Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.525
Filtrar
1.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718038

RESUMO

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , RNA Bacteriano , Pequeno RNA não Traduzido , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Regulação Bacteriana da Expressão Gênica , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
2.
Cancer Med ; 13(11): e7309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819439

RESUMO

INTRODUCTION: Identification of molecular biomarkers in the saliva and serum of oral cavity cancer patients represents a first step in the development of essential and efficient clinical tools for early detection and post-treatment monitoring. We hypothesized that molecular analyses of paired saliva and serum samples from an individual would likely yield better results than analyses of either serum or saliva alone. MATERIALS AND METHODS: We performed whole-transcriptome and small non-coding RNA sequencing analyses on 32 samples of saliva and serum collected from the same patients with oral squamous cell carcinoma (OSCC) and healthy controls (HC). RESULTS: We identified 12 novel saliva and serum miRNAs and a panel of unique miRNA and mRNA signatures, significantly differentially expressed in OSCC patients relative to HC (log2 fold change: 2.6-26.8; DE: 0.02-0.000001). We utilized a combined panel of the 10 top-deregulated miRNAs and mRNAs and evaluated their putative diagnostic potential (>87% sensitivity; 100% specificity), recommending seven of them for further validation. We also identified unique saliva and serum miRNAs associated with OSCC and smoking history (OSCC smokers vs. never-smokers or HC: log2 fold change: 22-23; DE: 0.00003-0.000000001). Functional and pathway analyses indicated interactions between the discovered OSCC-related non-invasive miRNAs and mRNAs and their targets, through PI3K/AKT/mTOR signaling. CONCLUSION: Our data support our hypothesis that using paired saliva and serum from the same individuals and deep sequencing analyses can provide unique combined mRNA and miRNA signatures associated with canonical pathways that may have a diagnostic advantage relative to saliva or serum alone and may be useful for clinical testing. We believe this data will contribute to effective preventive care by post-treatment monitoring of patients, as well as suggesting potential targets for therapeutic approaches.


Assuntos
Biomarcadores Tumorais , MicroRNAs , Neoplasias Bucais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Saliva , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/sangue , Neoplasias Bucais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Feminino , Masculino , Biomarcadores Tumorais/genética , Saliva/metabolismo , Saliva/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Pessoa de Meia-Idade , MicroRNAs/genética , MicroRNAs/sangue , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Idoso , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/sangue , Adulto , Estudos de Casos e Controles , Análise de Sequência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/metabolismo
3.
Wiley Interdiscip Rev RNA ; 15(3): e1852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715192

RESUMO

Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Humanos , Animais
4.
Int J Biol Macromol ; 271(Pt 2): 132714, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815937

RESUMO

OBJECTIVES: The study aimed to identify a quantitative signature of circulating small non-coding RNAs (sncRNAs) as a biomarker for pulmonary tuberculosis disease (active-TB/ATB) and explore their regulatory roles in host-pathogen interactions and disease progression. METHODS: We conducted a cross-sectional study recruiting subjects diagnosed with active-TB (drug-sensitive and drug-resistant) and healthy controls. Sera samples were collected and utilized for preparing small RNA libraries. Quantitative patterns of circulating sncRNAs (miRNAs, piRNAs and tRFs) were identified via high-throughput sequencing and DeSeq2 analysis and validated in independent active-TB cohorts. Functional knockdown for two selected miRNAs were also performed. RESULTS: A diagnostic signature of four sncRNAs for both drug-sensitive and drug-resistant active-TB cases was validated, exhibiting an AUC of 0.96 (95% CI: 0.937-0.996, p < 0.001) with 86.7% sensitivity (95% CI: 0.775-0.932) and 91.7% specificity (95% CI: 0.730-0.990) in ROC analysis. Functional knockdown demonstrated regulatory roles of hsa-miR-223-5p and hsa-miR-10b-5p in Mycobacterium tuberculosis (Mtb) growth and pro-inflammatory cytokine expression (IL-6 and IL-8). CONCLUSION: The study identified a diagnostic tool utilizing a signature of four sncRNAs with high specificity and sensitivity, enhancing our understanding of sncRNAs as ATB diagnostic biomarker. Additionally, hsa-miR-223-5p and hsa-miR-10b-5p demonstrated potential roles in Mtb pathogenesis and host-response to infection.


