Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Fish Shellfish Immunol ; 149: 109577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643957

RESUMO

A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.


Assuntos
Doenças dos Peixes , Imunidade Inata , Infecções por Rhabdoviridae , Animais , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Rhabdoviridae/fisiologia , Índia , Perciformes/imunologia , Perciformes/virologia
2.
J Vet Diagn Invest ; 36(3): 389-392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331725

RESUMO

Viral nervous necrosis (viral encephalopathy and retinopathy) is caused by piscine nodavirus (Nodaviridae, Betanodavirus). Since 1986, this highly infectious virus has caused mass mortalities of up to 100% in farmed saltwater and freshwater fish around the world (with the exception of South America and Antarctica), affecting >60 species across 10 orders. The Atlantic blue marlin (Makaira nigricans Lacépède, 1802) is a top-level predator found throughout the tropical waters of the Atlantic and Indo-Pacific oceans. Despite their popularity as a sportfish, relatively little is known about the Atlantic blue marlin and other billfish. We describe here chronic betanodavirus infection in a juvenile Atlantic blue marlin, which is, to our knowledge, the first report of disease in M. nigricans.


Assuntos
Doenças dos Peixes , Meningoencefalite , Nodaviridae , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/patologia , Meningoencefalite/veterinária , Meningoencefalite/virologia , Meningoencefalite/patologia , Infecções por Mononegavirales/veterinária , Infecções por Mononegavirales/virologia , Infecções por Mononegavirales/patologia , Nodaviridae/isolamento & purificação , Perciformes/virologia
3.
J Fish Dis ; 47(6): e13930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38349841

RESUMO

Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Técnicas de Amplificação de Ácido Nucleico , Perciformes , Sensibilidade e Especificidade , Animais , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Iridovirus/isolamento & purificação , Iridovirus/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Viral/genética , Proteínas do Capsídeo/genética
4.
J Virol ; 97(2): e0003523, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744958

RESUMO

Asp-Glu-Ala-Asp (DEAD) box helicase 3 X-linked (DDX3X) plays important regulatory roles in the replication of many viruses. However, the role of DDX3X in rhabdovirus replication has seldomly been investigated. In this study, snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was used to study the role of DDX3X in rhabdovirus replication. DDX3X was identified as an interacting partner of SHVV phosphoprotein (P). The expression level of DDX3X was increased at an early stage of SHVV infection and then decreased to a normal level at a later infection stage. Overexpression of DDX3X promoted, while knockdown of DDX3X using specific small interfering RNAs (siRNAs) suppressed, SHVV replication, indicating that DDX3X was a proviral factor for SHVV replication. The N-terminal and core domains of DDX3X (DDX3X-N and DDX3X-Core) were determined to be the regions responsible for its interaction with SHVV P. Overexpression of DDX3X-Core suppressed SHVV replication by competitively disrupting the interaction between full-length DDX3X and SHVV P, suggesting that full-length DDX3X-P interaction was required for SHVV replication. Mechanistically, DDX3X-mediated promotion of SHVV replication was due not to inhibition of interferon expression but to maintenance of the stability of SHVV P to avoid autophagy-lysosome-dependent degradation. Collectively, our data suggest that DDX3X is hijacked by SHVV P to ensure effective replication of SHVV, which suggests an important anti-SHVV target. This study will help elucidate the role of DDX3X in regulating the replication of rhabdoviruses. IMPORTANCE Growing evidence has suggested that DDX3X plays important roles in virus replication. In one respect, DDX3X inhibits the replication of viruses, including hepatitis B virus, influenza A virus, Newcastle disease virus, duck Tembusu virus, and red-spotted grouper nervous necrosis virus. In another respect, DDX3X is required for the replication of viruses, including hepatitis C virus, Japanese encephalitis virus, West Nile virus, murine norovirus, herpes simplex virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because DDX3X has rarely been investigated in rhabdovirus replication, this study aimed at investigating the role of DDX3X in rhabdovirus replication by using the fish rhabdovirus SHVV as a model. We found that DDX3X was required for SHVV replication, with the mechanism that DDX3X interacts with and maintains the stability of SHVV phosphoprotein. Our data provide novel insights into the role of DDX3X in virus replication and will facilitate the design of antiviral drugs against rhabdovirus infection.


