LAB strains were tested in simulated gastrointestinal conditions for their survival. Four LAB strains showed high resistance to pepsin (82%-99%), bile with pancreatine stability (96%-100%), and low pH (80%-94%). They showed moderate cell surface hydrophobicity (22%-46%), auto-aggregation abilities (12%-34%), and 70%-80% co-aggregation abilities against L. monocytogenes ATCC 15313, S. aureus ATCC 19095, B. cereus ATCC 14576, and E. coli 0157:H7. All four selected isolates were resistant to gentamicin, imipenem, novobiocin, tetracycline, clindamycin, meropenem, ampicillin, and penicillin. The results show that Pediococcus acidilatici is likely an efficient probiotic strain to produce < 3 Kda pediocin-based antimicrobial peptides, confirmed by applying amino acid sequences), using liquid chromatography mass spectrometry and HPLC with the corresponding sequences from class 2 bacteriocin, and based on the molecular docking, the mode of action of pediocin was determined on LipoX complex, further the 13C nuclear magnetic resonance structural analysis, which confirmed the antimicrobial peptide as pediocin.


Assuntos
Antibacterianos , Infecções Bacterianas , Caenorhabditis elegans/microbiologia , Pediocinas , Pediococcus acidilactici/química , Probióticos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Pediocinas/química , Pediocinas/farmacologia , Probióticos/química , Probióticos/farmacologia
8.
Biochemistry (Mosc) ; 84(5): 464-478, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31234762

RESUMO

Bacteriocins are bacterial antimicrobial peptides that, unlike classical peptide antibiotics, are products of ribosomal synthesis and usually have a narrow spectrum of antibacterial activity against species closely related to the producers. Pediocin-like bacteriocins (PLBs) belong to the class IIa of the bacteriocins of Gram-positive bacteria. PLBs possess high activity against pathogenic bacteria from Listeria and Enterococcus genera. Molecular target for PLBs is a membrane protein complex - bacterial mannose-phosphotransferase. PLBs can be synthesized by components of symbiotic microflora and participate in the maintenance of homeostasis in various compartments of the digestive tract and on the surface of epithelial tissues contacting the external environment. PLBs could give a rise to a new group of antibiotics of narrow spectrum of activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias Gram-Positivas/metabolismo , Pediocinas/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Enterococcus/efeitos dos fármacos , Bactérias Gram-Positivas/imunologia , Listeria/efeitos dos fármacos , Pediocinas/química , Pediocinas/farmacologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência
9.
Folia Microbiol (Praha) ; 64(6): 765-778, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30796707

RESUMO

Pediococcus pentosaceus GS4 (MTCC 12683), a probiotic lactic acid bacterium (LAB), was found to produce bacteriocin in spent culture. Antibacterial and antagonistic potential of this bacteriocin against reference strains of Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 25619), and Listeria monocytogenes (ATCC 15313) was proven by double-layer and well diffusion methods wherein nisin and ampicillin were used as positive controls. Bacteriocin in supernatant was purified and analyzed by SDS-PAGE, RP-HPLC, and circular dichroism (CD). The physico-chemical properties of purified bacteriocin were characterized being treated at different temperatures (30 to 110 °C), pH (3.0 to 12.0), with different enzymes (α-amylase, pepsin, and lysozyme), and organic solvents (hexane, ethanol, methanol, and acetone) respectively. The molar mass of bacteriocin (named pediocin GS4) was determined as 9.57 kDa. The single peak appears at the retention time of 2.403 with area amounting to 25.02% with nisin as positive control in RP-HPLC. CD analysis reveals that the compound appears to have the helix ratio of 40.2% with no beta sheet. The antibacterial activity of pediocin GS4 was optimum at 50 °C and at pH 5.0 and 7.0. The pediocin GS4 was not denatured by the treatment of amylase and lysozyme but was not active in the presence of organic solvents. This novel bacteriocin thus m ay be useful in food and health care industry.


Assuntos
Antibacterianos/química , Antibacterianos/isolamento & purificação , Pediocinas/química , Pediocinas/isolamento & purificação , Pediococcus pentosaceus/química , Probióticos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Peso Molecular , Nisina/química , Pediocinas/farmacologia , Pediococcus pentosaceus/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Solventes , Temperatura
10.
Sci Rep ; 8(1): 9029, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899567

RESUMO

The antimicrobial peptide pediocin PA-1 is a class IIa bacteriocin that inhibits several clinically relevant pathogens including Listeria spp. Here we report the synthesis and characterization of whole pediocin PA-1 and novel analogs thereof using a combination of solid- and solution-phase strategies to overcome difficulties due to instability and undesired reactions. Pediocin PA-1 thus synthesized was a potent inhibitor of Listeria monocytogenes (MIC = 6.8 nM), similar to the bacteriocin produced naturally by Pediococcus acidilactici. Of particular interest is that linear analogs lacking both of the disulfide bridges characterizing pediocin PA-1 were as potent. One linear analog was also a strong inhibitor of Clostridium perfringens, another important food-borne pathogen. These results are discussed in light of conformational information derived from circular dichroism, solution NMR spectroscopy and structure-activity relationship studies.


Assuntos
Anti-Infecciosos/farmacologia , Bacteriocinas/farmacologia , Pediocinas/farmacologia , Relação Estrutura-Atividade , Sequência de Aminoácidos , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Bacteriocinas/química , Clostridium perfringens/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana/métodos , Modelos Químicos , Modelos Moleculares , Pediocinas/síntese química , Pediocinas/química , Conformação Proteica
11.
Curr Genet ; 64(2): 345-351, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28983718

RESUMO

This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.


