Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.735
Filtrar
1.
Sci Rep ; 14(1): 16321, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009698

RESUMO

Intrinsic and extrinsic factors, including lifestyle and sun exposure, can contribute to cell senescence, which impairs skin homeostasis, that may in turn lead to skin aging. Senescent cells have a specific secretome, called the senescence-associated secretory phenotype (SASP) that includes MMPs, CXCLs and S100A8/9. Reducing the SASP with senotherapeutics is a promising strategy to reduce skin aging. Here we evaluated the effect of a formula containing niacinamide and hyaluronic acid, which are known to limit senescence and skin aging. We conducted three different studies. (1) Ex vivo explants treated with the formula had more collagen and glycosaminoglycan. (2) In a clinical trial with forty-four women, two months of treatment improved fine lines, wrinkles, luminosity, smoothness, homogeneity, and plumpness. (3) In a third study on thirty women, we treated one arm for two months and took skin biopsies to study gene expression. 101 mRNAs and 13 miRNAs were differentially expressed. We observed a likely senomorphic effect, as there was a decrease in many SASP genes including MMP12 and CXCL9 and a significant downregulation of autocrine signaling genes: S100A8 and S100A9. These pharmaco-clinical results are the first to demonstrate the senomorphic properties of an effective anti-aging formula in skin.


Assuntos
Ácido Hialurônico , Niacinamida , Envelhecimento da Pele , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Niacinamida/farmacologia , Adulto , Fenótipo Secretor Associado à Senescência , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Senescência Celular/efeitos dos fármacos , Idoso
2.
Postepy Biochem ; 69(4): 283-290, 2024 01 30.
Artigo em Polonês | MEDLINE | ID: mdl-39012697

RESUMO

The skin, as the largest organ of the body, is constantly exposed to environmental threats, including: injuries and oxidative stress. The thioredoxin system is one of the skin antioxidant systems , which protects cells against oxidative stress, regulates cell migration, proliferation and apoptosis, and also participates in signal transmission by regulating the activity of transcription factors. Recent studies have shown a correlation between the epidermal transcription factor Foxn1 and the thioredoxin system in mouse skin. Mass spectrometry analysis, followed by in vitro and in vivo experiments, showed that Foxn1 in keratinocytes regulates elements of the electron transport chain as well as the thioredoxin system (Txn2, Txnrd3), especially under hypoxic condition. High levels of Txnrd3 mRNA were detected for the first time in the injured skin of Foxn1+/+ mice compared to Foxn1-/- mice, and also showed that Foxn1 in keratinocytes upregulates Txnrd3 protein expression. Moreover, in silico analyzes indicated possible binding sites of the transcription factor Foxn1 in the Txn system. In conclusion, the data presented in this review identify Foxn1 as a novel component of the skin antioxidant system.


Assuntos
Antioxidantes , Fatores de Transcrição Forkhead , Pele , Animais , Fatores de Transcrição Forkhead/metabolismo , Antioxidantes/metabolismo , Pele/metabolismo , Humanos , Camundongos , Queratinócitos/metabolismo , Estresse Oxidativo/fisiologia , Tiorredoxinas/metabolismo
3.
J Am Chem Soc ; 146(28): 18927-18937, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968420

RESUMO

Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter involved in many physiological processes that are integral to proper cellular functioning. Due to its profound anti-inflammatory and antioxidant properties, H2S plays important roles in preventing inflammatory skin disorders and improving wound healing. Transdermal H2S delivery is a therapeutically viable option for the management of such disorders. However, current small-molecule H2S donors are not optimally suited for transdermal delivery and typically generate electrophilic byproducts that may lead to undesired toxicity. Here, we demonstrate that H2S release from metal-organic frameworks (MOFs) bearing coordinatively unsaturated metal centers is a promising alternative for controlled transdermal delivery of H2S. Gas sorption measurements and powder X-ray diffraction (PXRD) studies of 11 MOFs support that the Mg-based framework Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) is uniquely well-suited for transdermal H2S delivery due to its strong yet reversible binding of H2S, high capacity (14.7 mmol/g at 1 bar and 25 °C), and lack of toxicity. In addition, Rietveld refinement of synchrotron PXRD data from H2S-dosed Mg2(dobdc) supports that the high H2S capacity of this framework arises due to the presence of three distinct binding sites. Last, we demonstrate that transdermal delivery of H2S from Mg2(dobdc) is sustained over a 24 h period through porcine skin. Not only is this significantly longer than sodium sulfide but this represents the first example of controlled transdermal delivery of pure H2S gas. Overall, H2S-loaded Mg2(dobdc) is an easily accessible, solid-state source of H2S, enabling safe storage and transdermal delivery of this therapeutically relevant gas.


