Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 22(6): 1092-1101, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32810916

RESUMO

The recovery of altered or damaged ecosystems demands large-scale reintroductions of seeds. In the past, ecological restoration in Germany was carried out with non-local seeds of naturally occurring species. We here analysed whether the genetic pattern of the introduced non-local seeds (R = restored) of Pimpinella saxifraga are still detectable several years after application and whether the phenotype differs from that of the regional gene pool (I = indigenous) of the species. We collected material from individuals of R and I sites, conducted a common garden experiment and tested for genetic, morphological and phenotypic differences. In a cutting experiment we investigate treatment effects on indigenous and restored populations. At all investigated sites we only found P. saxifraga individuals with comparatively similar genome sizes. The population genetic analysis revealed two large and quite distinct molecular clusters, separating indigenous and restored individuals along the first axis. None of the vegetative, but two of the reproductive fitness parameters differed between individuals of the R and I sites. Cutting always had a significant influence on all analysed vegetative and reproductive fitness parameters, regardless of the individuals' origin. The effects of mowing always mask origin-specific characteristics, which then disappear. Genotypic coexistence reduces the availability of niches for the local genotype and may eventually lead to genotypic competition or introgression. We therefore recommend not to use non-local genotypes of this species in the region. Instead, we recommend using the genetically diverse local genotypes of P. saxifraga for restoration purposes.


Assuntos
Recuperação e Remediação Ambiental , Pimpinella , Ecossistema , Genótipo , Alemanha , Fenótipo , Pimpinella/genética , Tempo
2.
J Plant Res ; 131(5): 747-758, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948485

RESUMO

The genus Pimpinella L. comprises about 150 species, being one of the largest genera within the family Apiaceae (subfamily Apioideae). Previous molecular phylogenetic studies have shown that Pimpinella is a taxonomically complex group. In this study, evolutionary relationships among representatives from Western Europe have been inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and plastid sequences (trnL intron and the trnL-F spacer), with a representative sampling included (168 accessions in the ITS analysis, representing 158 species; and 42 accessions in the cpDNA analysis representing 35 taxa of Pimpinella and closely related species). All analyses resolved that Pimpinella is a non-monophyletic group, and Pimpinella's taxa that grow in Western Europe are part of phylogenetically independent groups that correspond to three different tribes of the subfamily Apioideae: Pimpinelleae (core group), Pyramidoptereae and Smyrnieae.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Pimpinella/genética , Núcleo Celular/genética , Cloroplastos/genética , Classificação , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Íntrons/genética , Filogenia , Análise de Sequência de DNA
3.
Genet Mol Res ; 15(4)2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27813575

RESUMO

Pimpinella L. is a large genus and arguably one of the most complex genera in the family Apiaceae. In this study, the infra-generic relationship between Southwest Asian Pimpinella species and their generic allies in the tribe Pimpinelleae Spreng were investigated using sequence data from the cpDNA (chloroplast DNA) rps16 exon and rpL16 intron and nuclear ribosomal DNA internal transcribed spacer regions. In total, 185 accessions representing 52 species of Pimpinella, 8 species of Aegopodium, and the monotypic Opsicarpium Mozaff. were analyzed using maximum parsimony and Bayesian methods. In our phylogenetic study, Pimpinella and Opsicarpium were considered together as a monophyletic group within the tribe Pimpinelleae. As a result, Opsicarpium insignis Mozaff has been formally transferred to Pimpinella. Our results indicate that the genera Pimpinella and Reutera Boiss formed a monophyletic group and also supported merging the genus Reutera with Pimpinella. This study confirms the transfer of the Southwest Asian Pimpinella anthriscoides (Boiss.) F. Ghahrem., Khajepiri & Mozaff to the genus Aegopodium as Aegopodium tribracteolatum Schmalh.


Assuntos
DNA de Cloroplastos/genética , Evolução Molecular , Filogenia , Pimpinella/genética , DNA Espaçador Ribossômico/genética , Íntrons/genética , Análise de Sequência de DNA
4.
Plant Physiol ; 149(1): 384-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987218

RESUMO

The phenylpropene t-anethole imparts the characteristic sweet aroma of anise (Pimpinella anisum, family Apiaceae) seeds and leaves. Here we report that the aerial parts of the anise plant accumulate t-anethole as the plant matures, with the highest levels of t-anethole found in fruits. Although the anise plant is covered with trichomes, t-anethole accumulates inside the leaves and not in the trichomes or the epidermal cell layer. We have obtained anise cDNA encoding t-anol/isoeugenol synthase 1 (AIS1), an NADPH-dependent enzyme that can biosynthesize t-anol and isoeugenol (the latter not found in anise) from coumaryl acetate and coniferyl acetate, respectively. In addition, we have obtained a cDNA encoding S-[methyl-14C]adenosyl-l-methionine:t-anol/isoeugenol O-methyltransferase 1 (AIMT1), an enzyme that can convert t-anol or isoeugenol to t-anethole or methylisoeugenol, respectively, via methylation of the para-OH group. The genes encoding AIS1 and AIMT1 were expressed throughout the plant and their transcript levels were highest in developing fruits. The AIS1 protein is 59% identical to petunia (Petunia hybrida) isoeugenol synthase 1 and displays apparent Km values of 145 microm for coumaryl acetate and 230 microm for coniferyl acetate. AIMT1 prefers isoeugenol to t-anol by a factor of 2, with Km values of 19.3 microm for isoeugenol and 54.5 microm for S-[methyl-14C]adenosyl-l-methionine. The AIMT1 protein sequence is approximately 40% identical to basil (Ocimum basilicum) and Clarkia breweri phenylpropene O-methyltransferases, but unlike these enzymes, which do not show large discrimination between substrates with isomeric propenyl side chains, AIMT1 shows a 10-fold preference for t-anol over chavicol and for isoeugenol over eugenol.


Assuntos
Anisóis/metabolismo , Metiltransferases/metabolismo , Pimpinella/enzimologia , Derivados de Alilbenzenos , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Dados de Sequência Molecular , Filogenia , Pimpinella/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA