Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.655
Filtrar
1.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003056

RESUMO

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Assuntos
Arsênio , Exposição Ambiental , Estresse Oxidativo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , 8-Hidroxi-2'-Desoxiguanosina , Arsênio/toxicidade , Biomarcadores/urina , China , Estudos Transversais , Dano ao DNA , População do Leste Asiático , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Estudos Longitudinais , Estresse Oxidativo/efeitos dos fármacos
2.
Sci Rep ; 14(1): 16427, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013912

RESUMO

The ecotoxicological consequences of azoxystrobin on land snails have not yet been addressed. Therefore, the present study aims to provide novel data on the threat of a commercial grade azoxystrobin (AMISTAR) at two environmentally relevant concentrations (0.3 µg/ml) and tenfold (3 µg/ml) on the model species, Theba pisana by physiological, biochemical, and histopathological markers for 28 days. Our results showed a reduction in animal food consumption and growth due to exposure to both azoxystrobin concentrations. It also induced oxidative stress and led to a significant decrease in lipid peroxidation (LPO) levels after 7 days of exposure, while the opposite effect occurred after 28 days. Except for the 7-day exposure, all treated snails had significantly reduced glutathione (GSH) content and increased catalase (CAT) activity at all-time intervals. Glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities, and protein content (PC) were elevated in treated snails at all-time intervals. Moreover, alterations in acetylcholinesterase (AChE) activity between a decrease and an increase were noticed. Additionally, azoxystrobin exerted changes in T. pisana hepatopancreas architecture. Our study suggests that azoxystrobin may have negative ecological consequences for T. pisana and highlights its potential risks to the natural environment.


Assuntos
Fungicidas Industriais , Glutationa , Metacrilatos , Estresse Oxidativo , Pirimidinas , Caramujos , Estrobilurinas , Animais , Estrobilurinas/toxicidade , Pirimidinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Metacrilatos/toxicidade , Caramujos/efeitos dos fármacos , Caramujos/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Glutationa Transferase/metabolismo , Acetilcolinesterase/metabolismo , Ecotoxicologia , Catalase/metabolismo , Glutationa Peroxidase/metabolismo
3.
Cell Biochem Funct ; 42(5): e4094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001564

RESUMO

Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.


Assuntos
Apoptose , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Tretinoína , Animais , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Tretinoína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Hiperóxia/metabolismo , Hiperóxia/tratamento farmacológico , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos
4.
Georgian Med News ; (349): 25-30, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38963196

RESUMO

Antioxidants are widely used in medicine due to their ability to bind free radicals - active biomolecules that destroy the genetic apparatus of cells and the structure of their membranes, which makes it possible to reduce the intensity of oxidative processes in the body. In a living organism, free radicals are involved in various processes, but their activity is controlled by antioxidants. The purpose of this work was to conduct a series of studies to identify the antioxidant activity of new synthesized compounds of a series of oxalic acid diamides in the brain and liver tissue of white rats in vivo and in vitro experiments, as well as to determine their potential pharmacological properties. The studies were conducted on outbred white male rats, weighing 180-200 g, kept on a normal diet. After autopsy, the brain and liver were isolated, washed with saline, cleared of blood vessels, and homogenized in Tris-HCl buffer (pH-7.4) (in vitro). The research results showed significant antioxidant activity (AOA) of all compounds with varying effectiveness. The most pronounced activity was demonstrated by compound SV-425 in both brain and liver tissues. Compound SV-427 demonstrated the least activity, with levels in brain tissue and liver tissue. In addition, all physicochemical descriptors of the studied compounds comply with Lipinski's rule of five to identify new molecules for the treatment of oxidative stress. From the data obtained, it can be concluded that the studied compounds have antioxidant properties, helping to protect cells from oxidative stress. This is important for the prevention and treatment of diseases associated with increased levels of free radicals.


Assuntos
Antioxidantes , Encéfalo , Peroxidação de Lipídeos , Fígado , Ácido Oxálico , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Radicais Livres/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Ácido Oxálico/química , Ácido Oxálico/metabolismo , Ácido Oxálico/farmacologia , Diamida/farmacologia , Diamida/química , Estresse Oxidativo/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
5.
Appl Radiat Isot ; 211: 111424, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970986

RESUMO

Naturally Occurring Radioactive Materials (NORM) contribute to everyone's natural background radiation dose. The technologically advanced activities of the gas and oil sectors produce considerable amounts of radioactive materials as industrial by-products or waste products. The goal of the current study is to estimate the danger of long-term liability to Technologically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) on blood indices, neurotransmitters, oxidative stress markers, and ß-amyloid in the cerebral cortex of rats' brains. Twenty adult male albino rats were divided into two equal groups (n = 10): control and irradiated. Irradiated rats were exposed to a total dose of 0.016 Gy of TE-NORM as a whole-body chronic exposure over a period of two months. It should be ''The results showed no significant changes in RBC count, Hb concentration, hematocrit percentage (HCT%), and Mean Corpuscular Hemoglobin Concentration (MCHC). However, there was a significant increase in the Mean Corpuscular Volume of RBCs (MCV) and a significant decrease in cell distribution width (RDW%) compared to the control. Alteration in neurotransmitters is noticeable by a significant increase in glutamic acid and significant decreases in serotonin and dopamine. Increased lipid peroxidation, decreased glutathione content, superoxide dismutase, catalase, and glutathione peroxidase activities indicating oxidative stress were accompanied by increased ß-amyloid in the cerebral cortex of rats' brains. The findings of the present study showed that chronic radiation liability has some harmful effects, that may predict the risks of future health problems in occupational radiation exposure in the oil industries. Therefore, the control of exposure and application of sample dosimetry is recommended for health and safety.


Assuntos
Estresse Oxidativo , Animais , Masculino , Ratos , Estresse Oxidativo/efeitos da radiação , Radiação de Fundo , Neurotransmissores/metabolismo , Neurotransmissores/sangue , Encéfalo/efeitos da radiação , Encéfalo/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Peptídeos beta-Amiloides/metabolismo
6.
Nat Commun ; 15(1): 5818, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987265

RESUMO

A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.


Assuntos
Asma , Proteínas de Ciclo Celular , Células Epiteliais , Ferroptose , Proteínas de Membrana Transportadoras , Mitocôndrias , Mitofagia , Fenótipo , Fator de Transcrição TFIIIA , Humanos , Mitocôndrias/metabolismo , Asma/metabolismo , Asma/patologia , Células Epiteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fator de Transcrição TFIIIA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Proteínas Quinases/metabolismo , Feminino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Peroxidação de Lipídeos , Camundongos , Pessoa de Meia-Idade
7.
Sci Rep ; 14(1): 15952, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987284

RESUMO

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.


Assuntos
Canabidiol , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia , Estresse Oxidativo , Animais , Canabidiol/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Hipóxia/metabolismo , Hipóxia/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/farmacologia , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
8.
Int J Biol Sci ; 20(9): 3621-3637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993573

RESUMO

Ferroptosis, an emerging type of programmed cell death, is initiated by iron-dependent and excessive ROS-mediated lipid peroxidation, which eventually leads to plasma membrane rupture and cell death. Many canonical signalling pathways and biological processes are involved in ferroptosis. Furthermore, cancer cells are more susceptible to ferroptosis due to the high load of ROS and unique metabolic characteristics, including iron requirements. Recent investigations have revealed that ferroptosis plays a crucial role in the progression of tumours, especially HCC. Specifically, the induction of ferroptosis can not only inhibit the growth of hepatoma cells, thereby reversing tumorigenesis, but also improves the efficacy of immunotherapy and enhances the antitumour immune response. Therefore, triggering ferroptosis has become a new therapeutic strategy for cancer therapy. In this review, we summarize the characteristics of ferroptosis based on its underlying mechanism and role in HCC and provide possible therapeutic applications.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Peroxidação de Lipídeos , Transdução de Sinais , Ferro/metabolismo
9.
Front Immunol ; 15: 1440309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994366

RESUMO

Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.