Assuntos
Administração Cutânea , Sulfeto de Hidrogênio , Estruturas Metalorgânicas , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/administração & dosagem , Estruturas Metalorgânicas/química , Animais , Suínos , Pele/metabolismo
4.
Cell Death Dis ; 15(7): 491, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982043

RESUMO

IL-17+ γδ T cells (γδ T17) are kick-starters of inflammation due to their strict immunosurveillance of xenobiotics or cellular damages and rapid response to pro-inflammatory stimulators. IL-27 is a well-recognized pleiotropic immune regulator with potent inhibitory effects on type 17 immune responses. However, its actions on γδ T17 mediated inflammation and the underlying mechanisms are less well understood. Here we find that IL-27 inhibits the production of IL-17 from γδ T cells. Mechanistically, IL-27 promotes lipolysis while inhibits lipogenesis, thus reduces the accumulation of lipids and subsequent membrane phospholipids, which leads to mitochondrial deactivation and ensuing reduction of IL-17. More importantly, Il27ra deficient γδ T cells are more pathogenic in an imiquimod-induced murine psoriasis model, while intracutaneous injection of rmIL-27 ameliorates psoriatic inflammation. In summary, this work uncovered the metabolic basis for the immune regulatory activity of IL-27 in restraining γδ T17 mediated inflammation, which provides novel insights into IL-27/IL-27Ra signaling, γδ T17 biology and the pathogenesis of psoriasis.


Assuntos
Interleucina-17 , Metabolismo dos Lipídeos , Mitocôndrias , Psoríase , Animais , Mitocôndrias/metabolismo , Camundongos , Psoríase/patologia , Psoríase/imunologia , Psoríase/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/patologia , Inflamação/metabolismo , Pele/patologia , Pele/metabolismo , Pele/imunologia , Pele/efeitos dos fármacos , Modelos Animais de Doenças , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Humanos
5.
Skin Res Technol ; 30(7): e13848, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978226

RESUMO

BACKGROUND: Plant polysaccharides have various biological activities. However, few studies have been conducted on the skin barrier of Prinsepia utilis Royle polysaccharide extract (PURP). MATERIALS AND METHODS: The proportions of polysaccharides, monosaccharides and proteins were determined by extracting polysaccharides from fruit meal using water. The healing rate was measured by cell scratch assays. SDS-damaged reconstructed human epidermal models, an acetone-ether-induced mouse model and an IL-4-induced cellular inflammation model were used to detect the effects of polysaccharides on the phenotype, HA, TEWL, and TEER, with further characterizations performed using QRT-PCR, Western blotting, immunofluorescence (IF) assays. RESULTS: PURP contained 35.73% polysaccharides and 11.1% proteins. PURP promoted cell migration and increased skin thickness in a reconstructed human epidermis model. The TEWL significantly decreased, and the HA content significantly increased. PURP significantly increased the TEER and decreased the permeability of the SDS-damaged reconstructed human epidermis model. Claudin-3, Claudin-4, and Claudin-5 were significantly upregulated. IF and Western blot analysis revealed that the Claudin-4 level significantly increased after treatment with PURP. Claudin-1, Claudin-3, Claudin-4, and Claudin-5 gene expression and IF and immunohistochemical staining were significantly increased in mice treated with acetone-ether. PURP promoted the expression of Claudin-1, Claudin-3, Claudin-4, and Claudin-5 after treatment with 100 ng/mL IL-4. PURP also downregulated the expression of NO, IL6, TNFα and NFκB in Raw 264.7 cells and in a mouse model. CONCLUSION: We hypothesize that PURP may repair the skin barrier by promoting the expression of the claudin family and can assist in skin therapy.