Assuntos
Biomarcadores , Humanos , Biomarcadores/sangue , Feminino , Masculino , Adulto , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/microbiologia , Interações Hospedeiro-Patógeno/genética , Pequeno RNA não Traduzido/genética , Pessoa de Meia-Idade , MicroRNAs/genética , MicroRNAs/sangue , Tuberculose/diagnóstico , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/sangue , Estudos Transversais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Casos e Controles , Curva ROC , Mycobacterium tuberculosis/genética
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167267, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810917

RESUMO

Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.


Assuntos
Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Acetilação , Ratos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibrose/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Acetiltransferases N-Terminal
6.
Nucleic Acids Res ; 52(10): 5852-5865, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742638

RESUMO

Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.


Assuntos
Cobamidas , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , RNA Mensageiro , Riboswitch , Riboswitch/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Cobamidas/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Helicases/genética , RNA Helicases/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas da Membrana Bacteriana Externa , Polirribonucleotídeo Nucleotidiltransferase , Proteínas de Membrana Transportadoras
8.
Cell Host Microbe ; 32(5): 634-636, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723602

RESUMO

Bacterial genomes are littered with exogenous: competing DNA elements. Here, Sprenger et al. demonstrate that the Vibrio cholerae prophage VP882 modulates host functions via production of regulatory sRNAs to promote phage development. Alternatively, host sRNAs inhibit the VP882 lytic phase by specifically regulating phage genes.


Assuntos
Prófagos , Vibrio cholerae , Vibrio cholerae/genética , Prófagos/genética , Prófagos/fisiologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Genoma Bacteriano , Bacteriófagos/genética , Bacteriófagos/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
9.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38693614

RESUMO

Small non-coding RNAs (sncRNAs) are non-coding RNA molecules that play various roles in metazoans. Among the sncRNAs, microRNAs (miRNAs) guide post-translational gene regulation during cellular development, proliferation, apoptosis, and differentiation, while PIWI-interacting RNAs (piRNAs) suppress transposon activity to safeguard the genome from detrimental insertion mutagenesis. While an increasing number of piRNAs are being identified in the soma and germlines of various organisms, they are scarcely reported in molluscs. To unravel the small RNA (sRNA) expression patterns and genomic function in molluscs, we generated a comprehensive sRNA dataset by sRNA sequencing (sRNA-seq) of eight mollusc species. Abundant miRNAs were identified and characterized in all investigated molluscs, and ubiquitous piRNAs were discovered in both somatic and gonadal tissues in six of the investigated molluscs, which are more closely associated with transposon silencing. Tens of piRNA clusters were also identified based on the genomic mapping results, which varied among different tissues and species. Our dataset serves as important reference data for future genomic and genetic studies on sRNAs in these molluscs and related species, especially in elucidating the ancestral state of piRNAs in bilaterians.


Assuntos
Moluscos , RNA Interferente Pequeno , Pequeno RNA não Traduzido , Animais , Moluscos/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , MicroRNAs/genética , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transcriptoma
10.
J Biotechnol ; 388: 1-10, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38616040

RESUMO

The tailor-made synthetic sRNA-based gene expression knockdown system has demonstrated its efficacy in achieving pathway balancing in microbes, facilitating precise target gene repression and fine-tuned control of gene expression. This system operates under a competitive mode of gene regulation, wherein the tailor-made synthetic sRNA shares the intrinsic intracellular Hfq protein with other RNAs. The limited intracellular Hfq amount has the potential to become a constraining factor in the post-transcription regulation of sRNAs. To enhance the efficiency of the tailor-made sRNA gene expression regulation platform, we introduced an Hfq expression level modulation-coordinated sRNA-based gene knockdown system. This system comprises tailor-made sRNA expression cassettes that produce varying Hfq expression levels using different strength promoters. Modulating the expression levels of Hfq significantly improved the repressing capacity of sRNA, as evidenced by evaluations with four fluorescence proteins. In order to validate the practical application of this system, we applied the Hfq-modulated sRNA-based gene knockdown cassette to Escherichia coli strains producing 5-aminolevulinic acid and L-tyrosine. Diversifying the expression levels of metabolic enzymes through this cassette resulted in substantial increases of 74.6% in 5-aminolevulinic acid and 144% in L-tyrosine production. Tailor-made synthetic sRNA-based gene expression knockdown system, coupled with Hfq copy modulation, exhibits potential for optimizing metabolic fluxes through biosynthetic pathways, thereby enhancing the production yields of bioproducts.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator Proteico 1 do Hospedeiro , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes/métodos , Regulação Bacteriana da Expressão Gênica/genética , Tirosina/metabolismo , Tirosina/genética , Ácido Aminolevulínico/metabolismo , Pequeno RNA não Traduzido/genética
11.
Cell Host Microbe ; 32(5): 727-738.e6, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38579715

RESUMO

Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.


