Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.907
Filtrar
1.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38757300

RESUMO

Physiological stress such as excessive reactive oxygen species (ROS) production may contribute normal fibroblasts activation into cancer­associated fibroblasts, which serve a crucial role in certain types of cancer such as pancreatic, breast, liver and lung cancer. The present study aimed to examine the cytoprotective effects of luteolin (3',4',5,7­tetrahydroxyflavone) against hydrogen peroxide (H2O2)­generated oxidative stress in lung fibroblasts. To examine the effects of luteolin against H2O2­induced damages, cell viability, sub­G1 cell population, nuclear staining with Hoechst 33342, lipid peroxidation and comet assays were performed. To evaluate the effects of luteolin on the protein expression level of apoptosis, western blot assay was performed. To assess the antioxidant effects of luteolin, detection of ROS using H2DCFDA staining, O2­ and ·OH using electron spin resonance spectrometer and antioxidant enzyme activity was performed. In a cell­free chemical system, luteolin scavenges superoxide anion and hydroxyl radical generated by xanthine/xanthine oxidase and the Fenton reaction (FeSO4/H2O2). Furthermore, Chinese hamster lung fibroblasts (V79­4) treated with H2O2 showed a significant increase in cellular ROS. Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2­treated cells were significantly decreased by luteolin pretreatment. Luteolin increased cell viability, which was impaired following H2O2 treatment and prevented H2O2­mediated apoptosis. Luteolin suppressed active caspase­9 and caspase­3 levels while increasing Bcl­2 expression and decreasing Bax protein levels. Additionally, luteolin restored levels of glutathione that was reduced in response to H2O2. Moreover, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase­1. Overall, these results indicated that luteolin inhibits H2O2­mediated cellular damage by upregulating antioxidant enzymes.


Assuntos
Antioxidantes , Apoptose , Sobrevivência Celular , Fibroblastos , Peróxido de Hidrogênio , Luteolina , Estresse Oxidativo , Espécies Reativas de Oxigênio , Luteolina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Linhagem Celular , Cricetinae , Peroxidação de Lipídeos/efeitos dos fármacos , Cricetulus
2.
Neurochem Res ; 49(7): 1879-1901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755517

RESUMO

Oxidative stress-induced death of neurons and astrocytes contributes to the pathogenesis of numerous neurodegenerative diseases. While significant progress has been made in identifying neuroprotective molecules against neuronal oxidative damage, little is known about their counterparts for astrocytes. Prolactin (PRL), a hormone known to stimulate astroglial proliferation, viability, and cytokine expression, exhibits antioxidant effects in neurons. However, its role in protecting astrocytes from oxidative stress remains unexplored. Here, we investigated the effect of PRL against hydrogen peroxide (H2O2)-induced oxidative insult in primary cortical astrocyte cultures. Incubation of astrocytes with PRL led to increased enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX), resulting in higher total antioxidant capacity. Concomitantly, PRL prevented H2O2-induced cell death, reactive oxygen species accumulation, and protein and lipid oxidation. The protective effect of PRL upon H2O2-induced cell death can be explained by the activation of both signal transducer and activator of transcription 3 (STAT3) and NFE2 like bZIP transcription factor 2 (NRF2) transduction cascades. We demonstrated that PRL induced nuclear translocation and transcriptional upregulation of Nrf2, concurrently with the transcriptional upregulation of the NRF2-dependent genes heme oxygenase 1, Sod1, Sod2, and Gpx1. Pharmacological blockade of STAT3 suppressed PRL-induced transcriptional upregulation of Nrf2, Sod1 and Gpx1 mRNA, and SOD and GPX activities. Furthermore, genetic ablation of the PRL receptor increased astroglial susceptibility to H2O2-induced cell death and superoxide accumulation, while diminishing their intrinsic antioxidant capacity. Overall, these findings unveil PRL as a potent antioxidant hormone that protects astrocytes from oxidative insult, which may contribute to brain neuroprotection.


