Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Int J Pharm ; 659: 124198, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38816263

RESUMO

Autophagy, an intracellular degradation system, plays a vital role in protecting cells by clearing damaged organelles, pathogens, and protein aggregates. Autophagy upregulation through pharmacological interventions has gained significant attention as a potential therapeutic avenue for proteinopathies. Here, we report the development of an autophagy-inducing peptide (BCN4) derived from the Beclin 1 protein, the master regulator of autophagy. To deliver the BCN4 into cells and the central nervous system (CNS), it was conjugated to our previously developed cell and blood-brain barrier-penetrating peptide (CPP). CPP-BCN4 significantly upregulated autophagy and reduced protein aggregates in motor neuron (MN)-like cells. Moreover, its systemic administration in a reporter mouse model of autophagy resulted in a significant increase in autophagy activity in the spinal MNs. Therefore, this novel autophagy-inducing peptide with a demonstrated ability to upregulate autophagy in the CNS has significant potential for the treatment of various neurodegenerative diseases with protein aggregates as a characteristic feature.


Assuntos
Autofagia , Proteína Beclina-1 , Neurônios Motores , Regulação para Cima , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Neurônios Motores/efeitos dos fármacos , Camundongos , Regulação para Cima/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Humanos , Masculino , Agregados Proteicos/efeitos dos fármacos
2.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797668

RESUMO

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Assuntos
Peptídeos Penetradores de Células , Córnea , Soluções Oftálmicas , Suspensões , Animais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/administração & dosagem , Soluções Oftálmicas/administração & dosagem , Humanos , Córnea/metabolismo , Córnea/efeitos dos fármacos , Suínos , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Quinolonas/química , Administração Oftálmica , Disponibilidade Biológica , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Tamanho da Partícula , Alanina/análogos & derivados
3.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38440998

RESUMO

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Assuntos
Barreira Hematoencefálica , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/administração & dosagem , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico
4.
Eur J Pharm Biopharm ; 170: 170-178, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34963657

RESUMO

Ulcerative colitis (UC) is a refractory inflammatory bowel disease that causes inflammation and ulcers in the digestive tract, and significantly reduces the patient's quality of life. While existing UC treatments have many challenges, nanotechnology, and small interfering RNA (siRNA) based formulations are novel and promising for UC treatment. We previously reported that intravenous administration of MPEG-PCL-CH2R4H2C nanomicelles had high inflammatory site accumulation and remarkable therapeutic effects on rheumatoid arthritis by a phenomenon similar to enhanced permeability and retention effect. In this study, we investigated the effects of siRNA delivered using MPEG-PCL-CH2R4H2C nanomicelles through intravenous administration to the inflammation site of dextran sulfate sodium-induced colitis mice. The MPEG-PCL-CH2R4H2C micelles had optimum physical properties and high siRNA compaction ability. Moreover, model-siRNA delivered through MPEG-PCL-CH2R4H2C showed higher accumulation in the inflammatory site than that of the naked siRNA. Furthermore, intravenous administration of MPEG-PCL-CH2R4H2C/siRelA micelles, targeting siRelA, a subunit of NF-κB, significantly decreased the shortening of large intestine, clinical score, and production of inflammatory cytokines compared the 5-ASA and naked siRelA. These results suggest that MPEG-PCL-CH2R4H2C is a useful carrier for the systemic delivery and accumulation of siRNA, thus improving its therapeutic effect.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Administração Intravenosa , Animais , Peptídeos Penetradores de Células/síntese química , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Micelas , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Polímeros/síntese química
5.
Adv Drug Deliv Rev ; 180: 114044, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774552

RESUMO

Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas/metabolismo , Microambiente Tumoral
6.
Front Immunol ; 12: 750496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867981