Assuntos
Oftalmopatias , Ferroptose , Humanos , Oftalmopatias/metabolismo , Oftalmopatias/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos , Transdução de Sinais , Morte Celular , Ferro/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000210

RESUMO

Neurodegeneration diseases (NDs) are a group of complex diseases primarily characterized by progressive loss of neurons affecting mental function and movement. Oxidative stress is one of the factors contributing to the pathogenesis of NDs, including Alzheimer's disease (AD). These reactive species disturb mitochondrial function and accelerate other undesirable conditions including tau phosphorylation, inflammation, and cell death. Therefore, preventing oxidative stress is one of the imperative methods in the treatment of NDs. To accomplish this, we prepared hexane and ethyl acetate extracts of Anethum graveolens (dill) and identified the major phyto-components (apiol, carvone, and dihydrocarvone) by GC-MS. The extracts and major bioactives were assessed for neuroprotective potential and mechanism in hydrogen peroxide-induced oxidative stress in the SH-SY5Y neuroblastoma cell model and other biochemical assays. The dill (extracts and bioactives) provided statistically significant neuroprotection from 0.1 to 30 µg/mL by mitigating ROS levels, restoring mitochondrial membrane potential, reducing lipid peroxidation, and reviving the glutathione ratio. They moderately inhibited acetylcholine esterase (IC50 dill extracts 400-500 µg/mL; carvone 275.7 µg/mL; apiole 388.3 µg/mL), displayed mild anti-Aß1-42 fibrilization (DHC 26.6%) and good anti-oligomerization activity (>40% by dill-EA, carvone, and apiole). Such multifactorial neuroprotective displayed by dill and bioactives would help develop a safe, low-cost, and small-molecule drug for NDs.


Assuntos
Anethum graveolens , Neuroblastoma , Fármacos Neuroprotetores , Estresse Oxidativo , Extratos Vegetais , Sementes , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Anethum graveolens/química , Sementes/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Sobrevivência Celular/efeitos dos fármacos , Acetilcolinesterase/metabolismo
11.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000544

RESUMO

Selenium (Se)-rich Cyclocarya paliurus is popular for its bioactive components, and exogenous Se fortification is the most effective means of enrichment. However, the effects of exogenous Se fortification on the nutritional quality of C. paliurus are not well known. To investigate the nutrient contents and antioxidant properties of C. paliurus following Se treatment, we used a foliar spray to apply Se in two forms-chemical nano-Se (Che-SeNPs) and sodium selenite (Na2SeO3). Sampling began 10 days after spraying and was conducted every 5 days until day 30. The Se, secondary metabolite, malondialdehyde contents, antioxidant enzyme activity, Se speciation, and Se-metabolism-related gene expression patterns were analyzed in the collected samples. Exogenous Se enhancement effectively increased the Se content of leaves, reaching a maximum on days 10 and 15 of sampling, while the contents of flavonoids, triterpenes, and polyphenols increased significantly during the same period. In addition, the application of Se significantly enhanced total antioxidant activity, especially the activity of the antioxidant enzyme peroxidase. Furthermore, a positive correlation between the alleviation of lipid peroxidation and Se content was observed, while methylselenocysteine formation was an effective means of alleviating Se stress. Finally, Na2SeO3 exhibited better absorption and conversion efficiency than Che-SeNPs in C. paliurus.


Assuntos
Antioxidantes , Folhas de Planta , Selênio , Selenito de Sódio , Antioxidantes/metabolismo , Selênio/metabolismo , Selênio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Juglandaceae/química , Flavonoides/metabolismo , Flavonoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Polifenóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triterpenos/metabolismo
12.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000598

RESUMO

Insects are of great interest as novel sources of alternative proteins and biologically active compounds, primarily anticancer agents. Protein-rich insect larval hemolymph is a prospective candidate for pharmaceutical and food industry-related research. In this study, selected biochemical properties and cell toxicity of larval hemolymph from two mealworm species, Tenebrio molitor and Zophobas morio, were analyzed. Total proteins and carbohydrates, antioxidant capacity, and the level of lipid peroxidation were determined. Human cancer (U-87) and normometabolic (MRC-5) cells were treated with different concentrations of larval hemolymph proteins, and the effects on cell viability were assayed 24, 48, and 72 h after treatments. Z. morio hemolymph was shown to be richer in total proteins, showing a higher antioxidant capacity and lipid peroxidation level than T. molitor hemolymph, which was richer in total carbohydrates. Cytotoxicity assays showed that T. molitor and Z. morio hemolymphs differently affect the viability of U-87 and MRC-5 cells in cell type-, dose-, and time-dependent manners. Hemolymph from both species was more cytotoxic to U-87 cells than to MRC-5 cells, which was particularly prominent after 48 h. Additionally, a more potent cytotoxic effect of Z. morio hemolymph was observed on both cell lines, likely due to its higher antioxidant capacity, compared to T. molitor hemolymph.