Assuntos
Bacteriófagos , Fator Proteico 1 do Hospedeiro , Percepção de Quorum , Vibrio cholerae , Vibrio cholerae/virologia , Vibrio cholerae/genética , Percepção de Quorum/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Fator Proteico 1 do Hospedeiro/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Replicação Viral , Lisogenia , RNA Viral/genética , RNA Viral/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Interações entre Hospedeiro e Microrganismos/genética
12.
FEBS Lett ; 598(9): 1034-1044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38639734

RESUMO

MTS1338, a distinctive small RNA in pathogenic mycobacteria, plays a crucial role in host-pathogen interactions during infection. Mycobacterial cells encounter heterogeneous stresses in macrophages, which highly upregulate MTS1338. A dormancy regulatory factor DosR regulates the intracellular abundance of MTS1338. Herein, we investigated the interplay of DosR and a low pH-inducible gene regulator PhoP binding to the MTS1338 promoter. We identified that DosR strongly binds to two regions upstream of the MTS1338 gene. The proximal region possesses a threefold higher affinity than the distal site, but the presence of both regions increased the affinity for DosR by > 10-fold. PhoP did not bind to the MTS1338 gene but binds to the DosR-bound MTS1338 gene, suggesting a concerted mechanism for MTS1338 expression.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , Regiões Promotoras Genéticas , Ativação Transcricional , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Virulência/genética , Ligação Proteica , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
13.
J Bacteriol ; 206(5): e0027823, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38624234

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that induces virulence gene expression in response to host-mediated iron starvation. Recently, our laboratory showed that some virulence factors are responsive to iron limitation in static but not shaking growth conditions. One of these is the HSI-2-type six secretion system (T6SS), which is also induced during chronic infection. Iron regulation of T6SS was partially impacted by the iron-responsive PrrF sRNA and completely dependent upon the Pseudomonas quinolone signal (PQS) biosynthetic gene pqsA. Here, we analyzed the impact of iron on the expression of two small regulatory RNAs (sRNAs), RsmY and RsmZ, that activate the expression of T6SS by sequestering the RsmA translation inhibitor. Our results demonstrate that iron starvation induces the expression of RsmY and RsmZ in static but not shaking cultures. We further show that this induction occurs through the rsmY and rsmZ promoters and is dependent upon PqsA. Disruption of either the pqsR gene also eliminated iron-dependent regulation of rsmY and rsmZ promoter activity. Taken together, our results show novel targets of iron regulation that are specific to static growth, highlighting the importance of studying regulatory mechanisms in static communities that may be more representative of growth during chronic infection.IMPORTANCEIron is a central component of various bacterial metabolic pathways making it an important host-acquired nutrient for pathogens to establish infection. Previous iron regulatory studies primarily relied on shaking bacterial cultures; while these ensure cultural homogeneity, they do not reflect growth conditions during infection. We recently showed that static growth of Pseudomonas aeruginosa promotes iron-dependent regulation of a type six secretion system (T6SS), a virulence factor that is induced during chronic infections. In the current study, we found that static growth also promotes iron-dependent regulation of the RsmY and RsmZ sRNAs, which are global regulators that affect T6SS during chronic P. aeruginosa lung infection. Hence, our work demonstrates the Rsm sRNAs as potential effectors of iron regulation during static growth that may also be relevant in chronic infection.


Assuntos
Regulação Bacteriana da Expressão Gênica , Ferro , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ferro/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
NPJ Syst Biol Appl ; 10(1): 41, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632240

RESUMO

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.


Assuntos
COVID-19 , MicroRNAs , Pequeno RNA não Traduzido , Humanos , SARS-CoV-2/genética , Pequeno RNA não Traduzido/genética , Pandemias , MicroRNAs/genética
15.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612790