Assuntos
Claudinas , Extratos Vegetais , Polissacarídeos , Animais , Camundongos , Polissacarídeos/farmacologia , Humanos , Extratos Vegetais/farmacologia , Claudinas/metabolismo , Claudinas/genética , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Modelos Animais de Doenças , Movimento Celular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
6.
Front Immunol ; 15: 1423776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979427

RESUMO

Introduction: The endocannabinoid system (ECS), named after the chemical compounds found in the cannabis plant, is a regulatory network of neurotransmitters, receptors, and enzymes that plays crucial roles in skin health and disease. Endogenous ligands of the ECS, called endocannabinoids, have proven to be important regulators of immune responses. One of the most prevalent endocannabinoids, arachidonoylethanolamide (also known as anandamide), is known for its anti-inflammatory effects. Langerhans cells (LCs) are the sole antigen-presenting cells present in the human epidermis. They serve as the first line of defense against pathogens and are essential for the skin's specific immune responses and play a critical role in maintaining tissue homeostasis; however, little is known about the effect of endocannabinoids on these cells. Our research aimed to provide the connection between monocyte-derived Langerhans cells (moLCs) and the ECS, shedding light on their collaborative roles in immune homeostasis and inflammation. Methods: Human monocytes were differentiated into moLCs using established protocols. Anandamide was applied during the differentiation process to test its effect on the viability, marker expression, and cytokine production of the cells, as well as in short term treatments for intracellular calcium measurement. TLR ligands applied after the differentiation protocol were used to activate moLCs. The impact of anandamide on the functionality of moLCs was further assessed using differential gene expression analysis of bulk RNA-Seq data, moLC-T cell cocultures, while ELISpot was employed to determine polarization of T cells activated in the aforementioned cocultures. Results: Anandamide did not significantly affect the viability of moLCs up to 10 µM. When applied during the differentiation process it had only a negligible effect on CD207 expression, the prototypic marker of LCs; however, there was an observed reduction in CD1a expression by moLCs. Anandamide had no significant effects on the maturation status of moLCs, nor did it affect the maturation induced by TLR3 and TLR7/8 agonists. MoLCs differentiated in the presence of anandamide did however show decreased production of CXCL8, IL-6, IL-10 and IL-12 cytokines induced by TLR3 and TLR7/8 activation. Anandamide-treated moLCs showed an increased capability to activate naïve T cells; however, not to the level seen with combined TLR agonism. RNA sequencing analysis of moLCs differentiated with anandamide showed modest changes compared to control cells but did reveal an inhibitory effect on oxidative phosphorylation specifically in activated moLCs. Anandamide also promoted the polarization of naïve T cells towards a Th1 phenotype. Discussion: Our results show that anandamide has nuanced effects on the differentiation, maturation, cytokine secretion, metabolism and function of activated moLCs. Among these changes the decrease in CD1a expression on moLCs holds promise to selectively dampen inflammation induced by CD1a restricted T cells, which have been implicated as drivers of inflammation in common inflammatory skin conditions such as psoriasis, atopic dermatitis and contact dermatitis.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Homeostase , Células de Langerhans , Monócitos , Alcamidas Poli-Insaturadas , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Humanos , Alcamidas Poli-Insaturadas/farmacologia , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Células de Langerhans/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Citocinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Pele/imunologia , Pele/metabolismo , Inflamação/imunologia , Inflamação/metabolismo
7.
AAPS PharmSciTech ; 25(6): 156, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981986

RESUMO

Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.