Assuntos
Antioxidantes , Hemolinfa , Larva , Tenebrio , Animais , Hemolinfa/metabolismo , Tenebrio/efeitos dos fármacos , Larva/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas de Insetos/metabolismo
13.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999975

RESUMO

Citral, a common monoterpene found in numerous plants, is an interesting compound that has been shown to have various biological activities. Although it is widely distributed in nature and there are many studies presenting its biological activities, its anti-neurodegenerative activity, especially under in vivo conditions, is very poorly understood. Thus, this paper aimed to deepen knowledge about citral activity towards factors and symptoms of neurodegeneration. To accomplish this, several comprehensive tests were conducted, including the estimation of butyrylcholinesterase inhibition, the evaluation of hepatotoxicity and the detection of oxidative stress and lipid peroxidation in vitro, as well as an in vivo behavioral assessment using mice models. Additionally, ex vivo determination of level of the compound in the brain and blood of a tested animal was undertaken. The results obtained revealed that citral is able to inhibit butyrylcholinesterase activity and protect hepatic cells against oxidative stress and lipid peroxidation in vitro. Moreover, behavioral tests in vivo indicated that citral (50 mg/kg) improves memory processes associated with acquisition (passive avoidance test), both in acute and subchronic administration. Additionally, we found that the administration of citral at 25 mg/kg and 50 mg/kg did not significantly affect the locomotor activity. Beyond the aforementioned, gas chromatography-mass spectrometry analysis revealed the presence of the compound in the blood and brain after subchronic administration of citral. Taken together, the results obtained in vitro, in vivo and ex vivo clearly indicate that citral is a promising monoterpene that can potentially be used towards cognition improvement.


Assuntos
Monoterpenos Acíclicos , Cognição , Peroxidação de Lipídeos , Estresse Oxidativo , Animais , Monoterpenos Acíclicos/farmacologia , Camundongos , Cognição/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Butirilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Monoterpenos/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos
14.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999986

RESUMO

Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.


Assuntos
Antioxidantes , Basidiomycota , Polissacarídeos Fúngicos , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Basidiomycota/metabolismo , Antioxidantes/metabolismo , Polissacarídeos Fúngicos/metabolismo , Polissacarídeos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Biomassa , Malondialdeído/metabolismo , Estresse Oxidativo
15.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000092

RESUMO

Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1ß, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.


Assuntos
Doença de Alzheimer , Citocinas , Glutationa , Leucócitos , Peroxidação de Lipídeos , Camundongos Transgênicos , Estresse Oxidativo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Camundongos , Leucócitos/metabolismo , Feminino , Citocinas/metabolismo , Glutationa/metabolismo , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética
16.
Ecotoxicol Environ Saf ; 281: 116680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964057

RESUMO

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.


Assuntos
Ferroptose , Guanidinas , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fibrose Pulmonar , Animais , Ferroptose/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Linhagem Celular , Guanidinas/toxicidade , Guanidinas/farmacologia , Masculino , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Cicloexilaminas/farmacologia , Fenilenodiaminas , Quinoxalinas , Compostos de Espiro
17.
Mol Biol Rep ; 51(1): 805, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001948