RESUMO

Deregulation of small non-coding RNAs (sncRNAs) has been associated with the onset of metastasis. We evaluated the expression of sncRNAs in patients with early-stage breast cancer, performing RNA sequencing in 60 patients for whom tumor and sentinel lymph node (SLN) samples were available, and conducting differential expression, gene ontology, enrichment and survival analyses. Sequencing annotation classified most of the sncRNAs into small nucleolar RNA (snoRNAs, 70%) and small nuclear RNA (snRNA, 13%). Our results showed no significant differences in sncRNA expression between tumor or SLNs obtained from the same patient. Differential expression analysis showed down-regulation (n = 21) sncRNAs and up-regulation (n = 2) sncRNAs in patients with locoregional metastasis. The expression of SNHG5, SNORD90, SCARNA2 and SNORD78 differentiated luminal A from luminal B tumors, whereas SNORD124 up-regulation was associated with luminal B HER2+ tumors. Discriminating analysis and receiver-operating curve analysis revealed a signature of six snoRNAs (SNORD93, SNORA16A, SNORD113-6, SNORA7A, SNORA57 and SNORA18A) that distinguished patients with locoregional metastasis and predicted patient outcome. Gene ontology and Reactome pathway analysis showed an enrichment of biological processes associated with translation initiation, protein targeting to specific cell locations, and positive regulation of Wnt and NOTCH signaling pathways, commonly involved in the promotion of metastases. Our results point to the potential of several sncRNAs as surrogate markers of lymph node metastases and patient outcome in early-stage breast cancer patients. Further preclinical and clinical studies are required to understand the biological significance of the most significant sncRNAs and to validate our results in a larger cohort of patients.


Assuntos
Neoplasias da Mama , Pequeno RNA não Traduzido , Humanos , Feminino , Neoplasias da Mama/genética , Pequeno RNA não Traduzido/genética , Genes Reguladores , Metástase Linfática/genética , RNA Nucleolar Pequeno/genética
16.
PLoS Pathog ; 20(4): e1012147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620039

RESUMO

Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional , Streptococcus mutans , Animais , Acetilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cárie Dentária/microbiologia , Cárie Dentária/metabolismo , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Pequeno RNA não Traduzido/metabolismo , Pequeno RNA não Traduzido/genética , Streptococcus mutans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/patogenicidade , Virulência , Feminino , Ratos
17.
Appl Environ Microbiol ; 90(5): e0153823, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38587394

RESUMO

A plethora of gene regulatory mechanisms with eccentric attributes in Deinoccocus radiodurans confer it to possess a distinctive ability to survive under ionizing radiation. Among the many regulatory processes, small RNA (sRNA)-mediated regulation of gene expression is prevalent in bacteria but barely investigated in D. radiodurans. In the current study, we identified a novel sRNA, DrsS, through RNA-seq analysis in D. radiodurans cells while exposed to ionizing radiation. Initial sequence analysis for promoter identification revealed that drsS is potentially co-transcribed with sodA and dr_1280 from a single operon. Elimination of the drsS allele in D. radiodurans chromosome resulted in an impaired growth phenotype under γ-radiation. DrsS has also been found to be upregulated under oxidative and genotoxic stresses. Deletion of the drsS gene resulted in the depletion of intracellular concentration of both Mn2+ and Fe2+ by ~70% and 40%, respectively, with a concomitant increase in carbonylation of intracellular protein. Complementation of drsS gene in ΔdrsS cells helped revert its intracellular Mn2+ and Fe2+ concentration and alleviated carbonylation of intracellular proteins. Cells with deleted drsS gene exhibited higher sensitivity to oxidative stress than wild-type cells. Extrachromosomally expressed drsS in ΔdrsS cells retrieved its oxidative stress resistance properties by catalase-mediated detoxification of reactive oxygen species (ROS). In vitro binding assays indicated that DsrS directly interacts with the coding region of the katA transcript, thus possibly protecting it from cellular endonucleases in vivo. This study identified a novel small RNA DrsS and investigated its function under oxidative stress in D. radiodurans. IMPORTANCE: Deinococcus radiodurans possesses an idiosyncratic quality to survive under extreme ionizing radiation and, thus, has evolved with diverse mechanisms which promote the mending of intracellular damages caused by ionizing radiation. As sRNAs play a pivotal role in modulating gene expression to adapt to altered conditions and have been delineated to participate in almost all physiological processes, understanding the regulatory mechanism of sRNAs will unearth many pathways that lead to radioresistance in D. radiodurans. In that direction, DrsS has been identified to be a γ-radiation-induced sRNA, which is also induced by oxidative and genotoxic stresses. DrsS appeared to activate catalase under oxidative stress and detoxify intracellular ROS. This sRNA has also been shown to balance intracellular Mn(II) and Fe concentrations protecting intracellular proteins from carbonylation. This novel mechanism of DrsS identified in D. radiodurans adds substantially to our knowledge of how this bacterium exploits sRNA for its survival under stresses.


