Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36360200

RESUMO

Cathaya argyrophylla Chun et Kuang is a severely endangered, tertiary relict plant unique to China whose high physiological sensitivity to the environment, including photosensitivity, is likely closely related to its endangered status; however, the exact mechanism responsible has remained unknown due to the rarity of the plant and the difficulties involved in performing physiological studies on the molecular level. In this study, the chloroplast genomes of six C. argyrophylla populations sampled from different locations in China were characterized and compared. In addition, a gene regulatory network of the polymorphic chloroplast genes responsible for regulating genes found elsewhere in the plant genome was constructed. The result of the genome characterization and comparison showed that the genome characteristics, the gene composition, and the gene sequence of the chloroplast genes varied by location, and the gene regulatory network showed that the differences in growth location may have led to variations in the protein-coding chloroplast gene via various metabolic processes. These findings provide new insights into the relationship between chloroplasts and the sensitive metabolism of C. argyrophylla and provide additional reference materials for the conservation of this endangered plant.


Assuntos
Genoma de Cloroplastos , Pinaceae , Filogenia , Pinaceae/genética , Genoma de Planta , Genes de Cloroplastos
2.
Mol Biol Rep ; 49(3): 1857-1869, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34826048

RESUMO

BACKGROUND: With active physiological and biochemical activities, tissue-specific protoplasts from cambial derivatives, could serve as a specific source for information on xylogenesis for softwood species resistant to stable genetic transformation and lacking available mutants. METHODS AND RESULTS: In this study, protoplasts were isolated from developing xylem of the Chinese red pine, Pinus massoniana, by enzymolysis. High-quality RNAs were extracted from developing xylem and their protoplasts for constructing transcriptome libraries. Using Illumina HiSeq 2500 PE150 platform, a total of 362,328,426 clean paired-end reads (54.35G) were generated from multiple cDNA libraries and assembled into 146,422 unigenes. The transcriptome data were further analysed to identify 1567 differentially expressed genes (DEGs) between the isolated protoplasts and developing xylem of P. massoniana (Masson pine), 1126 DEGs were upregulated in protoplasts relative to developing xylem cells and 441 were downregulated. Most of the differentially expressed genes in biological process terms are related to plant response, which may be due to the response to cell wall removal. Further, the expression pattern of 71 unigenes involved in lignin biosynthesis was verified by RNA-seq. CONCLUSIONS: This study is the first to report the transcriptome profiles of the developing xylem and its protoplasts of coniferous trees, which provide a new perspective and valuable resource for tracking transcriptional regulatory events in wood formation of Masson pine.


Assuntos
Pinaceae , Pinus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Pinaceae/genética , Pinus/genética , Protoplastos , Transcriptoma/genética , Xilema/genética
3.
Sci Rep ; 11(1): 8834, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893361

RESUMO

Inbreeding depression (ID) is a fundamental selective pressure that shapes mating systems and population genetic structures in plants. Although it has been shown that ID varies over the life stages of shorter-lived plants, less is known about how the fitness effects of inbreeding vary across life stages in long-lived species. We conducted a literature survey in the Pinaceae, a tree family known to harbour some of the highest mutational loads ever reported. Using a meta-regression model, we investigated distributions of inbreeding depression over life stages, adjusting for effects of inbreeding levels and the genetic differentiation of populations within species. The final dataset contained 147 estimates of ID across life stages from 41 studies. 44 Fst estimates were collected from 40 peer-reviewed studies for the 18 species to aid genetic differentiation modelling. Partitioning species into fragmented and well-connected groups using Fst resulted in the best way (i.e. trade-off between high goodness-of-fit of the model to the data and reduced model complexity) to incorporate genetic connectivity in the meta-regression analysis. Inclusion of a life stage term and its interaction with the inbreeding coefficient (F) dramatically increased model precision. We observed that the correlation between ID and F was significant at the earliest life stage. Although partitioning of species populations into fragmented and well-connected groups explained little of the between-study heterogeneity, the inclusion of an interaction between life stage and population differentiation revealed that populations with fragmented distributions suffered lower inbreeding depression at early embryonic stages than species with well-connected populations. There was no evidence for increased ID in late life stages in well-connected populations, although ID tended to increase across life stages in the fragmented group. These findings suggest that life stage data should be included in inbreeding depression studies and that inbreeding needs to be managed over life stages in commercial populations of long-lived plants.


Assuntos
Endogamia , Pinaceae/fisiologia , Conjuntos de Dados como Assunto , Genes de Plantas , Estágios do Ciclo de Vida , Pinaceae/embriologia , Pinaceae/genética , Especificidade da Espécie
4.
Am J Bot ; 105(8): 1329-1344, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091785

RESUMO

PREMISE OF THE STUDY: Pinaceae have a rich but enigmatic early fossil record, much of which is represented by permineralized seed cones. Our incomplete knowledge of morphology and anatomy in living and extinct species poses an important barrier to understanding their phylogenetic relationships and timing of diversification. METHODS: We expanded a morphology matrix to 46 fossil and 31 extant Pinaceae species, mainly adding characters from stem and leaf anatomy and seed cones. Using parsimony and Bayesian inference, we compared phylogenetic relationships for extant taxa with and without fossils from the morphology matrix combined with an alignment of plastid gene sequences. KEY RESULTS: Combined analysis of morphological and molecular characters resulted in a phylogeny of extant Pinaceae that was robust at all nodes except those relating to the interrelationships of Pinus, Picea, and Cathaya and the position of Cedrus. Simultaneous analysis of all fossil and extant species did not result in changes in the relationships among the extant species but did greatly reduce branch support. We found that the placement of most fossils was sensitive to the method of phylogenetic reconstruction when analyzing them singly with the extant species. CONCLUSIONS: A robust phylogenetic hypothesis for the main lineages of Pinaceae is emerging. Most Early Cretaceous fossils are stem or crown lineages of Pinus, but close relationships also were found between fossils and several other extant genera. The phylogenetic position of fossils broadly supports the existence of extant genera in the Lower Cretaceous.


Assuntos
Fósseis , Filogenia , Pinaceae/genética , Pinaceae/anatomia & histologia
5.
Mol Phylogenet Evol ; 129: 106-116, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30153503

RESUMO

Pinaceae comprises 11 genera, and represents the largest family of conifers with an extensive wild distribution in the Northern Hemisphere. Intergeneric relationships of Pinaceae have been investigated using many morphological characters and molecular markers, but phylogenetic positions of four genera, including Cathaya, Cedrus, Nothotsuga and Pseudolarix, remain controversial or have not been completely resolved. To completely resolve the intergeneric relationships of Pinaceae, we conducted a comparative transcriptomic study of 14 species representing all Pinaceae genera. Multiple data sets, containing up to 6,369,681 sites across 4676 loci, were analyzed using concatenation and coalescent methods. Our study generated a robust topology, which divides Pinaceae into two clades, one (pinoid) including Cathaya, Larix, Picea, Pinus, and Pseudotsuga, and the other (abietoid) including Abies, Cedrus, Keteleeria, Nothotsuga, Pseudolarix, and Tsuga. Cathaya and Pinus form a clade sister to Picea; Cedrus is sister to the remaining abietoid genera, and the two genera Nothotsuga and Tsuga form a clade sister to Pseudolarix. The discordant positions of Cathaya, Cedrus and Pseudolarix in different gene trees could be explained by ancient radiation and/or molecular homoplastic evolution. The hybrid origin hypothesis of Nothotsuga is not supported. Based on molecular dating, extant Pinaceae genera diverged since about 206 Mya, earlier than the break-up of Pangea, and the divergence among the pinoid genera occurred earlier than the split among the abietoid genera. Moreover, our study indicates that two radiation events occurred in the evolution of Pinaceae genera, and some important morphological characters evolved multiple times based on ancestral state reconstruction.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , Filogenia , Pinaceae/classificação , Pinaceae/genética , Abies/classificação , Abies/genética , Funções Verossimilhança , Picea/classificação , Picea/genética , Pinaceae/anatomia & histologia , Pinus/classificação , Pinus/genética , Fatores de Tempo , Transcriptoma/genética
6.
Plant Cell Environ ; 41(3): 620-629, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314043

RESUMO

Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence-related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgßGLU-1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgßglu-1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgßglu-1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgßGLU-1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.