Assuntos
Antifúngicos , Candida albicans , Coloides , Itraconazol , Antifúngicos/farmacologia , Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Itraconazol/farmacologia , Itraconazol/administração & dosagem , Itraconazol/química , Humanos , Animais , Trichophyton/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Química Farmacêutica/métodos , Tamanho da Partícula , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/microbiologia , Absorção Cutânea/efeitos dos fármacos , Linhagem Celular , Células HaCaT , Unhas/efeitos dos fármacos , Unhas/microbiologia , Unhas/metabolismo , Arthrodermataceae
8.
Exp Dermatol ; 33(7): e15129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984465

RESUMO

Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful nodules, abscesses and purulent secretions in intertriginous regions. Intense pruritus frequently accompanies HS lesions, adding further discomfort for patients. While Th17 pathway activation is implicated in HS pathogenesis, disease mechanisms are still not fully understood, and therapeutics are lacking. Previous reports raise a potential role for eosinophils in HS, showing a strong association of eosinophil levels with disease severity. To investigate eosinophils in HS, we recruited patients and matched healthy controls and then performed flow-cytometry studies, eosinophil stimulation assays, and lesional skin staining for eosinophils. We found that HS patients reported similar levels of pain and itch. Compared to matched controls, HS blood exhibited decreased mature eosinophils and increased numbers of immature eosinophils, coupled with a significant increase in dermal eosinophilic infiltrates. Additionally, IL-17RA+ eosinophils were highly and significantly correlated with multiple HS-related clinical scores. In both stimulated and unstimulated conditions, HS eosinophils showed an inflammatory phenotype versus controls, including an increase in costimulatory T- and B-cell markers (e.g. CD5 and CD40) following all stimulations (TNFα/IL-17A/IL-17F). These findings highlight the significance of pruritus in HS and suggest a higher turnover of eosinophils in HS blood, potentially due to the consumption of eosinophils in skin lesions. Our data delineate the features and functions of eosinophils in HS and suggest that eosinophils participate in disease pathogenesis, advancing Th17-related inflammation. Further studies are needed to investigate eosinophils' response to current HS treatments and their potential as a therapeutic target in the disease.


Assuntos
Eosinófilos , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/imunologia , Hidradenite Supurativa/complicações , Eosinófilos/metabolismo , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Prurido/etiologia , Prurido/imunologia , Interleucina-17/metabolismo , Pele/patologia , Pele/metabolismo , Inflamação , Índice de Gravidade de Doença , Dor/etiologia
9.
Cells ; 13(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38994936

RESUMO

Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.


Assuntos
Carbazóis , Receptores de Hidrocarboneto Arílico , Pele , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/metabolismo , Carbazóis/farmacologia , Luz , Animais , Visão Ocular/fisiologia , Transdução de Sinais
10.
Cells ; 13(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994987

RESUMO

Skin provides a physical and immune barrier to protect the body from foreign substances, microbial invasion, and desiccation. Aging reduces the barrier function of skin and its rate of repair. Aged skin exhibits decreased mitochondrial function and prolonged low-level inflammation that can be seen in other organs with aging. Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), an important transcriptional coactivator, plays a central role in modulating mitochondrial function and antioxidant production. Mitochondrial function and inflammation have been linked to epidermal function, but the mechanisms are unclear. The aim of this review is to discuss the mechanisms by which PGC-1α might exert a positive effect on aged skin barrier function. Initially, we provide an overview of the function of skin under physiological and aging conditions, focusing on the epidermis. We then discuss mitochondrial function, oxidative stress, cellular senescence, and inflamm-aging, the chronic low-level inflammation observed in aging individuals. Finally, we discuss the effects of PGC-1α on mitochondrial function, as well as the regulation and role of PGC-1α in the aging epidermis.


Assuntos
Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Envelhecimento da Pele , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Envelhecimento da Pele/fisiologia , Mitocôndrias/metabolismo , Animais , Pele/metabolismo , Pele/patologia , Envelhecimento/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Inflamação/patologia , Senescência Celular
11.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000334

RESUMO

Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.