Assuntos
RNA Helicases DEAD-box , Perciformes , Fosfoproteínas , Vesiculovirus , Replicação Viral , Animais , RNA Helicases DEAD-box/genética , Peixes , Perciformes/virologia , RNA Interferente Pequeno , Vesiculovirus/patogenicidade , Vesiculovirus/fisiologia , Proteínas Virais
5.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215802

RESUMO

Iridoviruses are an important pathogen of ectothermic vertebrates and are considered a significant threat to aquacultural fish production. Recently, one of the most economically important marine species in China, the large yellow croaker (Larimichthys crocea), has been increasingly reported to be the victim of iridovirus disease. In this study, we isolated and identified a novel iridovirus, LYCIV-ZS-2020, from cage-cultured large yellow croaker farms in Zhoushan island, China. Genome sequencing and subsequent phylogenetic analyses showed that LYCIV-ZS-2020 belongs to the genus Megalocytivirus and is closely related to the Pompano iridoviruses isolated in the Dominican Republic. LYCIV-ZS-2020 enriched from selected tissues of naturally infected large yellow croaker was used in an artificial infection trial and the results proved its pathogenicity in large yellow croaker. This is the first systematic research on the genetic and pathogenic characterization of iridovirus in large yellow croakers, which expanded our knowledge of the iridovirus.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridovirus/genética , Iridovirus/isolamento & purificação , Perciformes/crescimento & desenvolvimento , Animais , Aquicultura , China , Infecções por Vírus de DNA/virologia , Genoma Viral , Iridovirus/classificação , Iridovirus/patogenicidade , Perciformes/virologia , Filogenia , Virulência
6.
Fish Shellfish Immunol ; 120: 686-694, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968711

RESUMO

c-Myc is a transcription factor and master regulator of cellular metabolism, and plays a critical role in virus replication by regulating glutamine metabolism. In this study, the open-reading frame (ORF) of c-Myc, designated as Sc-c-Myc, was cloned and sequenced. Multiple alignment of the amino acid sequence showed that the conserved domain of Sc-c-Myc, including the helix-loop-helix-zipper (bHLHzip) domain and Myc N-terminal region, shared high identities with other homologues from different species. Sc-c-Myc mRNA was widely expressed in the examined tissues of mandarin fish, and the higher mRNA levels was expressed in hind kidney. Moreover, mRNA and protein level of Sc-c-Myc was significantly increased in the Chinese perch brain (CPB) cells and spleen of mandarin fish post infection with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV). Sc-c-Myc overexpression promoted ISKNV and SCRV replication, on the contrary, knocking down Sc-c-Myc restrained ISKNV and SCRV replication. These results indicated that Sc-c-Myc involved in ISKNV and SCRV replication and proliferation, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Perciformes , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Iridoviridae , Perciformes/genética , Perciformes/virologia , RNA Mensageiro , Rhabdoviridae
7.
Microbiol Spectr ; 9(3): e0148721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817277

RESUMO

Viral diseases of the central nervous system (CNS) represent a major global health concern. Difficulties in treating these diseases are caused mainly by the biological tissues and barriers, which hinder the transport of drugs into the CNS. To counter this, a nanobody-mediated virus-targeting drug delivery platform (SWCNTs-P-A-Nb) is constructed for CNS viral disease therapy. Viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), is employed as a disease model. SWCNTs-P-A-Nb is successfully constructed by employing single-walled carbon nanotubes, amantadine, and NNV-specific nanobody (NNV-Nb) as the nanocarrier, anti-NNV drug, and targeting ligand, respectively. Results showed that SWCNTs-P-A-Nb has a good NNV-targeting ability in vitro and in vivo, improving the specific distribution of amantadine in NNV-infected sites under the guidance of NNV-Nb. SWCNTs-P-F-A-Nb can pass through the muscle and gill and be excreted by the kidney. SWCNTs-P-A-Nb can transport amantadine in a fast manner and prolong the action time, improving the anti-NNV activity of amantadine. Results so far have indicated that the nanobody-mediated NNV-targeting drug delivery platform is an effective method for VER therapy, providing new ideas and technologies for control of the CNS viral diseases. IMPORTANCE CNS viral diseases have resulted in many deadly epidemics throughout history and continue to pose one of the greatest threats to public health. Drug therapy remains challenging due to the complex structure and relative impermeability of the biological tissues and barriers. Therefore, development in the intelligent drug delivery platform is highly desired for CNS viral disease therapy. In the study, a nanobody-mediated virus-targeting drug delivery platform is constructed to explore the potential application of targeted therapy in CNS viral diseases. Our findings hold great promise for the application of targeted drug delivery in CNS viral disease therapy.