RESUMO

One of the main hallmarks of tuberculosis (TB) is the ability of the causative agent to transform into a stage of dormancy and the capability of long persistence in the host phagocytes. It is believed that approximately one-third of the population of the world is latently infected with Mycobacterium tuberculosis (Mtb), and 5%-10% of these individuals can develop clinical manifestations of active TB even decades after the initial infection. In this latent, intracellular form, the bacillus is shielded by an extremely robust cell wall and becomes phenotypically resistant to most antituberculars. Therefore, there is a clear rationale to develop novel compounds or carrier-conjugated constructs of existing drugs that are effective against the intracellular form of the bacilli. In this paper, we describe an experimental road map to define optimal candidates against intracellular Mtb and potential compounds effective in the therapy of latent TB. To validate our approach, isoniazid, a first-line antitubercular drug was employed, which is active against extracellular Mtb in the submicromolar range, but ineffective against the intracellular form of the bacteria. Cationic peptide conjugates of isoniazid were synthesized and employed to study the host-directed drug delivery. To measure the intracellular killing activity of the compounds, Mtb-infected MonoMac-6 human monocytic cells were utilized. We have assessed the antitubercular activity, cytotoxicity, membrane interactions in combination with internalization efficacy, localization, and penetration ability on interface and tissue-mimicking 3D models. Based on these in vitro data, most active compounds were further evaluated in vivo in a murine model of TB. Intraperitoneal infectious route was employed to induce a course of slowly progressive and systemic disease. The well-being of the animals, monitored by the body weight, allows a prolonged experimental setup and provides a great opportunity to test the long-term activity of the drug candidates. Having shown the great potency of this simple and suitable experimental design for antimicrobial research, the proposed novel assay platform could be used in the future to develop further innovative and highly effective antituberculars.


Assuntos
Peptídeos Antimicrobianos/administração & dosagem , Antituberculosos/administração & dosagem , Bioensaio/métodos , Peptídeos Penetradores de Células/administração & dosagem , Isoniazida/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Peptídeos Antimicrobianos/química , Antituberculosos/química , Brônquios , Linhagem Celular , Peptídeos Penetradores de Células/química , Endocitose , Feminino , Humanos , Isoniazida/química , Camundongos Endogâmicos BALB C , Monócitos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Esferoides Celulares , Tuberculose/tratamento farmacológico
7.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769414

RESUMO

Cell-penetrating peptides (CPPs) are small peptide sequences used mainly as cellular delivery agents that are able to efficiently deliver cargo into cells. Some CPPs also demonstrate intrinsic anticancer properties. Previously, our group developed a new family of CPP2-thiazole conjugates that have been shown to effectively reduce the proliferation of different cancer cells. This work aimed to combine these CPP2-thiazole conjugates with paclitaxel (PTX) and 5-fluorouracil (5-FU) in PC-3 prostate and HT-29 colon cancer cells, respectively, to evaluate the cytotoxic effects of these combinations. We also combined these CPP2-thiazole conjugates with clotrimazole (CLZ), an antifungal agent that has been shown to decrease cancer cell proliferation. Cell viability was evaluated using MTT and SRB assays. Drug interaction was quantified using the Chou-Talalay method. We determined that CPP2 did not have significant activity in these cells and demonstrate that N-terminal modification of this peptide enhanced its anticancer activity in both cell lines. Our results also showed an uneven response between cell lines to the proposed combinations. PC-3 cells were more responsive to the combination of CPP2-thiazole conjugates with CLZ than PTX and were more sensitive to these combinations than HT-29 cells. In addition, the interaction of drugs resulted in more synergism in PC-3 cells. These results suggest that N-terminal modification of CPP2 results in the enhanced anticancer activity of the peptide and demonstrates the potential of CPPs as adjuvants in cancer therapy. These results also validate that CLZ has significant anticancer activity both alone and in combination and support the strategy of drug repurposing coupled to drug combination for prostate cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Peptídeos Penetradores de Células/farmacologia , Clotrimazol/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Tiazóis/farmacologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Clotrimazol/administração & dosagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Humanos , Masculino , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Tiazóis/administração & dosagem , Tiazóis/química
8.
Int Immunopharmacol ; 101(Pt A): 108251, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34715492