Assuntos
Antioxidantes , Astrócitos , Morte Celular , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Prolactina , Fator de Transcrição STAT3 , Transdução de Sinais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Prolactina/farmacologia , Prolactina/metabolismo , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Células Cultivadas , Camundongos , Ratos
3.
Biomolecules ; 14(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38785971

RESUMO

Cannabidiol (CBD) appears to possess some neuroprotective properties, but experimental data are still inconsistent. Therefore, this in vitro study aimed to compare the effects of CBD in a wide range of concentrations on oxidative stress and excitotoxic-related cell damage. Results showed that low concentrations of CBD ameliorated the H2O2-evoked cell damage of primary cortical neuronal cell culture. However, higher concentrations of CBD alone (5-25 µM) decreased the viability of cortical neurons in a concentration-dependent manner and aggravated the toxic effects of hydrogen peroxide (H2O2). Neuroprotection mediated by CBD in primary neurons against H2O2 was not associated with a direct influence on ROS production nor inhibition of caspase-3, but we found protective effects of CBD at the level of mitochondrial membrane potential and DNA fragmentation. However, CBD had no protective effect on the glutamate-induced cell damage of cortical neurons, and in higher concentrations, it enhanced the toxic effects of this cell-damaging factor. Likewise, CBD, depending on its concentration, at least did not affect or even enhance cortical cellular damage exposed to oxygen-glucose deprivation (OGD). Finally, we showed that CBD in submicromolar or low micromolar concentrations significantly protected human neuronal-like SH-SY5Y cells against H2O2- and 6-hydroxydopamine (6-OHDA)-induced cell damage. Our data indicate that CBD has a dual effect on oxidative stress-induced neuronal death-in low concentrations, it is neuroprotective, but in higher ones, it may display neurotoxic activity. On the other hand, in excitotoxic-related models, CBD was ineffective or enhanced cell damage. Our data support the notion that the neuroprotective effects of CBD strongly depend on its concentration and experimental model of neuronal death.


Assuntos
Canabidiol , Peróxido de Hidrogênio , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Canabidiol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Humanos , Animais , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ratos , Linhagem Celular Tumoral , Células Cultivadas , Ácido Glutâmico/toxicidade
4.
Sci Rep ; 14(1): 11931, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789509

RESUMO

Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.


Assuntos
Apoptose , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , Lactatos , MicroRNAs , Estresse Oxidativo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Lactatos/farmacologia , Lactatos/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
5.
Cell Biol Toxicol ; 40(1): 39, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789630

RESUMO

Hypertrophic scar (HS) is characterized by excessive collagen deposition and myofibroblasts activation. Endothelial-to-mesenchymal transition (EndoMT) and oxidative stress were pivotal in skin fibrosis process. Exosomes derived from adipose tissue-derived stem cells (ADSC-Exo) have the potential to attenuate EndoMT and inhibit fibrosis. The study revealed reactive oxygen species (ROS) levels were increased during EndoMT occurrence of dermal vasculature of HS. The morphology of endothelial cells exposure to H2O2, serving as an in vitro model of oxidative stress damage, transitioned from a cobblestone-like appearance to a spindle-like shape. Additionally, the levels of endothelial markers decreased in H2O2-treated endothelial cell, while the expression of fibrotic markers increased. Furthermore, H2O2 facilitated the accumulation of ROS, inhibited cell proliferation, retarded its migration and suppressed tube formation in endothelial cell. However, ADSC-Exo counteracted the biological effects induced by H2O2. Subsequently, miRNAs sequencing analysis revealed the significance of mir-486-3p in endothelial cell exposed to H2O2 and ADSC-Exo. Mir-486-3p overexpression enhanced the acceleration of EndoMT, its inhibitors represented the attenuation of EndoMT. Meanwhile, the target regulatory relationship was observed between mir-486-3p and Sirt6, whereby Sirt6 exerted its anti-EndoMT effect through Smad2/3 signaling pathway. Besides, our research had successfully demonstrated the impact of ADSC-Exo and mir-486-3p on animal models. These findings of our study collectively elucidated that ADSC-Exo effectively alleviated H2O2-induced ROS and EndoMT by inhibiting the mir-486-3p/Sirt6/Smad axis.