Assuntos
Amantadina/farmacologia , Viroses do Sistema Nervoso Central/terapia , Viroses do Sistema Nervoso Central/veterinária , Sistemas de Liberação de Medicamentos/métodos , Nodaviridae/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Sistema Nervoso Central/virologia , Encefalite Viral/terapia , Encefalite Viral/virologia , Peixes , Nanotubos de Carbono , Nodaviridae/imunologia , Perciformes/virologia , Anticorpos de Domínio Único/imunologia
8.
J Biol Chem ; 297(4): 101199, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34536420

RESUMO

Growing numbers of studies have shown that circular RNAs (circRNAs) can function as regulatory factors to regulate the innate immune response, cell proliferation, cell migration, and other important processes in mammals. However, the function and regulatory mechanism of circRNAs in lower vertebrates are still unclear. Here, we discovered a novel circRNA derived from the gene encoding Bcl-2-like protein 1 (BCL2L1) gene, named circBCL2L1, which was related to the innate immune responses in teleost fish. Results indicated that circBCL2L1 played essential roles in host antiviral immunity and antibacterial immunity. Our study also identified a microRNA, miR-30c-3-3p, which could inhibit the innate immune response by targeting inflammatory mediator TRAF6. And TRAF6 is a key signal transduction factor in innate immune response mediated by TLRs. Moreover, we also found that the antiviral and antibacterial effects inhibited by miR-30c-3-3p could be reversed with the expression of circBCL2L1. Our data revealed that circBCL2L1 functioned as a competing endogenous RNA (ceRNA) of TRAF6 by competing for binding with miR-30c-3-3p, leading to activation of the NF-κB/IRF3 inflammatory pathway and then enhancing the innate immune responses. Our results suggest that circRNAs can play an important role in the innate immune response of teleost fish.


Assuntos
Proteínas de Peixes/imunologia , Imunidade Inata , MicroRNAs/imunologia , Perciformes/imunologia , RNA Circular/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Animais , Perciformes/microbiologia , Perciformes/virologia
9.
Cells ; 10(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572091

RESUMO

The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.


Assuntos
Proliferação de Células , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Brânquias/citologia , Brânquias/fisiologia , Perciformes/fisiologia , Animais , Linhagem Celular , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Brânquias/virologia , Novirhabdovirus/fisiologia , Perciformes/classificação , Perciformes/virologia
10.
Fish Shellfish Immunol ; 118: 219-227, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509626

RESUMO

Remedies toward sustainable aquaculture rely upon research that unveils the molecular mechanisms behind host immunity and their interactions with pathogens. Antiviral defense is a major innate immune response in fish. The antiviral protein GCHV-induced gene-2 (Gig2), a member of the interferon-stimulated gene (ISG), was identified and characterized from rockfish (Sebastes schlegelii). Gig2 exists in two isoforms, namely, SsGig2-I1 and SsGig2-I2, in rockfish with lengths of 163 and 223 bp, respectively. Bioinformatic analysis indicated the availability of poly (ADP-ribose) polymerase domain in both proteins, and 51.3% identity and 71.3% similarity between both isoforms were observed. The basal expression pattern revealed the highest tissue-specific expression in rockfish gills for both isoforms. The immune challenge experiment disclosed a distinctive and strong expression of each transcript in the presence of poly I:C. Both isoforms are localized in the endoplasmic reticulum. Interferon (IFN) pathway gene analysis revealed no significant upregulation of IFN related genes. Viral hemorrhagic septicemia virus (VHSV) gene expression analysis revealed strong downregulation of viral transcripts after 48 h of infection in the presence of Gig2 isoforms. Collectively, these results indicate the protective role of Gig2 in rockfish against VHSV infection and help broaden our understanding of the innate immunity of fish.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Novirhabdovirus , Perciformes , Poli(ADP-Ribose) Polimerases , Infecções por Rhabdoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Interferons/imunologia , Isoenzimas/química , Novirhabdovirus/imunologia , Perciformes/imunologia , Perciformes/virologia , Poli(ADP-Ribose) Polimerases/química , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia
11.
Arch Virol ; 166(11): 3061-3074, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34462803