Assuntos
Proteínas de Bactérias , Deinococcus , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , Espécies Reativas de Oxigênio , Deinococcus/genética , Deinococcus/efeitos da radiação , Deinococcus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Radiação Ionizante , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Estresse Oxidativo , Raios gama
18.
Methods Mol Biol ; 2760: 479-507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468105

RESUMO

Small regulatory RNAs (sRNAs) are short non-coding RNAs in bacteria capable of post-transcriptional regulation. sRNAs have recently gained attention as tools in basic and applied sciences, for example, to fine-tune genetic circuits or biotechnological processes. Even though sRNAs often have a rather simple and modular structure, the design of functional synthetic sRNAs is not necessarily trivial. This protocol outlines how to use computational predictions and synthetic biology approaches to design, construct, and validate synthetic sRNA functionality for their application in bacteria. The computational tool, SEEDling, matches the optimal seed region with the user-selected sRNA scaffold for repression of target mRNAs. The synthetic sRNAs are assembled using Golden Gate cloning and their functionality is subsequently validated. The protocol uses the acrA mRNA as an exemplary proof-of-concept target in Escherichia coli. Since AcrA is part of a multidrug efflux pump, acrA repression can be revealed by assessing oxacillin susceptibility in a phenotypic screen. However, in case target repression does not result in a screenable phenotype, an alternative validation of synthetic sRNA functionality based on a fluorescence reporter is described.


Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/química , Bactérias/genética , RNA Mensageiro/genética , Escherichia coli/genética , RNA Bacteriano/genética , RNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica
19.
Plant Cell Rep ; 43(4): 85, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453711

RESUMO

KEY MESSAGE: The shock produced by the allopolyploidization process on a potato interspecific diploid hybrid displays a non-random remobilization of the small RNAs profile on a variety of genomic features. Allopolyploidy, a complex process involving interspecific hybridization and whole genome duplication, significantly impacts plant evolution, leading to the emergence of novel phenotypes. Polyploids often present phenotypic nuances that enhance adaptability, enabling them to compete better and occasionally to colonize new habitats. Whole-genome duplication represents a genomic "shock" that can trigger genetic and epigenetic changes that yield novel expression patterns. In this work, we investigate the polyploidization effect on a diploid interspecific hybrid obtained through the cross between the cultivated potato Solanum tuberosum and the wild potato Solanum kurtzianum, by assessing the small RNAs (sRNAs) profile of the parental diploid hybrid and its derived allopolyploid. Small RNAs are key components of the epigenetic mechanisms involved in silencing by RNA-directed DNA Methylation (RdDM). A sRNA sequencing (sRNA-Seq) analysis was performed to individually profile the 21 to 22 nucleotide (21 to 22-nt) and 24-nt sRNA size classes due to their unique mechanism of biogenesis and mode of function. The composition and distribution of different genomic features and differentially accumulated (DA) sRNAs were evaluated throughout the potato genome. We selected a subset of genes associated with DA sRNAs for messenger RNA (mRNA) expression analysis to assess potential impacts on the transcriptome. Interestingly, we noted that 24-nt DA sRNAs that exclusively mapped to exons were correlated with differentially expressed mRNAs between genotypes, while this behavior was not observed when 24-nt DA sRNAs were mapped to intronic regions. These findings collectively emphasize the nonstochastic nature of sRNA remobilization in response to the genomic shock induced by allopolyploidization.


Assuntos
Pequeno RNA não Traduzido , Solanum tuberosum , Solanum tuberosum/genética , Diploide , Genoma , Genômica , RNA Mensageiro , Pequeno RNA não Traduzido/genética
20.
Biotechnol J ; 19(3): e2400022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528342

RESUMO

Rhodococci have been regarded as ideal chassis for biotransformation, biodegradation, and biosynthesis for their unique environmental persistence and robustness. However, most species of Rhodococcus are still difficult to metabolically engineer due to the lack of genetic tools and techniques. In this study, synthetic sRNA strategy was exploited for gene repression in R. erythropolis XP. The synthetic sRNA based on the RhlS scaffold from Pseudomonas aeruginosa functions better in repressing sfgfp expression than those based on E. coli MicC, SgrS, and P. aeruginosa PrrF1-2 scaffold. The RhlS-based sRNAs were applied to study the influence of sulfur metabolism on biodesulfurization (BDS) efficiency in R. erythropolis XP and successfully identified two genes involved in sulfur metabolism that affect the BDS efficiency significantly. The RhlS-based synthetic sRNAs show promise in the metabolic engineering of Rhodococcus and promote the industrial applications of Rhodococcus in environmental remediation and biosynthesis.


Assuntos
Pequeno RNA não Traduzido , Rhodococcus , Escherichia coli/genética , Enxofre/metabolismo , Rhodococcus/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...