Assuntos
Tecido Adiposo , Exossomos , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , MicroRNAs , Estresse Oxidativo , Transdução de Sinais , Sirtuínas , Animais , Humanos , Tecido Adiposo/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , MicroRNAs/metabolismo , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo , Sirtuínas/genética , Proteínas Smad/metabolismo , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos
6.
Exp Eye Res ; 244: 109919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729254

RESUMO

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.


Assuntos
Âmnio , Exossomos , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Degeneração Retiniana , Epitélio Pigmentado da Retina , Transdução de Sinais , Humanos , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Âmnio/citologia , Meios de Cultivo Condicionados/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/etiologia , Proteína Forkhead Box O3/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Apoptose , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial , Western Blotting , Animais , Sobrevivência Celular , Peróxido de Hidrogênio/toxicidade
7.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611695

RESUMO

Oxidative stress plays a crucial role in the pathogenesis of many diseases. Esculetin is a natural coumarin compound with good antioxidant and anti-inflammatory properties. However, whether esculetin can protect HepG2 cells through inhibiting H2O2-induced apoptosis and pyroptosis is still ambiguous. Therefore, this study aimed to investigate the protective effects and mechanisms of esculetin against oxidative stress-induced cell damage in HepG2 cells. The results of this study demonstrate that pretreatment with esculetin could significantly improve the decrease in cell viability induced by H2O2 and reduce intracellular ROS levels. Esculetin not only apparently reduced the apoptotic rates and prevented MMP loss, but also markedly decreased cleaved-Caspase-3, cleaved-PARP, pro-apoptotic protein (Bax), and MMP-related protein (Cyt-c) expression, and increased anti-apoptotic protein (Bcl-2) expression in H2O2-induced HepG2 cells. Meanwhile, esculetin also remarkably reduced the level of LDH and decreased the expression of the pyroptosis-related proteins NLRP3, cleaved-Caspase-1, Il-1ß, and GSDMD-N. Furthermore, esculetin pretreatment evidently downregulated the protein expression of p-JNK, p-c-Fos, and p-c-Jun. Additionally, anisomycin, a specific activator of JNK, blocked the protection of esculetin against H2O2-induced HepG2 cells apoptosis and pyroptosis. In conclusion, esculetin can protect HepG2 cells against H2O2-induced oxidative stress, apoptosis, and pyroptosis via inhibiting the JNK signaling pathway. These findings indicate that esculetin has the potential to be used as an antioxidant that improves oxidative stress-related diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Umbeliferonas , Humanos , Piroptose , Peróxido de Hidrogênio/toxicidade , Antioxidantes/farmacologia , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Estresse Oxidativo
8.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Morte Celular , Etanol , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Sterculia , Animais , Ratos , Caspase 3/metabolismo , Etanol/administração & dosagem , Etanol/química , Etanol/toxicidade , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Ratos Wistar , Sterculia/química , Folhas de Planta/química , Plantas Medicinais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Lactato Desidrogenases/metabolismo , Proteína GAP-43/análise , Apoptose/genética , Estresse Oxidativo/genética , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Masculino , Feminino , Células Cultivadas , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolismo Secundário
9.
BMC Complement Med Ther ; 24(1): 148, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580956