Assuntos
Estradiol , Fibroblastos , Fibrose , Interleucina-6 , Escleroderma Sistêmico , Humanos , Interleucina-6/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Feminino , Masculino , Pele/metabolismo , Pele/patologia , Células Cultivadas , Retroalimentação Fisiológica , Pessoa de Meia-Idade , Adulto , Receptores de Interleucina-6/metabolismo
12.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000341

RESUMO

Poly L-lactic acid (PLLA) fillers stimulate collagen synthesis by activating various immune cells and fibroblasts. Piezo1, an ion channel, responds to mechanical stimuli, including changes in extracellular matrix stiffness, by mediating Ca2+ influx. Given that elevated intracellular Ca2+ levels trigger signaling pathways associated with fibroblast proliferation, Piezo1 is a pivotal regulator of collagen synthesis and tissue fibrosis. The aim of the present study was to investigate the impact of PLLA on dermal collagen synthesis by activating Piezo1 in both an H2O2-induced cellular senescence model in vitro and aged animal skin in vivo. PLLA elevated intracellular Ca2+ levels in senescent fibroblasts, which was attenuated by the Piezo1 inhibitor GsMTx4. Furthermore, PLLA treatment increased the expression of phosphorylated ERK1/2 to total ERK1/2 (pERK1/2/ERK1/2) and phosphorylated AKT to total AKT (pAKT/AKT), indicating enhanced pathway activation. This was accompanied by upregulation of cell cycle-regulating proteins (CDK4 and cyclin D1), promoting the proliferation of senescent fibroblasts. Additionally, PLLA promoted the expression of phosphorylated mTOR/S6K1/4EBP1, TGF-ß, and Collagen I/III in senescent fibroblasts, with GsMTx4 treatment mitigating these effects. In aged skin, PLLA treatment similarly upregulated the expression of pERK1/2/ERK1/2, pAKT/AKT, CDK4, cyclin D1, mTOR/S6K1/4EBP1, TGF-ß, and Collagen I/III. In summary, our findings suggest Piezo1's involvement in PLLA-induced collagen synthesis, mediated by heightened activation of cell proliferation signaling pathways such as pERK1/2/ERK1/2, pAKT/AKT, and phosphorylated mTOR/S6K1/4EBP1, underscoring the therapeutic potential of PLLA in tissue regeneration.


Assuntos
Colágeno , Fibroblastos , Poliésteres , Animais , Poliésteres/farmacologia , Poliésteres/química , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo , Colágeno/biossíntese , Canais Iônicos/metabolismo , Camundongos , Pele/metabolismo , Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cálcio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos
13.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000528

RESUMO

Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900-1800 cm-1 and 2800-3100 cm-1 and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm-1 appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm-1) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths. Selecting ratios of the three bands from the merged (532 + 785) dataset made it possible to increase the accuracy to 87% for the three classes and reach the specificities for BCC + SCC equal to 87% and 81% for the sensitivities of 95% and 99%, respectively. Development of multi-wavelength excitation Raman spectroscopic techniques provides a versatile non-invasive tool for research of the processes in malignant skin tumors, as well as other forms of cancer.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/patologia , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Pele/patologia , Pele/metabolismo , Idoso
14.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000538

RESUMO

Skin penetration of an active pharmaceutical ingredient is key to developing topical drugs. This penetration can be adjusted for greater efficacy and/or safety through the selection of dosage form. Two emerging dosage forms, cream-gel and gel-in-oil emulsion, were tested for their ability to deliver diclofenac into the skin, with the target of maximising skin retention while limiting systemic exposure. Prototypes with varying amounts of solvents and emollients were formulated and evaluated by in vitro penetration testing on human skin. Cream-gel formulas showed better skin penetration than the emulgel benchmark drug even without added solvent, while gel-in-oil emulsions resulted in reduced diffusion of the active into the receptor fluid. Adding propylene glycol and diethylene glycol monoethyl ether as penetration enhancers resulted in different diclofenac penetration profiles depending on the dosage form and whether they were added to the disperse or continuous phase. Rheological characterisation of the prototypes revealed similar profiles of cream-gel and emulgel benchmark, whereas gel-in-oil emulsion demonstrated flow characteristics suitable for massaging product into the skin. This study underlined the potential of cream-gel and gel-in-oil emulsions for adjusting active penetration into the skin, broadening the range of choices available to topical formulation scientists.