RESUMO

African swine fever (ASF) is a highly fatal swine disease threatening the global pig industry. Currently, vaccine is not commercially available for ASF. Hence, it is desirable to develop effective subunit vaccines against ASF. Here, we expressed and purified two recombinant fusion proteins comprising ASFV proteins p30 and p54 fused to a novel cell-penetrating peptide Z12, which were labeled as ZPM (Z12-p30-modified p54) and ZPMT (Z12-p30-modified p54-T cell epitope). Purified recombinant p30 and modified p54 expressed alone or fused served as controls. The transduction capacity of these recombinant proteins was assessed in RAW264.7 cells. Both ZPM and ZPMT exhibited higher transduction efficiency than the other proteins. Subsequently, humoral and cellular immune responses elicited by these proteins were evaluated in mice. ZPMT elicited the highest levels of antigen-specific IgG responses, cytokines (interleukin-2, interferon-γ, and tumor necrosis factor-α) and lymphocyte proliferation. Importantly, sera from mice immunized with ZPM or ZPMT neutralized greater than 85% of ASFV in vitro. Our results indicate that ZPMT induces potent neutralizing antibody responses and cellular immunity in mice. Therefore, ZPMT may be a suitable candidate to elicit immune responses in swine, providing valuable information for the development of subunit vaccines against ASF.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/imunologia , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Imunidade Celular/imunologia , Camundongos , Fosfoproteínas/administração & dosagem , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Suínos , Desenvolvimento de Vacinas , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Estruturais Virais/administração & dosagem , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
Pharmacol Res Perspect ; 9(3): e00755, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951329

RESUMO

Friedreich ataxia is an autosomal recessive, neurodegenerative disease characterized by the deficiency of the iron-sulfur cluster assembly protein frataxin. Loss of this protein impairs mitochondrial function. Mitochondria alter their morphology in response to various stresses; however, such alterations to morphology may be homeostatic or maladaptive depending upon the tissue and disease state. Numerous neurodegenerative diseases exhibit excessive mitochondrial fragmentation, and reversing this phenotype improves bioenergetics for diseases in which mitochondrial dysfunction is a secondary feature of the disease. This paper demonstrates that frataxin deficiency causes excessive mitochondrial fragmentation that is dependent upon Drp1 activity in Friedreich ataxia cellular models. Drp1 inhibition by the small peptide TAT-P110 reverses mitochondrial fragmentation but also decreases ATP levels in frataxin-knockdown fibroblasts and FRDA patient fibroblasts, suggesting that fragmentation may provide a homeostatic pathway for maintaining cellular ATP levels. The cardiolipin-stabilizing compound SS-31 similarly reverses fragmentation through a Drp1-dependent mechanism, but it does not affect ATP levels. The combination of TAT-P110 and SS-31 does not affect FRDA patient fibroblasts differently from SS-31 alone, suggesting that the two drugs act through the same pathway but differ in their ability to alter mitochondrial homeostasis. In approaching potential therapeutic strategies for FRDA, an important criterion for compounds that improve bioenergetics should be to do so without impairing the homeostatic response of mitochondrial fragmentation.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Dinaminas/antagonistas & inibidores , Fibroblastos/metabolismo , Ataxia de Friedreich/metabolismo , GTP Fosfo-Hidrolases/administração & dosagem , Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/metabolismo , Oligopeptídeos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Trifosfato de Adenosina/metabolismo , Biomarcadores , Células Cultivadas , Dinaminas/metabolismo , Metabolismo Energético , Homeostase , Humanos , Proteínas de Ligação ao Ferro/genética , RNA Interferente Pequeno/genética , Frataxina
10.
Int J Cancer ; 149(6): 1313-1321, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019700