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of stacked ß-amyloid peptides in the brain and associated with the generation of oxidative stress. So far, there is no cure for AD or a way to stop its progression. Although the neuroprotective effects of Ganoderma lucidum aqueous extract and G. lucidum-derived triterpenoids and polysaccharides have been reported, the influence of G. lucidum-fermented crops on AD still lacks clarity. METHODS: This study aimed to investigate the protective effect of G. lucidum-fermented crop extracts against hydrogen peroxide- or ß-amyloid peptide (Aß25-35)-induced damage in human neuroblastoma SH-SY5Y cells. RESULTS: Various extracts of G. lucidum-fermented crops, including extract A: 10% ethanol extraction using microwave, extract B: 70˚C water extraction, and extract C: 100˚C water extraction followed by ethanol precipitation, were prepared and analyzed. Extract B had the highest triterpenoid content. Extract C had the highest total glucan content, while extract A had the highest gamma-aminobutyric acid (GABA) content. The median inhibitory concentration (IC50, mg/g) for DPPH and ABTS scavenging activity of the fermented crop extracts was significantly lower than that of the unfermented extract. Pretreatment with these extracts significantly increased the cell viability of SH-SY5Y cells damaged by H2O2 or Aß25-35, possibly by reducing cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Moreover, extract B markedly alleviated the activity of acetylcholinesterase (AChE), which is crucial in the pathogenesis of AD. CONCLUSION: These results clearly confirmed the effects of G. lucidum-fermented crop extracts on preventing against H2O2- or Aß25-35-induced neuronal cell death and inhibiting AChE activity, revealing their potential in management of AD.


Assuntos
Neuroblastoma , Reishi , Humanos , Peróxido de Hidrogênio/toxicidade , Acetilcolinesterase , Neuroblastoma/patologia , Antioxidantes/farmacologia , Peptídeos beta-Amiloides/toxicidade , Etanol , Água
10.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38663003

RESUMO

Vascular endothelial cell premature senescence plays an important part in stroke. Many microRNAs (miRNAs) are known to be involved in the pathological process of vascular endothelial cell premature senescence. The present study aimed to investigate the mechanism of hydrogen peroxide (H2O2)-induced premature senescence in human umbilical vein endothelial cells (HUVECs) and effect of miR-142-3p on hydrogen peroxide (H2O2)-induced premature senescence. HUVECs were exposed to H2O2 to establish a model premature senescence in endothelial cells. CCK-8 assay was performed to detect cell viability. Senescence-associated ß-galactosidase staining assay and senescence-related proteins p16 and p21 were used to detect changes in the degree of cell senescence. RT-qPCR and Western blot were conducted to measure mRNA and protein levels, respectively. The scratch wound-healing assay, transwell assay, and EdU assay were performed to evaluate the ability of migration and proliferation, respectively. miRNA-142-3p and silencing information regulator 2 related enzyme 1 (SIRT1) binding was verified using Targetscan software and a dual-luciferase assay. We found that miRNA-142-3p is abnormally up-regulated in HUVECs treated with H2O2. Functionally, miRNA-142-3p inhibition may mitigate the degree of HUVEC senescence and improve HUVEC migration and proliferation. Mechanistically, SIRT1 was validated to be targeted by miRNA-142-3p in HUVECs. Moreover, SIRT1 inhibition reversed the effects of miRNA-142-3p inhibition on senescent HUVECs exposed to H2O2. To our knowledge, this is the first study to show that miRNA-142-3p ameliorates H2O2-induced HUVECs premature senescence by targeting SIRT1 and may shed light on the role of the miR-142-3p/SIRT1 axis in stroke treatment.


Assuntos
Proliferação de Células , Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , MicroRNAs , Sirtuína 1 , Humanos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Senescência Celular/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Transdução de Sinais/efeitos dos fármacos
11.
J Ethnopharmacol ; 329: 118177, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604510