RESUMO

BACKGROUND: Coronary artery disease (CAD) has been linked to single nucleotide polymorphism (SNP) in superoxide dismutase 2 (SOD 2) gene. Additionally, several modifiable risk factors are also known to influence the CAD risk. AIM: To investigate the association between selected modifiable risk factors and oxidative stress markers with the SOD2 rs4880 SNP in CAD patients. METHODS: A cohort of 150 angiographically confirmed CAD patients, and 100 control subjects in the same geographic area were enrolled. SOD levels and lipid peroxidation were assessed in the blood samples using standard protocols. The genotyping of the SOD2 gene was conducted through the PCR-sequencing method. RESULTS: This study indicated that CAD patients with the rs4880 SNP having heterozygous AG and mutated homozygous GG genotypes have increased oxidative stress, decreased SOD activity, and a positive association with CAD risk (OR 2.85) in comparison with control individuals. The investigation among CAD patients was then carried out based on modifiable risk factors. The risk factors selected were clinical characteristics, physical habits, nutritional status, and body mass index. In all the cases, MDA levels showed a positive association, and SOD activity showed a negative association with the selected polymorphism. CONCLUSIONS: The study suggests that the selected modifiable risk factors have an important role in the higher oxidative stress found in patients, which may lead to SOD2 polymorphism. It also suggests that the SOD2 locus can be identified as a marker gene for CAD susceptibility.


Assuntos
Doença da Artéria Coronariana , Predisposição Genética para Doença , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase , Humanos , Superóxido Dismutase/genética , Estresse Oxidativo/genética , Doença da Artéria Coronariana/genética , Polimorfismo de Nucleotídeo Único/genética , Feminino , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Biomarcadores/sangue , Estudos de Casos e Controles , Idoso , Genótipo , Peroxidação de Lipídeos/genética , Estudos de Associação Genética
18.
Arq Bras Cardiol ; 121(7): e20230602, 2024 Jun.
Artigo em Português, Inglês | MEDLINE | ID: mdl-39016392

RESUMO

BACKGROUND: Adverse remodeling of lung vessels elevates pulmonary pressure and provokes pulmonary arterial hypertension (PAH). PAH results in increased right ventricle (RV) afterload, causing ventricular hypertrophy and the onset of heart failure. There is no specific treatment for maladaptive RV remodeling secondary to PAH. OBJECTIVES: This study aims to explore two therapeutic approaches, grape juice (GJ) and thyroid hormones (TH), on PAH-induced oxidative stress and cardiac functional changes. METHODS: Parameters of echocardiography related to lung vessel resistance (AT/ET ratio), RV contractility (TAPSE), and RV diastolic function (E/A peaks ratio) were evaluated. Also, total ROS, lipid peroxidation, antioxidant enzymes, calcium handling proteins, pro-oxidant and antioxidant protein expression were measured. Values of p<0.05 were considered statistically significant. RESULTS: Both GJ and TH treatments demonstrated reductions in pulmonary resistance (~22%) and improvements in TAPSE (inotropism ~11%) and AT/ET ratio (~26%) (p<0.05). There were no changes amongst groups regarding the E/A peak ratio. Although ROS and TBARS were not statistically significant, GJ and TH treatments decreased xanthine oxidase (~49%) levels and normalized HSP70 and calcium handling protein expression (p<0.05). However, only TH treatment ameliorated diastolic function (~50%) and augmented NRF2 immunocontent (~48%) (p<0.05). CONCLUSIONS: To the best of our knowledge, this study stands as a pioneer in showing that TH administered together with GJ promoted functional and biochemical improvements in a PAH model. Moreover, our data suggest that GJ and TH treatments were cardioprotective, combined or not, and exhibited their beneficial effects by modulating oxidative stress and calcium-handling proteins.