RESUMO

CIGB-552 is a synthetic peptide that interacts with COMMD1 and upregulates its protein levels. The objectives of this phase I study were safety, pharmacokinetic profile, evaluation of the lymphocytes CD4+ and CD8+ and preliminary activity in patients with advanced tumors. A 3 + 3 dose-escalation design with seven dose levels was implemented. Patients were included until a grade 3 related adverse event occurred and the maximum tolerated dose was reached. The patients received subcutaneous administration of CIGB-552 three times per week for 2 weeks. Single-dose plasma pharmacokinetics was characterized at two dose levels, and tumor responses were classified by RECIST 1.1. Twenty-four patients received CIGB-552. Dose-limiting toxicity was associated with a transient grade 3 pruritic maculopapular rash at a dose of 7.0 mg. The maximum tolerated dose was defined as 4.7 mg. Ten patients were assessable for immunological status. Seven patients had significant changes in the ratio CD4/CD8 in response to CIGB-552 treatment; three patients did not modify the immunological status. Stable disease was observed in five patients, including two metastatic soft sarcomas. We conclude that CIGB-552 at dose 4.7 mg was well tolerated with no significant adverse events and appeared to provide some clinical benefits.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , NF-kappa B/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Peptídeos Penetradores de Células/efeitos adversos , Peptídeos Penetradores de Células/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Injeções Subcutâneas , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/metabolismo , Neoplasias/patologia , Projetos de Pesquisa , Resultado do Tratamento
11.
Trends Mol Med ; 27(7): 643-659, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33994320

RESUMO

RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Neoplasias/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Splicing de RNA , Doenças Genéticas Inatas/genética , Humanos , Neoplasias/genética
12.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805680

RESUMO

This review summarizes recent developments in conjugation techniques for the synthesis of cell-penetrating peptide (CPP)-drug conjugates targeting cancer cells. We will focus on small organic molecules as well as metal complexes that were used as cytostatic payloads. Moreover, two principle ways of coupling chemistry will be discussed direct conjugation as well as the use of bifunctional linkers. While direct conjugation of the drug to the CPP is still popular, the use of bifunctional linkers seems to gain increasing attention as it offers more advantages related to the linker chemistry. Thus, three main categories of linkers will be highlighted, forming either disulfide acid-sensitive or stimuli-sensitive bonds. All techniques will be thoroughly discussed by their pros and cons with the aim to help the reader in the choice of the optimal conjugation technique that might be used for the synthesis of a given CPP-drug conjugate.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/síntese química , Citostáticos/administração & dosagem , Citostáticos/síntese química , Sistemas de Liberação de Medicamentos/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Citostáticos/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/tendências , Humanos , Estrutura Molecular , Fenômenos de Química Orgânica
13.
Pharm Dev Technol ; 26(6): 634-646, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33843423

RESUMO

A combination of doxorubicin (DOX) and small interfering RNA (siRNA) is proven effective for the reverse of multidrug resistance. However, rapid degradation and poor cellular internalization of siRNA hinder their synergistic action. To improve the combination effect, asparagine-glycine-arginine peptide (NGR) -modified nanobubbles (NBs) containing cell-penetrating peptide (CPP) decorated DOX and CPP decorated c-myc siRNA were constructed. Diameters of these NBs were about 245 nm and zeta potentials were about -3 mV. Encapsulation efficiencies (EE) of DOX exceeded 80%. Release of DOX could be triggered by ultrasound (US) since above 80% DOX was released from NBs after sonication while less than 5% DOX was discharged without treatment of US. These NBs were considered stable during 24 h since the decrease of particle size was no more than 10 nm, variances of EE were less than 5%, and changes of transmission (ΔT) were less than 3%. More drugs in formulation decorated with CPP and NGR were accumulated in the tumor when combined with sonication. The evident synergistic action of DOX, siRNA, NBs, and US was verified in mice with strong antitumor efficacy. Taken together, NGR-modified NBs containing CPP-DOX and CPP-siRNA are able to realize time- and spatial-controlled drug delivery and show potential application prospects.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Oligopeptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia
14.
Peptides ; 141: 170542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794283