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) is a fish-pathogenic virus belonging to the genus Megalocytivirus of the family Iridoviridae. In 2018, disease occurrences (40-50% cumulative mortality) associated with ISKNV infection were reported in grown-out Asian sea bass (Lates calcarifer) cultured in an inland freshwater system in Thailand. Clinical samples were collected from seven distinct farms located in the eastern and central regions of Thailand. The moribund fish showed various abnormal signs, including lethargy, pale gills, darkened body, and skin hemorrhage, while hypertrophied basophilic cells were observed microscopically in gill, liver, and kidney tissue. ISKNV infection was confirmed on six out of seven farms using virus-specific semi-nested PCR. The MCP and ATPase genes showed 100% sequence identity among the virus isolates, and the virus was found to belong to the ISKNV genotype I clade. Koch's postulates were later confirmed by challenge assay, and the mortality of the experimentally infected fish at 21 days post-challenge was 50-90%, depending on the challenge dose. The complete genome of two ISKNV isolates, namely KU1 and KU2, was recovered directly from the infected specimens using a shotgun metagenomics approach. The genome length of ISKNV KU1 and KU2 was 111,487 and 111,610 bp, respectively. In comparison to closely related ISKNV strains, KU1 and KU2 contained nine unique genes, including a caspase-recruitment-domain-containing protein that is potentially involved in inhibition of apoptosis. Collectively, this study indicated that inland cultured Asian sea bass are infected by homologous ISKNV strains. This indicates that ISKNV genotype I should be prioritized for future vaccine research.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridoviridae/genética , Perciformes/virologia , Adenosina Trifosfatases/genética , Animais , Aquicultura/estatística & dados numéricos , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/etiologia , Doenças dos Peixes/mortalidade , Água Doce , Genoma Viral , Genótipo , Iridoviridae/isolamento & purificação , Iridoviridae/patogenicidade , Filogenia , Reação em Cadeia da Polimerase , Tailândia/epidemiologia
12.
Fish Shellfish Immunol ; 117: 17-23, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34280519

RESUMO

Iridovirus can cause a mass of death in grouper, leading to huge economic loss in recent years. At present, practical vaccine is still the best way to control the outbreak of this virus. Many researches had indicated that the major capsid protein (MCP) of grouper iridovirus of Taiwan (TGIV) is an effective antigen to induce a specific immune response in grouper. However, these traditional vaccines that based on large proteins or whole organisms are faced with challenges because of the unnecessary antigenic load. Thus, in this study, we screened the dominant linear epitope within the MCP of TGIV and then, a new peptide vaccine (P2) was developed via prokaryotic expression system. Furthermore, SWCNTs was used as a vaccine carrier to enhance the immunoprotective effect. To evaluate the immunoprotective effect of this vaccine, a total of 245 fish were vaccinated with P2 (5, 10, 20 mg L-1) and SWCNTs-P2 (5, 10, 20 mg L-1) via immersion before being challenged with live TGIV at 28 days post immunization (d.p.i.). Results showed that the serum antibody titer, enzymatic activity, expression level of some immune-related genes (CC chemokine, IgM and TNF-α) and survival rate were significantly increased (SWCNTs-P2, 20 mg L-1, 100%) compared to the control group (0%). These results indicated that this peptide vaccine could effectively induce specific immune response in vaccinated groupers. Functionalized SWCNTs could serve as a carrier of the peptide vaccine to enhance the immunoprotective effect via immersion. To sum up, epitope screening might be a potential way to develop an effective vaccine nowadays, and SWCNTs might provide a practical method that can be used in large-scale vaccination, especially for juvenile fish, to fight against diseases in aquaculture industry.


Assuntos
Proteínas do Capsídeo/imunologia , Infecções por Vírus de DNA/prevenção & controle , Portadores de Fármacos/administração & dosagem , Epitopos/imunologia , Doenças dos Peixes/prevenção & controle , Iridoviridae/imunologia , Nanotubos de Carbono , Perciformes , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Virais/administração & dosagem , Fosfatase Ácida/imunologia , Fosfatase Alcalina/imunologia , Animais , Antígenos Virais/imunologia , Infecções por Vírus de DNA/imunologia , Portadores de Fármacos/química , Doenças dos Peixes/imunologia , Expressão Gênica/efeitos dos fármacos , Nanotubos de Carbono/química , Perciformes/genética , Perciformes/imunologia , Perciformes/virologia , Superóxido Dismutase/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas Virais/química
13.
J Virol ; 95(19): e0046121, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287045