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis decumbens (Thunb.) Pers. was used as stasis-eliminating medicine traditionally to treat cardiovascular disease potentially attributed to its antithrombotic effect, but lack of pharmacological research on it. AIM OF THE STUDY: To investigate the antithrombotic effect of C. decumbens and its preliminary mechanism. MATERIALS AND METHODS: A carrageenan-induced mouse thrombus model and adenosine diphosphate stimulated platelet aggregation of rabbits were used to confirm the inhibitory effect of C. decumbens extract and compounds on thrombosis in vivo. Then, H2O2-induced human umbilical vein endothelial cells (HUVECs) injury model was further adopted to verify the effects of bioactive compounds in vitro. Moreover, in silico network pharmacology analyses and molecular docking were performed to predict the underlying mechanisms, targets, and pathways, and which were further confirmed through western blotting assay. RESULTS: The administration of total extract (TE), total alkaloids (TA) and tetrahydropalmatine (TET) resulted in a significant reduction in black tail thrombus and congestion, along with a decreasing in platelet aggregation of rabbits. A superior antithrombotic effect indicated the bioactive fraction, and then the isolated bioactive compounds, TET and protopine (PRO) increased cell survival, and decreased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release in H2O2-induced HUVECs injury model. Moreover, the two alkaloids targeted 33 major proteins and influenced 153 pathways in network pharmacology prediction. Among these, HSP90AA1, COX-2, NF-κB/p65, MMP1 and HIF-1α were the key proteins and PI3K-Akt emerged as the major signaling pathway. Further western blotting results supported that five key proteins were downregulated by the two bioactive compounds in H2O2-stimulated HUVECs model. CONCLUSION: C. decumbens exerted protective effect on thrombosis through inhibiting PI3K-Akt pathway and related key proteins, which supported the traditional use and presented potential antithrombotic alkaloids for further investigation.


Assuntos
Corydalis , Fibrinolíticos , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Trombose , Animais , Corydalis/química , Coelhos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/tratamento farmacológico , Extratos Vegetais/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Fibrinolíticos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Simulação de Acoplamento Molecular , Alcaloides de Berberina/farmacologia , Peróxido de Hidrogênio/toxicidade , Modelos Animais de Doenças , Carragenina , Espécies Reativas de Oxigênio/metabolismo
12.
Reprod Toxicol ; 126: 108585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574953

RESUMO

Oxidative stress has been implicated in numerous pregnancy-related disorders. Biologically active plant secondary metabolites, which are present in everyday diet, could prove effective therapeutic agents in preventing these disorders. This study evaluated effects of taxifolin (dihydroquercetin) on ROS production, markers of oxidative damage to lipids and proteins, activity of antioxidant enzymes and production of pro-inflammatory cytokines in H2O2-induced oxidative stress in trophoblast HTR-8/SVneo cells. Taxifolin in 10 µM and 100 µM concentrations attenuated oxidative damage to lipids and proteins, as evidenced by a decrease in MDA content, extracellular LDH activity, carbonyl groups and nitrite contents. A reduction in the activity of antioxidant enzymes SOD, CAT and GPx in cells pre-treated with taxifolin, prior to H2O2 exposure, was also observed, along with a reduction in intracellular ROS production. Both evaluated concentrations of taxifolin showed anti-inflammatory activity in trophoblast cells, by reducing production of pro-inflammatory cytokines IL-1ß and IL-6. In this model of H2O2-induced oxidative stress, taxifolin showed marked antioxidative and anti-inflammatory activities in trophoblast cells, adding further evidence of its protective effects and showing potential as a therapeutic agent in preventing adverse pregnancy outcomes.


Assuntos
Anti-Inflamatórios , Antioxidantes , Peróxido de Hidrogênio , Estresse Oxidativo , Quercetina , Espécies Reativas de Oxigênio , Trofoblastos , Quercetina/análogos & derivados , Quercetina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Humanos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Anti-Inflamatórios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Catalase/metabolismo
13.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637117

RESUMO

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Assuntos
Senescência Celular , Técnicas de Cocultura , Células Epiteliais , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , MicroRNAs , Proteínas Oncogênicas , Timo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Humanos , Células Epiteliais/metabolismo , Cordão Umbilical/citologia , Timo/citologia , Timo/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclina E/metabolismo , Ciclina E/genética , Biomarcadores/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética
14.
Food Chem Toxicol ; 186: 114561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438008