Assuntos
Acetofenonas/metabolismo , Pinaceae/metabolismo , Proteínas de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Filogenia , Pinaceae/genética , Proteínas de Plantas/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
7.
Arch Biochem Biophys ; 638: 27-34, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29225126

RESUMO

Monoterpene synthases carry out complex reactions to produce multiple products from a sole substrate, geranyl pyrophosphate (GPP). S-limonene synthase (LS) is a model monoterpene synthase that can be explored to understand the catalytic mechanism of these enzymes. In this study, we have identified an active site tyrosine residue (Y573) is crucial for the enzyme activity and mutational analysis indicates that both the aromatic ring and hydroxyl group are essential for the catalysis. Dynamic simulations found a hydrogen bond between Y573 and D496 and also a significant conformational change in the helical form of the LPP intermediate. Further mutagenesis suggested that this hydrogen bond is essential for catalysis. Sequence analysis suggested Y573 is completely conserved among cyclic monoterpene synthases but variable in acyclic enzymes, indicating this residue may be involved in cyclization. Subsequent studies by using neryl diphosphate (NPP) as the substrate ruled out the possibility that Y573 functions solely at the substrate isomerization step. Therefore, a more complicated role may be played by this residue. We proposed that Y573 may be involved in the earlier steps of the reaction, probably by controlling the conformation of the helical LPP intermediate. Our study provides important insights not only on the catalytic mechanism of LS, but also on the cyclization of monoterpene synthases in general.


Assuntos
Liases Intramoleculares , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Pinaceae , Proteínas de Plantas , Substituição de Aminoácidos , Liases Intramoleculares/química , Liases Intramoleculares/genética , Mutagênese , Pinaceae/enzimologia , Pinaceae/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
8.
Tree Physiol ; 38(3): 442-456, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040752

RESUMO

Temperatures are expected to increase over the next century in all terrestrial biomes and particularly in boreal forests, where drought-induced mortality has been predicted to rise. Genomics research is helping to develop hypotheses regarding the molecular basis of drought tolerance and recent work proposed that the osmo-protecting dehydrin proteins have undergone a clade-specific expansion in the Pinaceae, a major group of conifer trees. The objectives of this study were to identify all of the putative members of the gene family, trace their evolutionary origin, examine their structural diversity and test for drought-responsive expression. We identified 41 complete dehydrin coding sequences in Picea glauca, which is four times more than most angiosperms studied to date, and more than in pines. Phylogenetic reconstructions indicated that the family has undergone an expansion in conifers, with parallel evolution implicating the sporadic resurgence of certain amino acid sequence motifs, and a major duplication giving rise to a clade specific to the Pinaceae. A variety of plant dehydrin structures were identified with variable numbers of the A-, E-, S- and K-segments and an N-terminal (N1) amino acid motif including assemblages specific to conifers. The expression of several of the spruce dehydrins was tissue preferential under non-stressful conditions or responded to water stress after 7-18 days without watering, reflecting changes in osmotic potential. We found that dehydrins with N1 K2 and N1 AESK2 sequences were the most responsive to the lack of water. Together, the family expansion, drought-responsive expression and structural diversification involving loss and gain of amino acid motifs suggests that subfunctionalization has driven the diversification seen among dehydrin gene duplicates. Our findings clearly indicate that dehydrins represent a large family of candidate genes for drought tolerance in spruces and in other Pinaceae that may underpin adaptability in spatially and temporally variable environments.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Pinaceae/fisiologia , Proteínas de Plantas/genética , Secas , Filogenia , Picea/genética , Picea/fisiologia , Pinaceae/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
9.
G3 (Bethesda) ; 7(9): 3157-3167, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28751502

RESUMO

A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms.


Assuntos
Genoma de Planta , Fotossíntese/genética , Pinaceae/genética , Pinaceae/metabolismo , Pseudotsuga/genética , Pseudotsuga/metabolismo , Sequenciamento Completo do Genoma , Adaptação Biológica/genética , Biologia Computacional , Evolução Molecular , Duplicação Gênica , Redes Reguladoras de Genes , Genômica , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Pinaceae/classificação , Proteômica/métodos , Pseudotsuga/classificação , Sequências Repetitivas de Ácido Nucleico
10.
Int J Biol Macromol ; 101: 595-602, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28315763

RESUMO

Spruce can grow at an extra low temperature (LT), and is inferred with important antifreezing gene resources. The research here identified 4 different spruce varieties, named as PicW1, PicW2, PicM and PicK. Sequence alignment showed base-substitution and deficiency mutations among them with sequence identity between 97.61% and 99.25%. Each gene was transferred into E. coli, where protein was induced by IPTG (isopropyl-ß-d-thiogalactoside). Strains cultured at -5°C showed the lethal dose 50% (LD-50) between 53h and 57h for the transgenic strains, but 35h for the control. Strains cultivated at -20°C showed the LD-50 between 38h and 44h for the transgenic strains, but 25h for the control. Further, the soluble gene proteins were extracted and purified for Differential Scanning Calorimeter (DSC) test, which showed characteristic thermal hysteresis (TH) value of 0.77°C (PicW1), 0.78°C (PicW2), 0.72°C (PicM), and 0.86°C (PicK) respectively, significantly higher than the value of 0.05°C of the control (BSA). Summarily, four homologous proteins showed good antifreeze property with the range from high to low as PicK>PicW2>PicW1>PicM. It suggested that they can be used as resources for genetic engineering of plant cold tolerance.