RESUMO

The emergence of the CRISPR/Cas system as a technology has transformed our ability to modify nucleic acids, and the CRISPR/Cas13 system has been used to target RNA. CasRx is a small type VI-D effector (Cas13d) with RNA knockdown efficiency that may have an interference effect on RNA viruses. However, the RNA virus-targeting activity of CasRx still needs to be verified in vivo in vertebrates. In this study, we successfully engineered a highly effective CasRx system for fish virus interference. We designed synthetic mRNA coding for CasRx and used CRISPR RNAs to guide it to target the red-spotted grouper nervous necrosis virus (RGNNV). This technique resulted in significant interference with virus infections both in vitro and in vivo. These results indicate that CRISPR/CasRx can be used to engineer interference against RNA viruses in fish, which provides a potential novel mechanism for RNA-guided immunity against other RNA viruses in vertebrates. IMPORTANCE RNA viruses are important viral pathogens infecting vertebrates and mammals. RNA virus populations are highly dynamic due to short generation times, large population sizes, and high mutation frequencies. Therefore, it is difficult to find widely effective ways to inhibit RNA viruses, and we urgently need to develop effective antiviral methods. CasRx is a small type VI-D effector (Cas13d) with RNA knockdown efficiency that can have an interference effect on RNA viruses. Nervous necrosis virus (NNV), a nonenveloped positive-strand RNA virus, is one of the most serious viral pathogens, infecting more than 40 cultured fish species and resulting in huge economic losses worldwide. Here, we establish a novel effective CasRx system for RNA virus interference using NNV and grouper (Epinephelus coioides) as a model. Our data showed that CasRx was most robust for RNA virus interference applications in fish, and we demonstrate its suitability for studying key questions related to virus biology.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Doenças dos Peixes/virologia , Nodaviridae/genética , Perciformes/virologia , Interferência de RNA , Infecções por Vírus de RNA/veterinária , Animais , Nodaviridae/fisiologia , Infecções por Vírus de RNA/virologia , RNA Viral/genética
14.
Dev Comp Immunol ; 122: 104110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33933533

RESUMO

Toll/interleukin-1 receptor (TIR) domain-containing adaptors, serve as pivotal signal transduction molecules in Toll-like receptor (TLR) signalling pathway to mediate downstream signalling cascades. In this study, four TIR-domain containing adaptors, MyD88, TRIF, MAL and SARM, were identified in mandarin fish Siniperca chuatsi, and they all contain TIR domains, of which MyD88 and SARM had high sequence homology with their vertebrate homologues. The expression analysis at mRNA level indicated that these genes were ubiquitously distributed in different tissues, being high in immune- and mucosa-related tissues such as head-kidney and intestine. The transcripts of these adaptor genes were up-regulated by poly(I:C) and LPS stimulation in isolated head-kidney lymphocytes (HKLs) of mandarin fish. Fluorescence microscopy revealed that all these molecules were localized in cytoplasm, and further investigations showed that the over-expression of MyD88, TRIF and MAL activated the NF-κB, ISRE or type Ι IFN promoters and inhibited SVCV replication, whereas their antiviral effects were significantly impaired when co-transfected with SARM. It was also confirmed by co-immunoprecipitation (Co-IP) that SARM interacts separately with MyD88, TRIF and MAL, and MAL interacts with MyD88. However, the regulatory mechanisms of these adaptors involved in signalling pathways of different TLRs should be of interest for further research.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Linfócitos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Perciformes/imunologia , Receptores de Interleucina-1/metabolismo , Rhabdoviridae/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteínas do Domínio Armadillo/genética , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Células HEK293 , Rim Cefálico/citologia , Rim Cefálico/imunologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Lipopolissacarídeos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Perciformes/virologia , Poli I-C/imunologia , Domínios Proteicos , Receptores de Interleucina-1/genética , Transdução de Sinais/fisiologia , Ativação Transcricional , Replicação Viral/imunologia
15.
Front Immunol ; 12: 647202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659012