RESUMO

This study investigated the protective effects of L-theanine on hydrogen peroxide (H2O2)-induced intestinal barrier dysfunction in IPEC-J2 cells. Results showed that L-theanine reduced H2O2-induced IPEC-J2 cells inflammation and apoptosis, and decreased protein phosphorylation levels of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa-B (NF-κB). The p38 MAPK inhibitor (SB203580) decreased oxidative stress, the protein expression of phosphorylation of p38 MAPK and NF-κB, the H2O2-induced increase in mRNA expression of pro-apoptotic and pro-inflammatory related genes expression and secretion, and tight junction protein related genes expression, which was similar to the effect of L-theanine. In conclusion, L-theanine inhibited H2O2-induced oxidative damage and inflammatory reaction, eliminated apoptosis, and protected intestinal epithelial barrier damage by inhibiting the activation of p38 MAPK signaling pathway.


Assuntos
Glutamatos , Peróxido de Hidrogênio , Enteropatias , Humanos , Peróxido de Hidrogênio/toxicidade , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inflamação , Células Epiteliais/metabolismo
15.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38451099

RESUMO

In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.


Assuntos
Aquaporinas , Astrócitos , Proteínas do Olho , Neurônios , Neuroproteção , Estresse Oxidativo , Humanos , Aquaporinas/genética , Aquaporinas/metabolismo , Astrócitos/metabolismo , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Lipopolissacarídeos/farmacologia , Neurônios/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo
16.
Biomed Pharmacother ; 174: 116489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513595

RESUMO

Maximakinin (MK), a homolog of bradykinin (BK), is extracted from skin venom of the Chinese toad Bombina maxima. Although MK has a good antihypertensive effect, its effect on myocardial cells is unclear. This study investigates the protective effect of MK on hydrogen peroxide (H2O2)-induced oxidative damage in rat cardiac H9c2 cells and explores its mechanism of action. A 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay was selected to detect the effect of MK on H9c2 cell viability, while flow cytometry was used to investigate the influence of MK and H2O2 on intracellular reactive oxygen species (ROS) levels. Protein expression changes were detected by western blot. In addition, specific protein inhibitors were applied to confirm the induction of ROS-related signaling pathways by MK. MTT assay results show that MK significantly reversed H2O2-induced cell growth inhibition. Flow cytometry Dichlorodihydrofluorescein diacetate (DCFH-DA) staining shows that MK significantly reversed H2O2-induced increases in intracellular ROS production in H9c2 cells. Moreover, the addition of specific protein inhibitors suggests that MK reverses H2O2-induced oxidative damage by activating AMP-activated protein kinase (AMPK)/protein kinase B (Akt) and AMPK/extracellular-regulated kinase 1/2 (ERK1/2) pathways. Finally, an inhibitor of bradykinin B2 receptors (B2Rs), HOE-140, was applied to investigate potential targets of MK in H9c2 cells. HOE-140 significantly blocked induction of AMPK/Akt and AMPK/ERK1/2 pathways by MK, suggesting a potentially important role for B2Rs in MK reversing H2O2-induced oxidative damage. Above all, MK protects against oxidative damage by inhibiting H2O2-induced ROS production in H9c2 cells. The protective mechanism of MK may be achieved by activation of B2Rs to activate downstream AMPK/Akt and AMPK/ERK1/2 pathways.


Assuntos
Proteínas Quinases Ativadas por AMP , Peróxido de Hidrogênio , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Animais , Peróxido de Hidrogênio/toxicidade , Ratos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Bradicinina/farmacologia , Bradicinina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos
17.
Environ Toxicol ; 39(6): 3537-3547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469959