RESUMO

A new class of peptides, cyclic cell-penetrating peptides (CPPs), has great potential for delivering a vast variety of therapeutics intracellularly for treating diverse ailments. CPPs have been used previously; however, their further use is limited due to instability, toxicity, endosomal degradation, and insufficient cellular penetration. Cyclic CPPs are being investigated in delivering therapeutics to treat various ailments, including multi-drug resistant microbial infections, HIV, and cancer. They can act as a carrier for a variety of cargos and target intracellularly. Approximately 40 cyclic peptides-based therapeutics are available in the market, and annually one cyclic peptide-based drug enters the market. Numerous research and review articles have been published in the last decade about linear and cyclic peptides separately. This review is the first to provide a comprehensive deliberation about cationic and amphipathic cyclic CPPs. Herein, we highlights their structures, significant advantages, translocation mechanisms, and delivery application in the area of biomedical sciences.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Penetradores de Células/química , Endossomos/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Humanos , Neoplasias/tratamento farmacológico , Peptídeos Cíclicos/classificação
15.
Mol Ther ; 29(5): 1744-1757, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545360

RESUMO

Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH). These nanoparticles possess intrinsic endosomolytic activity that requires endosomal acidification. When administered in a femoral artery wire injury mouse model in vivo, the mRNA-p5RHH nanoparticles deliver their payload specifically to the regions of endothelial denudation and not to the lungs, liver, kidney, or spleen. Moreover, repeated administration of nanoparticles containing a microRNA switch, consisting of synthetically modified mRNA encoding for the cyclin-dependent kinase inhibitor p27Kip1 that contains one complementary target sequence of the endothelial cell-specific miR-126 at its 5' UTR, drastically reduced neointima formation after wire injury and allowed for vessel reendothelialization. This cell-selective nanotherapy is a valuable tool that has the potential to advance the fight against neointimal hyperplasia and atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Peptídeos Penetradores de Células/administração & dosagem , Inibidor de Quinase Dependente de Ciclina p27/antagonistas & inibidores , Artéria Femoral/lesões , MicroRNAs/administração & dosagem , Animais , Aterosclerose/etiologia , Peptídeos Penetradores de Células/farmacologia , Reestenose Coronária , Modelos Animais de Doenças , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Nanopartículas , Tamanho da Partícula , Biologia Sintética
16.
Adv Drug Deliv Rev ; 171: 187-198, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561452

RESUMO

The number of protein-based drugs is exponentially increasing. However, development of protein therapeutics against intracellular targets is hampered by the lack of efficient cytosolic delivery strategies. In recent years, the use of cell-penetrating peptides has been proposed as a strategy to promote protein internalization. In this article, we provide the reader with a succinct update on the strategies exploited to enable peptide-mediated cytosolic delivery of proteins. First, we analyse the various methods available for delivery. We then describe the most popular and the in vitro assays designed to assess the intracellular distribution of protein cargo.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Citosol/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas/administração & dosagem , Animais
17.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562802

RESUMO

Renal ischemia-reperfusion injury (IRI) is involved in the majority of clinical conditions that manifest as renal function deterioration; however, specific treatment for this type of injury is still far from clinical use. Since Toll-like receptor (TLR)-mediated signaling is a key mediator of IRI, we examined the effect of a multiple-TLR-blocking peptide named TLR-inhibitory peptide 1 (TIP1), which exerts the strongest action on TLR4, on renal IRI. We subjected C57BL/6 mice to 23 min of renal pedicle clamping preceded by intraperitoneal injection with a vehicle or TIP1. Sham control mice underwent flank incision only. Mouse kidneys were harvested after 24 h of reperfusion for histology, western blot, RT-PCR, and flow cytometry analysis. Pretreatment with TIP1 lowered the magnitude of elevated plasma creatinine levels and attenuated tubular injury. TIP1 treatment also reduced mRNA expression of inflammatory cytokines and decreased apoptotic cells and oxidative stress in post-ischemic kidneys. In kidneys pretreated with TIP1, the infiltration of macrophages and T helper 17 cells was less abundant than those in the IRI only group. These results suggest that TIP1 has a potential beneficial effect in attenuating the degree of kidney damage induced by IRI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Peptídeos Penetradores de Células/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Peptídeos Penetradores de Células/farmacologia , Creatinina/sangue , Citocinas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
Biochim Biophys Acta Proteins Proteom ; 1869(4): 140604, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453413