Assuntos
Administração Cutânea , Diclofenaco , Emulsões , Absorção Cutânea , Pele , Diclofenaco/farmacocinética , Diclofenaco/administração & dosagem , Diclofenaco/química , Humanos , Absorção Cutânea/efeitos dos fármacos , Emulsões/química , Pele/metabolismo , Pele/efeitos dos fármacos , Reologia , Géis/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Administração Tópica , Emolientes/química , Emolientes/farmacocinética , Emolientes/administração & dosagem
15.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000578

RESUMO

Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Microbiota , Pele , Humanos , Pele/microbiologia , Pele/metabolismo , Microbioma Gastrointestinal/fisiologia , Epigênese Genética , Animais , Relógios Biológicos
16.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001012

RESUMO

Wearable alcohol monitoring devices demand noninvasive, real-time measurement of blood alcohol content (BAC) reliably and continuously. A few commercial devices are available to determine BAC noninvasively by detecting transcutaneous diffused alcohol. However, they suffer from a lack of accuracy and reliability in the determination of BAC in real time due to the complex scenario of the human skin for transcutaneous alcohol diffusion and numerous factors (e.g., skin thickness, kinetics of alcohol, body weight, age, sex, metabolism rate, etc.). In this work, a transcutaneous alcohol diffusion model has been developed from real-time captured data from human wrists to better understand the kinetics of diffused alcohol from blood to different skin epidermis layers. Such a model will be a footprint to determine a base computational model in larger studies. Eight anonymous volunteers participated in this pilot study. A laboratory-built wearable blood alcohol content (BAC) monitoring device collected all the data to develop this diffusion model. The proton exchange membrane fuel cell (PEMFC) sensor was fabricated and integrated with an nRF51822 microcontroller, LMP91000 miniaturized potentiostat, 2.4 GHz transceiver supporting Bluetooth low energy (BLE), and all the necessary electronic components to build this wearable BAC monitoring device. The %BAC data in real time were collected using this device from these volunteers' wrists and stored in the end device (e.g., smartphone). From the captured data, we demonstrate how the volatile alcohol concentration on the skin varies over time by comparing the alcohol concentration in the initial stage (= 10 min) and later time (= 100 min). We also compare the experimental results with the outputs of three different input profiles: piecewise linear, exponential linear, and Hoerl, to optimize the developed diffusion model. Our results demonstrate that the exponential linear function best fits the experimental data compared to the piecewise linear and Hoerl functions. Moreover, we have studied the impact of skin epidermis thickness within ±20% and demonstrate that a 20% decrease in this thickness results in faster dynamics compared to thicker skin. The model clearly shows how the diffusion front changes within a skin epidermis layer with time. We further verified that 60 min was roughly the time to reach the maximum concentration, Cmax, in the stratum corneum from the transient analysis. Lastly, we found that a more significant time difference between BACmax and Cmax was due to greater alcohol consumption for a fixed absorption time.


Assuntos
Concentração Alcoólica no Sangue , Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Pele/metabolismo , Pele/química , Etanol/sangue , Etanol/análise , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Difusão , Adulto , Masculino , Feminino
17.
AAPS PharmSciTech ; 25(6): 160, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992299

RESUMO

In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.


Assuntos
Absorção Cutânea , Solubilidade , Tartarato de Tolterodina , Animais , Ratos , Humanos , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Tartarato de Tolterodina/administração & dosagem , Tartarato de Tolterodina/farmacocinética , Termodinâmica , Solventes/química , Pele/metabolismo , Concentração de Íons de Hidrogênio , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Terpenos/química , Terpenos/administração & dosagem , Terpenos/farmacocinética , Administração Cutânea , Limoneno/administração & dosagem , Limoneno/farmacocinética , Limoneno/química , Masculino , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos/métodos , Química Farmacêutica/métodos , Cicloexenos/química , Cicloexenos/farmacocinética , Cicloexenos/administração & dosagem , Ratos Sprague-Dawley
18.
Molecules ; 29(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998948

RESUMO

Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.