Assuntos
Escherichia coli/genética , Congelamento , Pinaceae/genética , Pinaceae/fisiologia , Proteínas de Plantas/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/fisiologia , Expressão Gênica , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
11.
Sci Rep ; 7: 42273, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205578

RESUMO

Variation in insect herbivory can lead to population structure in plant hosts as indicated by defence traits. In annual herbaceous, defence traits may vary between geographic areas but evidence of such patterns is lacking for long-lived species. This may result from the variety of selection pressures from herbivores, long distance gene flow, genome properties, and lack of research. We investigated the antagonistic interaction between white spruce (Picea glauca) and spruce budworm (SBW, Choristoneura fumiferana) the most devastating forest insect of eastern North America in common garden experiments. White spruces that are able to resist SBW attack were reported to accumulate the acetophenones piceol and pungenol constitutively in their foliage. We show that levels of these acetophenones and transcripts of the gene responsible for their release is highly heritable and that their accumulation is synchronized with the most devastating stage of SBW. Piceol and pungenol concentrations negatively correlate with rate of development in female SBW and follow a non-random geographic variation pattern that is partially explained by historical damage from SBW and temperature. Our results show that accumulation of acetophenones is an efficient resistance mechanism against SBW in white spruce and that insects can affect population structure of a long-lived plant.


Assuntos
Herbivoria/fisiologia , Insetos/fisiologia , Pinaceae/crescimento & desenvolvimento , Pinaceae/parasitologia , Árvores/crescimento & desenvolvimento , Árvores/parasitologia , Animais , Meio Ambiente , Feminino , Geografia , Modelos Lineares , Pinaceae/genética , Dinâmica Populacional , Característica Quantitativa Herdável , Árvores/genética
12.
PLoS One ; 11(8): e0161809, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560965

RESUMO

Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild.


Assuntos
Cupressaceae/genética , Genes de Cloroplastos/genética , Genoma de Cloroplastos/genética , Pinaceae/genética , Traqueófitas/genética , DNA de Plantas/química , DNA de Plantas/genética , Evolução Molecular , Rearranjo Gênico , Variação Genética , Genoma de Planta/genética , Sequências Repetidas Invertidas/genética , Filogenia , Pinaceae/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Especificidade da Espécie , Traqueófitas/classificação
13.
Genome Biol Evol ; 8(6): 1804-11, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27352945

RESUMO

Phylogeny of the ten Pinaceous genera has long been contentious. Plastid genomes (plastomes) provide an opportunity to resolve this problem because they contain rich evolutionary information. To comprehend the plastid phylogenomics of all ten Pinaceous genera, we sequenced the plastomes of two previously unavailable genera, Pseudolarix amabilis (122,234 bp) and Tsuga chinensis (120,859 bp). Both plastomes share similar gene repertoire and order. Here for the first time we report a unique insertion of tandem repeats in accD of T. chinensis From the 65 plastid protein-coding genes common to all Pinaceous genera, we re-examined the phylogenetic relationship among all Pinaceous genera. Our two phylogenetic trees are congruent in an identical tree topology, with the five genera of the Abietoideae subfamily constituting a monophyletic clade separate from the other three subfamilies: Pinoideae, Piceoideae, and Laricoideae. The five genera of Abietoideae were grouped into two sister clades consisting of (1) Cedrus alone and (2) two sister subclades of Pseudolarix-Tsuga and Abies-Keteleeria, with the former uniquely losing the gene psaM and the latter specifically excluding the 3 psbA from the residual inverted repeat.


Assuntos
Genomas de Plastídeos/genética , Filogenia , Pinaceae/genética , Tsuga/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetidas Invertidas/genética , Anotação de Sequência Molecular , Plastídeos/genética
14.
Sci Rep ; 6: 19467, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26781930

RESUMO

Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.