RESUMO

The innate immune organs and cells detect the invasion of pathogenic microorganisms, which trigger the innate immune response. A proper immune response can protect the organisms from pathogen invasion. However, excessive immunity can destroy immune homeostasis, leading to uncontrolled inflammation or pathogen transmission. Evidence shows that the miRNA-mediated immune regulatory network in mammals has had a significant impact, but the antibacterial and antiviral responses involved in miRNAs need to be further studied in lower vertebrates. Here, we report that miR-2187 as a negative regulator playing a critical role in the antiviral and antibacterial response of miiuy croaker. We find that pathogens such as Vibrio anguillarum and Siniperca chuatsi rhabdovirus (SCRV) can up-regulate the expression of miR-2187. Elevated miR-2187 is capable of reducing the production of inflammatory factors and antiviral genes by targeting TRAF6, thereby avoiding excessive inflammatory response. Furthermore, we proved that miR-2187 modulates innate immunity through TRAF6-mediated NF-κB and IRF3 signaling pathways. The above results indicate that miR-2187 acts as an immune inhibitor involved in host antibacterial and antiviral responses, thus enriching the immune regulatory network of the interaction between host and pathogen in lower vertebrates.


Assuntos
Proteínas de Peixes/genética , Fator Regulador 3 de Interferon/genética , MicroRNAs/genética , NF-kappa B/genética , Perciformes/genética , Fator 6 Associado a Receptor de TNF/genética , Animais , Sequência de Bases , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Perciformes/microbiologia , Perciformes/virologia , Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Vibrio/imunologia , Vibrio/fisiologia
16.
Dev Comp Immunol ; 119: 104013, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33465381

RESUMO

Programmed cell death 4 (PDCD4) in mammals, a gene closely associated with apoptosis, is involved in many biological processes, such as cell aging, differentiation, regulation of cell cycle, and inflammatory response. In this study, grouper Epinephelus coioides PDCD4, EcPDCD4-1 and EcPDCD4-2, were obtained. The open reading frame (ORF) of EcPDCD4-1 is 1413 bp encoding 470 amino acids with a molecular mass of 52.39 kDa and a theoretical pI of 5.33. The ORF of EcPDCD4-2 is 1410 bp encoding 469 amino acids with a molecular mass of 52.29 kDa and a theoretical pI of 5.29. Both EcPDCD4-1 and EcPDCD4-2 proteins contain two conserved MA3 domains, and their mRNA were detected in all eight tissues of E. coioides by quantitative real-time PCR (qRT-PCR) with the highest expression in liver. The expressions of two EcPDCD4s were significantly up-regulated after Singapore grouper iridovirus (SGIV) or Vibrio alginolyticus infection. In addition, over-expression of EcPDCD4-1 or EcPDCD4-2 can inhibit the activity of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), and regulate SGIV-induced apoptosis. The results demonstrated that EcPDCD4s might play important roles in E. coioides tissues during pathogen-caused inflammation.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Iridovirus/imunologia , Perciformes/imunologia , Vibrio alginolyticus/imunologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Clonagem Molecular , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Iridovirus/fisiologia , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Perciformes/microbiologia , Perciformes/virologia , Filogenia , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Vibrio alginolyticus/fisiologia
17.
Dev Comp Immunol ; 119: 104020, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33476669

RESUMO

Mitogen-activated protein kinase 4 (MKK4), a member of the MAP kinase family, play important roles in response to many environmental and cellular stresses in mammals. In this study, three MKK4 subtypes, EcMKK4-1, EcMKK4-2 and EcMKK4-3, were obtained from grouper Epinephelus coioides. The open reading frame (ORF) of EcMKK4s are obtained and the EcMKK4s proteins contain highly conserved domains: a S_TKc domain, a canonical diphosphorylation group and two conserved MKKK ATP binding motifs, Asp-Phe-Gly (DFG) and Ala-Pro-Glu (APE). EcMKK4s could be found both in the cytoplasmic and nuclear. The EcMKK4s mRNA were detected in all E. coioides tissues examined with the different expression levels, and the expression were up-regulated during SGIV (Singapore grouper iridescent virus) or Vibrio alginolyticus infection. EcMKK4 could significantly reduce the activation of AP-1 reporter gene. The results suggested that EcMKK4s might play important roles in pathogen-caused inflammation.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Iridovirus/imunologia , MAP Quinase Quinase 4/imunologia , Perciformes/imunologia , Vibrio alginolyticus/imunologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Clonagem Molecular , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Iridovirus/fisiologia , MAP Quinase Quinase 4/classificação , MAP Quinase Quinase 4/genética , Perciformes/microbiologia , Perciformes/virologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Regulação para Cima/imunologia , Vibrio alginolyticus/fisiologia
18.
Virus Res ; 291: 198199, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33080247