FUNDAMENTO: A remodelação adversa dos vasos pulmonares eleva a pressão pulmonar e provoca hipertensão arterial pulmonar (HAP). A HAP resulta em aumento da pós-carga do ventrículo direito (VD), causando hipertrofia ventricular e consequente insuficiência cardíaca. Não existe um tratamento específico para o remodelamento desadaptativo do VD secundário à HAP. OBJETIVOS: Este estudo tem como objetivo explorar duas abordagens terapêuticas, o suco de uva (SU) e os hormônios tireoidianos (HT), no tratamento do estresse oxidativo induzido pela HAP e nas alterações funcionais cardíacas. MÉTODOS: Parâmetros ecocardiográficos relacionados à resistência dos vasos pulmonares (relação TA/TE), contratilidade do VD (ESPAT) e função diastólica do VD (relação dos picos E/A) foram avaliados. Além disso, foram medidos ROS totais, peroxidação lipídica, enzimas antioxidantes, proteínas de manipulação de cálcio, expressão de proteínas pró-oxidantes e antioxidantes. Valores de p<0,05 foram considerados estatisticamente significativos. RESULTADOS: Ambos os tratamentos, com SU e HT, demonstraram uma redução na resistência pulmonar (~22%), além de melhorias na ESPAT (inotropismo ~11%) e na relação TA/TE (~26%) (p<0,05). Não houve alterações entre os grupos na relação do pico de E/A. Embora ROS e TBARS não tenham sido estatisticamente significativos, os tratamentos com SU e HT diminuíram os níveis de xantina oxidase (~49%) e normalizaram a expressão de HSP70 e proteínas de manipulação de cálcio (p<0,05). No entanto, apenas o tratamento com HT melhorou a função diastólica (~50%) e aumentou o imunoconteúdo de NRF2 (~48%) (p<0,05). CONCLUSÕES: Até onde sabemos, este estudo é pioneiro ao mostrar que o HT administrado em conjunto com o SU promoveu melhorias funcionais e bioquímicas em um modelo de HAP. Além disso, nossos dados sugerem que os tratamentos com SU e HT se mostraram cardioprotetores, sejam combinados ou não, e exibiram seus benefícios ao modular o estresse oxidativo e as proteínas de manipulação do cálcio.


Assuntos
Modelos Animais de Doenças , Sucos de Frutas e Vegetais , Hipertensão Pulmonar , Estresse Oxidativo , Hormônios Tireóideos , Função Ventricular Direita , Vitis , Estresse Oxidativo/efeitos dos fármacos , Vitis/química , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Animais , Masculino , Função Ventricular Direita/efeitos dos fármacos , Função Ventricular Direita/fisiologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Ecocardiografia , Antioxidantes/administração & dosagem , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos
19.
Environ Sci Pollut Res Int ; 31(32): 44800-44814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954347

RESUMO

Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.


Assuntos
Naftalenos , Oligoquetos , Estresse Oxidativo , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Poluentes do Solo/toxicidade , Naftalenos/toxicidade , Solo/química , Dano ao DNA , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
20.
J Agric Food Chem ; 72(28): 15948-15958, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38965774

RESUMO

Copper (Cu) is a common trace element additive in animal and human foods, and excessive intake of Cu has been shown to cause hepatotoxicity, but the underlying mechanism remains unclear. Our previous research found that Cu exposure dramatically upregulated mitochondrial miR-12294-5p expression and confirmed its targeted inhibition of CISD1 expression in chicken hepatocytes. Thus, we aimed to explore the potential role of mitomiR-12294-5p/CISD1 axis in Cu exposure-resulted hepatotoxicity. Here, we observed that Cu exposure resulted in Cu accumulation and pathological injury in chicken livers. Moreover, we found that Cu exposure caused mitochondrial-dependent ferroptosis in chicken hepatocytes, which were prominent on the increased mitochondrial Fe2+ and mitochondrial lipid peroxidation, inhibited levels of CISD1, GPX4, DHODH, and IDH2, and also enhanced level of PTGS2. Notably, we identified that inhibition of mitomiR-2954 level effectively mitigated Cu-exposure-resulted mitochondrial Fe2+ accumulation and mitochondrial lipid peroxidation and prevented the development of mitochondrial-dependent ferroptosis. However, increasing the mitomiR-12294-5p expression considerably aggravated the influence of Cu on these indicators. Meanwhile, the overexpression of CISD1 effectively alleviated Cu-caused mitochondrial-dependent ferroptosis, while silent CISD1 eliminated the therapeutic role of mitomiR-12294-5p inhibitor. Overall, our findings indicated that mitomiR-12294-5p/CISD1 axis played a critical function in Cu-caused hepatotoxicity in chickens by regulating mitochondrial-dependent ferroptosis.


Assuntos
Galinhas , Cobre , Ferroptose , Hepatócitos , MicroRNAs , Mitocôndrias , Animais , Galinhas/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Ferroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...