Assuntos
Administração Cutânea , Antígenos , Imunização , Líquidos Iônicos , Ovalbumina , Adesivo Transdérmico , Líquidos Iônicos/química , Animais , Camundongos , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Antígenos/imunologia , Antígenos/administração & dosagem , Antígenos/química , Suínos , Pele/metabolismo , Pele/imunologia , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL , Feminino , Absorção Cutânea
19.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999123

RESUMO

The drug delivery potential of liquid crystals (LCs) for ascorbyl palmitate (AP) was assessed, with the emphasis on the AP stability and release profile linked to microstructural rearrangement taking place along the dilution line being investigated by a set of complementary techniques. With high AP degradation observed after 56 days, two stabilization approaches, i.e., the addition of vitamin C or increasing AP concentration, were proposed. As a rule, LC samples with the lowest water content resulted in better AP stability (up to 52% of nondegraded AP in LC1 after 28 days) and faster API release (~18% in 8 h) as compared to the most diluted sample (29% of nondegraded AP in LC8 after 28 days, and up to 12% of AP released in 8 h). In addition, LCs exhibited a skin barrier-strengthening effect with up to 1.2-fold lower transepidermal water loss (TEWL) and 1.9-fold higher skin hydration observed in vitro on the porcine skin model. Although the latter cannot be linked to LCs' composition or specific microstructure, the obtained insight into LCs' microstructure contributed greatly to our understanding of AP positioning inside the system and its release profile, also influencing the overall LCs' performance after dermal application.


Assuntos
Ácido Ascórbico , Cristais Líquidos , Fosfolipídeos , Pele , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Cristais Líquidos/química , Animais , Suínos , Pele/metabolismo , Pele/efeitos dos fármacos , Fosfolipídeos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sistemas de Liberação de Medicamentos
20.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999931

RESUMO

Aging is associated with a decline in the functionality of various cell types, including dermal fibroblasts, which play a crucial role in maintaining skin homeostasis and wound healing. Chronic inflammation and increased reactive oxygen species (ROS) production are hallmark features of aging, contributing to impaired wound healing. MicroRNA-146a (miR-146a) has been implicated as a critical regulator of inflammation and oxidative stress in different cell types, yet its role in aged dermal fibroblasts and its potential relevance to wound healing remains poorly understood. We hypothesize that miR-146a is differentially expressed in aged dermal fibroblasts and that overexpression of miR-146a will decrease aging-induced inflammatory responses and ROS production. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of miR-146a was achieved through miR-146a mimic transfection. ROS were detected using a reliable fluorogenic marker, 2,7-dichlorofluorescin diacetate. Real-time PCR was used to quantify relative gene expression. Our investigation revealed a significant reduction in miR-146a expression in aged dermal fibroblasts compared to their younger counterparts. Moreover, aged dermal fibroblasts exhibited heightened levels of inflammatory responses and increased ROS production. Importantly, the overexpression of miR-146a through miR-146a mimic transfection led to a substantial reduction in inflammatory responses through modulation of the NF-kB pathway in aged dermal fibroblasts. Additionally, the overexpression of miR-146a led to a substantial decrease in ROS production, achieved through the downregulation of NOX4 expression in aged dermal fibroblasts. These findings underscore the pivotal role of miR-146a in mitigating both inflammatory responses and ROS production in aged dermal fibroblasts, highlighting its potential as a therapeutic target for addressing age-related skin wound healing.


Assuntos
Fibroblastos , Inflamação , MicroRNAs , Espécies Reativas de Oxigênio , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Pele/metabolismo , Pele/patologia , Pele/citologia , NF-kappa B/metabolismo , Células Cultivadas , Envelhecimento/metabolismo , Envelhecimento/genética , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...