RESUMO

The antioxidant properties of crocin are attracting interest, yet the underlying mechanisms by which crocin mitigates oxidative stress-induced intestinal damage have not been determined. This study aimed to elucidate the effects of crocin on oxidative stress, apoptosis, and intestinal epithelial injury in intestinal epithelial cells (IPEC-J2). Using an H2O2-induced oxidative stress model in IPEC-J2 cells, crocin was added to assess its effects. Cell viability and apoptosis were evaluated using methyl thiazolyl tetrazolium assays and flow cytometry. Additionally, oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), reactive oxygen species (ROS), and malondialdehyde (MDA), were quantified. We investigated, in which cell oxidation and apoptosis were measured at the gene and protein levels and employed transcriptome analysis to probe the mechanism of action and validate relevant pathways. The results showed that crocin ameliorates H2O2-induced oxidative stress by reducing ROS and MDA levels and by countering the reductions in CAT, total antioxidant capacity, and SOD. Crocin also attenuates the upregulation of key targets in the Nrf2 pathway. Furthermore, it effectively mitigated IPEC-J2 cell apoptosis caused by oxidative stress, as evidenced by changes in cell cycle factor expression, apoptosis rate, mitochondrial membrane potential, and apoptosis pathway activity. In addition, crocin preserves the integrity of the intestinal barrier by protecting tight junction proteins against oxidative stress. Transcriptome sequencing analysis suggested that the mitochondrial pathway may be a crucial mechanism through which crocin exerts its protective effects. In summary, crocin decreases oxidative stress molecule formation, inhibits Nrf2 pathway activity, prevents apoptosis-induced damage, enhances oxidative stress resistance in IPEC-J2 cells, and maintains redox balance in the pig intestine.


Assuntos
Antioxidantes , Apoptose , Carotenoides , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Carotenoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Linhagem Celular , Peróxido de Hidrogênio/toxicidade , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Suínos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
18.
J Toxicol Sci ; 49(3): 95-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432956

RESUMO

This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.


Assuntos
Agranulocitose , Antineoplásicos , Pirazinas , Quinolinas , Humanos , Cloraminas , Glutationa , Células HL-60 , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio , Agranulocitose/induzido quimicamente , Cloretos , Piperazinas
19.
Nihon Shokakibyo Gakkai Zasshi ; 121(3): 230-236, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38462471

RESUMO

A 40-year-old woman was admitted to our hospital by ambulance due to accidental ingestion of 100ml of 35% hydrogen peroxide. Although the patient suffered from frequent vomiting, abdominal distension, and abdominal pain, signs of peritonitis were not observed. An abdominal computed tomography examination demonstrated obvious gas images in the gastric wall and intrahepatic portal veins. Upper gastrointestinal endoscopy revealed mucosal redness, swelling, and erosion from the lower part of the esophagus to the duodenum. Portal venous gas and upper gastrointestinal mucosal injury due to accidental hydrogen peroxide ingestion were suspected. As the vital signs were stable and there were no signs peritoneal irritation or neurological symptoms, she was treated medically with vonoprazan, rebamipide, and sodium alginate. The next day, abdominal symptoms immediately improved and 3 days later, hepatic portal venous gas had disappeared on ultrasonography. She was discharged on the 5th day after admission. Two months later, upper gastrointestinal endoscopy showed improvement in inflammatory findings. We report a remarkable case of hepatic portal venous gas and upper gastrointestinal mucosal injury and elucidate the endoscopic findings associated with hydrogen peroxide ingestion.


Assuntos
Embolia Aérea , Peróxido de Hidrogênio , Adulto , Feminino , Humanos , Ingestão de Alimentos , Embolia Aérea/induzido quimicamente , Embolia Aérea/diagnóstico por imagem , Peróxido de Hidrogênio/toxicidade , Inflamação , Fígado , Veia Porta/diagnóstico por imagem
20.
Exp Eye Res ; 242: 109852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460719

RESUMO

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Assuntos
Apoptose , Ceramidas , Ciclosserina , Estresse Oxidativo , Esfingolipídeos , Estresse Oxidativo/efeitos dos fármacos , Ciclosserina/farmacologia , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Camundongos , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Western Blotting , Inibidores Enzimáticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...