RESUMO

Red sea bream iridovirus (RSIV) is the causative agent of the iridoviral disease with high mortality rates in cultured fish. Our laboratory reported the first case of RSIV infection in India which resulted in mass mortalities of Asian seabass, Lates calcarifer. The RSIV-LC strain isolated from infected fish was subjected to complete genome sequencing and analysis. The complete genome of RSIV-LC was found to be of 111,557 bp in size having a G + C content of 53 %. The complete genome has 114 open reading frames (ORFs) of which 38 ORFs were predicted as functional proteins while the rest were hypothetical proteins. Among the ORFs 26 were found to be core genes reported earlier to be homologous in iridovirus complete genomes. Phylogenetic tree constructed based on the 26 core gene sequences, major capsid protein and ATPase genes revealed RSIV-LC in this study to belong to the genus Megalocytivirus of the RSIV-Genotype II. The present study provides the first report of the complete genome sequence and annotation of the RSIV strain isolated from India.


Assuntos
Doenças dos Peixes/virologia , Genoma Viral , Genótipo , Iridovirus/genética , Perciformes/virologia , Filogenia , Animais , Ásia , Índia , Iridovirus/classificação , Iridovirus/isolamento & purificação , Fases de Leitura Aberta , Sequenciamento Completo do Genoma
19.
J Fish Dis ; 43(10): 1287-1298, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32829517

RESUMO

Scale drop disease virus (SDDV) is a novel viral pathogen considered to be distributed in farmed barramundi (Lates calcarifer) in South-East Asia. Despite the severity of the disease, only limited genomic information related to SDDV is available. In this study, samples of SDDV-infected fish collected in 2019 were used. The microbiome of brain tissue was investigated using Illumina HiSeq DNA sequencing. Taxonomic analysis showed that SDDV was the main pathogen contained in the affected barramundi. De novo metagenome assembly recovered the SDDV genome, named isolate TH2019, 131 kb in length, and comprised of 135 ORFs. Comparison between this genome and the Singaporean SDDV reference genome revealed that the nucleotide identity within the aligned region was 99.97%. Missense, frameshift, insertion and deletion mutations were identified in 26 ORFs. Deletion of four deduced amino acid sequence in ORF_030L, identical to the SDDV isolate previously identified in Thailand, would be a potential biomarker for future strain classification. Interestingly, the genome of SDDV TH2019 harboured a unique 7,695-bp-long genomic region containing six hypothetical protein-encoded genes. Collectively, this study demonstrated that the SDDV genome can be sequenced directly, although with limited coverage depth, using metagenomic analysis of barramundi sample with severe infection.


Assuntos
Doenças dos Peixes/virologia , Genoma Viral , Iridoviridae/genética , Perciformes/virologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Filogenia , Análise de Sequência de DNA , Tailândia
20.
PLoS Pathog ; 16(7): e1008670, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32678830

RESUMO

Increasing evidence suggests important roles for long noncoding RNAs (lncRNAs) as new gene modulators involved in various biological processes. However, the function roles of lncRNAs in lower vertebrates are still unknown. Here, we firstly identify a lncRNA, named MAVS antiviral-related lncRNA (MARL), as a key regulator for antiviral immunity in teleost fish. The results indicate that fish MAVS play essential roles in host antiviral responses and inhibition of Siniperca chuatsi rhabdovirus (SCRV) replication. miR-122 reduces MAVS expression and suppress MAVS-mediated antiviral responses, which may help viruses evade host antiviral responses. Further, MARL functions as a competing endogenous RNA (ceRNA) for miR-122 to control protein abundance of MAVS, thereby inhibiting SCRV replication and promoting antiviral responses. Our data not only shed new light on understanding the function role of lncRNA in biological processes in lower vertebrates, but confirmed the hypothesis that ceRNA regulatory networks exist widely in vertebrates.


Assuntos
MicroRNAs/metabolismo , Perciformes/imunologia , RNA Longo não Codificante/imunologia , Infecções por Rhabdoviridae/imunologia , Animais , Regulação para Baixo , Perciformes/virologia , Rhabdoviridae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...