Assuntos
Desenvolvimento Embrionário/genética , Escherichia coli/genética , Pinaceae/genética , Pinus/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Filogenia
15.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2732-3, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26057016

RESUMO

The complete nucleotide sequence of the Taiwan red pine Pinus taiwanensis Hayata chloroplast genome (cpDNA) is determined in this study. The genome is composed of 119,741 bp in length, containing a pair of very short inverted repeat (IRa and IRb) regions of 495 bp, which was divided by a large single-copy (LSC) region of 65,670 bp and a small single-copy (SSC) region of 53,080 bp in length. The cpDNA contained 115 genes, including 74 protein-coding genes (73 PCG species), 4 ribosomal RNA genes (four rRNA species) and 37 tRNA genes (22 tRNA species). Out of these genes, 12 harbored a single intron, and one (rps12) contained a couple of introns. The overall AT content of the Taiwan red pine cpDNA is 61.5%, while the corresponding values of the LSC, SSC and IR regions are 62.2%, 60.6% and 63.6%, respectively. A maximum parsimony phylogenetic analysis suggested that the genus Pinus, Picea, Abies and Larix were strongly supported as monophyletic, and the cpDNA of P. taiwanensis is closely related to that of P. thunbergii.


Assuntos
Genoma de Cloroplastos/genética , Pinaceae/genética , DNA de Cloroplastos/genética , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Filogenia , Pinaceae/classificação , RNA Ribossômico/genética , Análise de Sequência de DNA , Taiwan
16.
PLoS One ; 10(12): e0143512, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26673795

RESUMO

Pinus trifolia Miki 1939 (Pinaceae) was originally proposed based on seed cones from the upper Miocene of Aichi and Gifu Prefectures, central Japan. However, before the publication of P. trifolia, a different name (Pinus fujiii (Yasui) Miki) was given to a female cone with the same morphology. On the other hand, P. fujiii auct. non (Yasui) Miki has been used for seed cones with different morphologies from Yasui's holotype, i.e., apophyses arranged in 5:8 parastichies and a perexcentromucronate slightly-pointed umbo. As a result of re-examination on the Miki and Yasui specimens, we concluded that P. trifolia was a synonym for P. fujiii and proposed here Pinus mikii sp. nov. for cones assigned to P. fujiii auct. non (Yasui) Miki. We also emended the diagnosis of P. fujiii based on these specimens. Pinus fujiii is characterized by a large female cone in which the apophyses with a centromucronate prickle-like umbo are arranged in 8:13 parastichies, and deciduous seed wings. These characters suggest that P. fujiii belongs to the section Trifoliae of the subgenus Pinus, which is now restricted to North and Central America and the Caribbean islands. Fossil data suggest that the P. fujiii lineage firstly appeared in Japan around the Eocene/Oligocene boundary. We speculate that the P. fujiii lineage might have moved southward to Japan from a refugium located elsewhere in high-latitude areas in response to the late Eocene cooling event, as occurred with other Trifoliae species in North America.


Assuntos
Código de Barras de DNA Taxonômico , Filogenia , Filogeografia , Pinaceae/classificação , Pinaceae/genética , Pinus/classificação , Pinus/genética , Ásia Oriental , Fenótipo , Terminologia como Assunto
17.
BMC Bioinformatics ; 16: 230, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26209068

RESUMO

BACKGROUND: While next-generation sequencing technologies have made sequencing genomes faster and more affordable, deciphering the complete genome sequence of an organism remains a significant bioinformatics challenge, especially for large genomes. Low sequence coverage, repetitive elements and short read length make de novo genome assembly difficult, often resulting in sequence and/or fragment "gaps" - uncharacterized nucleotide (N) stretches of unknown or estimated lengths. Some of these gaps can be closed by re-processing latent information in the raw reads. Even though there are several tools for closing gaps, they do not easily scale up to processing billion base pair genomes. RESULTS: Here we describe Sealer, a tool designed to close gaps within assembly scaffolds by navigating de Bruijn graphs represented by space-efficient Bloom filter data structures. We demonstrate how it scales to successfully close 50.8% and 13.8% of gaps in human (3 Gbp) and white spruce (20 Gbp) draft assemblies in under 30 and 27 h, respectively - a feat that is not possible with other leading tools with the breadth of data used in our study. CONCLUSION: Sealer is an automated finishing application that uses the succinct Bloom filter representation of a de Bruijn graph to close gaps in draft assemblies, including that of very large genomes. We expect Sealer to have broad utility for finishing genomes across the tree of life, from bacterial genomes to large plant genomes and beyond. Sealer is available for download at https://github.com/bcgsc/abyss/tree/sealer-release.