RESUMO

The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Sequência de Aminoácidos , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Humanos , Proteínas Citotóxicas Formadoras de Poros/administração & dosagem , Proteínas Citotóxicas Formadoras de Poros/química
19.
Mol Pharm ; 18(3): 796-806, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464088

RESUMO

The small interference RNA (siRNA)-assisted RNA interference approach in stem cells for differentiating into cell-specific lineages is gaining importance for its therapeutic potential. An effective gene delivery platform is crucial to achieve this goal. In this context, self-fluorescent, cell-penetrating peptide (CPP)-functionalized hydroxyapatite nanoparticles (R8HNPs) were synthesized by a modified sol gel technique. R8HNPs were crystalline, displayed characteristic bands, and exhibited broad emission spectra from 350 to 750 nm corresponding to green and red fluorescence. The biocompatible R8HNPs displayed robust binding with siRNA and excellent uptake in R1 ESCs. This was attributed to functionalization with CPP. Moreover, the R8HNP-complexed siRNA exhibited excellent serum and room temperature stability. The NPs protected the siRNA from sonication, pH, and temperature-induced stress and efficiently delivered siRNA to trigger 80% silencing of a pluripotency marker gene, Oct4, in R1 ESCs at 48 h. The transient downregulation was also observed at the protein level. Our findings demonstrate R8HNPs as a promising delivery agent for siRNA therapeutics with the potential for lineage-specific differentiation and future applications in regenerative medicine.


Assuntos
Durapatita/química , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Regulação para Baixo/efeitos dos fármacos , Técnicas de Transferência de Genes , Camundongos , Nanopartículas/química , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/química
20.
Metab Brain Dis ; 36(4): 701-709, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420884

RESUMO

Alzheimer's disease (AD) is behaviorally characterized by memory impairments, and pathologically by amyloid ß1-42 (Aß1-42) plaques and tangles. Aß binds to excitatory synapses and disrupts their transmission due to dysregulation of the glutamate receptors. Here we hypothesized that chronic inhibition of the endocytosis of AMPA receptors together with GluN2B subunit of NMDA receptors might improve cognition deficit induced by Aß(1-42) neurotoxicity. Forty male Wistar rats were used in this study and divided into 5 groups: Saline + Saline, Aß+Saline, Aß+Ifen (Ifenprodil, 3 nmol /2 weeks), Aß+GluR23Y (Tat-GluR23Y 3 µmol/kg/2 weeks) and Aß+Ifen+GluR23Y (same doses and durations). Aß(1-42) neurotoxicity was induced by intracerebroventricular (ICV) injection of Aß1-42 (2 µg/µl/side), and then animals received the related treatments for 14 days. Cognitive performance of rats and hippocampal level of cAMP-response element-binding (CREB) were evaluated using Morris Water Maze (MWM), and western blotting respectively. Obtained data from the acquisition trials were analyzed by two way Anova and Student T test. Also one way Analysis of variance (ANOVA) with post hoc Tuckey were used to clarify between groups differences in probe test. The Group receiving Aß, showed significant cognition deficit (long latency to platform and short total time spent in target quadrant (TTS), parallel with lower level of hippocampal CREB, versus vehicle group. While, Aß+ GluR23Y exhibited the shortest latency to platform and the longest TTS during the probe test, parallel with the higher hippocampal level of CREB compared with other groups. The present study provides evidence that chronic administration of Tat-GluR23Y; an inhibitor of GluA2-AMPARs endocytosis, successfully restores spatial memory impaired by amyloid beta neurotoxicity targeting CREB signaling pathway.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Peptídeos Penetradores de Células/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Fragmentos de Peptídeos/toxicidade , Animais , Disfunção Cognitiva/induzido quimicamente , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Esquema de Medicação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...