Assuntos
Antibacterianos/química , Bacteriocinas/química , Imunidade/genética , Pediocinas/química , Antibacterianos/imunologia , Antibacterianos/uso terapêutico , Bacteriocinas/imunologia , Conservação de Alimentos , Humanos , Imunidade/efeitos dos fármacos , Modelos Teóricos , Pediocinas/imunologia , Peptídeos/química , Peptídeos/imunologia
12.
Sci Rep ; 7(1): 3069, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596555

RESUMO

The bacteriocins bactofencin A (class IId) and pediocin PA-1 (class IIa) are encoded by operons with a similarly clustered gene organization including a structural peptide, an immunity protein, an ABC transporter and accessory bacteriocin transporter protein. Cloning of these operons in E. coli TunerTM (DE3) on a pETcoco-2 derived vector resulted in successful secretion of both bacteriocins. A corresponding approach, involving the construction of vectors containing different combinations of these genes, revealed that the structural and the transporter genes alone are sufficient to permit heterologous production and secretion in this host. Even though the accessory protein, usually associated with optimal disulfide bond formation, was not required for bacteriocin synthesis, its presence did result in greater pediocin PA-1 production. The simplicity of the system and the fact that the associated bacteriocins could be recovered from the extracellular medium provides an opportunity to facilitate protein engineering and the overproduction of biologically-active bacteriocins at industrial scale. Additionally, this system could enable the characterization of new bacteriocin operons where genetic tools are not available for the native producers.


Assuntos
Bacteriocinas/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Pediocinas/genética , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Clonagem Molecular , Genes Reporter , Família Multigênica , Pediocinas/química , Pediocinas/isolamento & purificação , Pediocinas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Colloids Surf B Biointerfaces ; 151: 255-263, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28027492

RESUMO

Class IIa bacteriocin pediocin PA-1 has broad-spectrum activity and is a well-characterized candidate food biopreservative. Here, a simple approach is designed to extend the application of pediocin PA-1 in improving the antibacterial activity of electrospun poly(caprolactone) (PCL) grafts through combining PA-1 with HGFI, which is a self-assembled protein with characteristics allowing the modulation of surface properties of other materials originated from Grifola frondosa. Saccharomyces cerevisiae was used as the host for expression of fusion protein PA-1-linker-HGFI (pH) and his-tag purification was used to purify recombinant protein pH. An antibacterial activity assay showed the fusion protein pH retained the biological property of native PA-1. Water contact angle, X-ray photoelectron spectroscopy, immunofluorescence assay and atomic force microscopy indicated the surface properties of HGFI were greatly preserved by the fusion protein pH. Finally, antibacterial activity of pH-modified PCL substrate measurements implied the fusion protein significantly improved the bacterial-resistance of the PCL film through dressing the PCL fibers with the recombinant pH protein. This work presents a new perspective on the application of hydrophobin and pediocin PA-1 in antibacterial medical devices.


Assuntos
Antibacterianos/química , Caproatos/química , Lactonas/química , Pediocinas/química , Animais , Anticorpos/química , Bacteriocinas/química , Biofilmes , Equipamentos e Provisões , Conservantes de Alimentos , Grifola/química , Concentração de Íons de Hidrogênio , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Espectroscopia Fotoeletrônica , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae , Propriedades de Superfície , Molhabilidade
14.
PLoS One ; 11(10): e0164973, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27776158

RESUMO

Upon exposure to exogenous pediocin-like bacteriocins, immunity proteins specifically bind to the target receptor of the mannose phosphotransferase system components (man-PTS IIC and IID), therefore preventing bacterial cell death. However, the specific recognition of immunity proteins and its associated target receptors remains poorly understood. In this study, we constructed hybrid receptors to identify the domains of IIC and/or IID recognized by the immunity protein PedB, which confers immunity to pediocin PA-1. Using Lactobacillus plantarum man-PTS EII mutant W903, the IICD components of four pediocin PA-1-sensitive strains (L. plantarum WQ0815, Leuconostoc mesenteroides 05-43, Lactobacillus salivarius REN and Lactobacillus acidophilus 05-172) were respectively co-expressed with the immunity protein PedB. Well-diffusions assays showed that only the complex formed by LpIICD from L. plantarum WQ0815 with pediocin PA-1 could be recognized by PedB. In addition, a two-step PCR approach was used to construct hybrid receptors by combining LpIIC or LpIID recognized by PedB with the other three heterologous IID or IIC compounds unrecognized by PedB, respectively. The results showed that all six hybrid receptors were recognized by pediocin PA-1. However, when IIC or IID of L. plantarum WQ0815 was replaced with any corresponding IIC or IID component from L. mesenteroides 05-43, L. salivarius REN and L. acidophilus 05-172, all the hybrid receptors could not be recognized by PedB. Taken altogether, we concluded that both IIC and IID components of the mannose phosphotransferase system play an important role in the specific recognition between the bacteriocin-receptor complex and the immunity protein PedB.


Assuntos
Bactérias/imunologia , Pediocinas/genética , Fosfotransferases/genética , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunidade , Manose/metabolismo , Complexos Multiproteicos , Mutação , Pediocinas/química , Pediocinas/metabolismo , Fosfotransferases/química , Fosfotransferases/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...