Assuntos
Biologia Computacional/métodos , Interface Usuário-Computador , Algoritmos , Genoma Humano , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Pinaceae/genética , Análise de Sequência de DNA
18.
Molecules ; 20(2): 2685-92, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25658143

RESUMO

Pseudolarix (Pinaceae) is a vulnerable (sensu IUCN) monotypic genus restricted to southeastern China. To better understand levels of genetic diversity, population structure and gene flow among populations of P. amabilis, we developed five compound SSR markers and ten novel polymorphic expressed sequence tags (EST) derived microsatellites. The results showed that all 15 loci were polymorphic with the number of alleles per locus ranging from two to seven. The expected and observed heterozygosities varied from 0.169 to 0.752, and 0.000 to 1.000, respectively. The inbreeding coefficient ranged from -0.833 to 1.000. These markers will contribute to research on genetic diversity and population genetic structure of P. amabilis, which in turn will contribute to the species conservation.


Assuntos
Repetições de Microssatélites , Pinaceae/genética , Sequência de Bases , Etiquetas de Sequências Expressas , Genes de Plantas , Marcadores Genéticos , Polimorfismo Genético , Análise de Sequência de DNA
19.
BMC Res Notes ; 7: 255, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24755442

RESUMO

BACKGROUND: Keteleeria davidiana var. formosana (Pinaceae), Taiwan cow-tail fir, is an endangered species listed on the IUCN Red List of Threatened Species and only two populations remain, both on the Taiwan Island. Sixteen polymorphic microsatellite loci were developed in an endangered and endemic gymnosperm species, Keteleeria davidiana var. formosana, and were tested in an additional 6 taxa, K. davidiana var. calcarea, K. davidiana var. chienpeii, K. evelyniana, K. fortunei, K. fortunei var. cyclolepis, and K. pubescens, to evaluate the genetic variation available for conservation management and to reconstruct the phylogeographic patterns of this ancient lineage. FINDINGS: Polymorphic primer sets were developed from K. davidiana var. formosana using the modified AFLP and magnetic bead enrichment method. The number of alleles ranged from 3 to 16, with the observed heterozygosity ranging from 0.28 to 1.00. All of the loci were found to be interspecifically amplifiable. CONCLUSIONS: These polymorphic and transferable loci will be potentially useful for future studies that will focus on identifying distinct evolutionary units within species and establishing the phylogeographic patterns and the process of speciation among closely related species.


Assuntos
DNA de Plantas/genética , Espécies em Perigo de Extinção , Especiação Genética , Repetições de Microssatélites , Pinaceae/genética , Alelos , Sequência de Bases , Cruzamento , Conservação dos Recursos Naturais , Loci Gênicos , Marcadores Genéticos , Heterozigoto , Dados de Sequência Molecular , Filogenia , Pinaceae/classificação , Polimorfismo Genético , Taiwan
20.
Genome Biol Evol ; 6(3): 580-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24586030

RESUMO

Most land plant plastomes contain two copies of a large inverted repeat (IR) that promote high-frequency homologous recombination to generate isomeric genomic forms. Among conifer plastomes, this canonical IR is highly reduced in Pinaceae and completely lost from cupressophytes. However, both lineages have acquired short, novel IRs, some of which also exhibit recombinational activity to generate genomic structural diversity. This diversity has been shown to exist between, and occasionally within, cupressophyte species, but it is not known whether multiple genomic forms coexist within individual plants. To examine the recombinational potential of the novel cupressophyte IRs within individuals and between species, we sequenced the plastomes of four closely related species of Juniperus. The four plastomes have identical gene content and genome organization except for a large 36 kb inversion between approximately 250 bp IR containing trnQ-UUG. Southern blotting showed that different isomeric versions of the plastome predominate among individual junipers, whereas polymerase chain reaction and high-throughput read-pair mapping revealed the substoichiometric presence of the alternative isomeric form within each individual plant. Furthermore, our comparative genomic studies demonstrate that the predominant and substoichiometric arrangements of this IR have changed several times in other cupressophytes as well. These results provide compelling evidence for substoichiometric shifting of plastomic forms during cupressophyte evolution and suggest that substoichiometric shifting activity in plastid genomes may be adaptive.


Assuntos
Evolução Molecular , Genes de Plantas , Genomas de Plastídeos , Juniperus/genética , DNA de Plantas/genética , Genômica , Sequências Repetidas Invertidas , Juniperus/classificação , Dados de Sequência Molecular , Filogenia , Pinaceae/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...