Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 119(1): 113-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168863

RESUMO

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Assuntos
Autofagia Mediada por Chaperonas , Traumatismo por Reperfusão , Humanos , Pinacidil/metabolismo , Células Endoteliais/metabolismo , Calreticulina/metabolismo , Cálcio/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose
2.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846798

RESUMO

Previous studies have confirmed that 50 µmol/l pinacidil postconditioning (PPC) activates the nuclear factor­E2 related factor 2 (Nrf2)­antioxidant responsive element (ARE) pathway, which protects the myocardium from ischemia­reperfusion (IR) injury; however, whether this is associated with reactive oxygen species (ROS) generation remains unclear. In the present study, a Langendorff rat model of isolated myocardial IR was established to investigate the mechanism of PPC at different concentrations, as well as the association between the rat myocardial Nrf2­ARE signaling pathway and ROS. A total of 48 rats were randomly divided into the following six groups (n=8 per group): i) Normal; ii) IR iii) 10 µmol/l PPC (P10); iv) 30 µmol/l PPC (P30); v) 50 µmol/l PPC (P50); and vi) N­(2­mercaptopropionyl)­glycine (MPG; a ROS scavenger) + 50 µmol/l pinacidil (P50 + MPG). At the end of reperfusion (T3), compared with the IR group, the P10, P30 and P50 groups exhibited improved cardiac function, such as left ventricular development pressure, heart rate, left ventricular end­diastolic pressure, +dp/dtmax, myocardial cell ultrastructure and mitochondrial Flameng score. Furthermore, the P10 and P50 groups demonstrated the weakest and most marked improvements, respectively. Additionally, in the P10, P30 and P50 groups, the residual ROS content at the end of reperfusion was highly negatively correlated with relative expression levels of Nrf2 gene and protein. Higher pinacidil concentration was associated with higher ROS generation at 5 min post­reperfusion (T2), although this was significantly lower compared with the IR group, as well as with increased expression levels of antioxidant proteins and phase II detoxification enzymes downstream of the Nrf2 and Nrf2­ARE pathways. This result was associated with a stronger ability to scavenge ROS during reperfusion, leading to lower levels of ROS at the end of reperfusion (T3) and less myocardial damage. The optimal myocardial protective effect was achieved by 50 mmol/l pinacidil. However, cardiac function of the P50 + MPG group was significantly decreased, ultrastructure of cardiomyocytes was significantly impaired and the relative expression levels of genes and proteins in the Nrf2­ARE pathway were decreased. The aforementioned results confirmed that different PPC concentrations promoted early generation of ROS and activated the Nrf2­ARE signaling pathway following reperfusion, regulated expression levels of downstream antioxidant proteins and alleviated myocardial IR injury in rats. Treatment with 50 mmol/l pinacidil resulted in the best myocardial protection.


Assuntos
Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Pinacidil/metabolismo , Pinacidil/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Expressão Gênica , Masculino , Mitocôndrias/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley
3.
Biochemistry ; 51(45): 9211-22, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23078514

RESUMO

ATP sensitive potassium (K(ATP)) channels are composed of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B) that surround the pore. SUR proteins are members of the ATP-binding cassette (ABC) superfamily of proteins. Binding of MgATP at the SUR nucleotide binding domains (NBDs) results in NBD dimerization, and hydrolysis of MgATP at the NBDs leads to channel opening. The SUR proteins also mediate interactions with K(ATP) channel openers (KCOs) that activate the channel, with KCO binding and/or activation involving residues in the transmembrane helices and cytoplasmic loops of the SUR proteins. Because the cytoplasmic loops make extensive interactions with the NBDs, we hypothesized that the NBDs may also be involved in KCO binding. Here, we report nuclear magnetic resonance (NMR) spectroscopy studies that demonstrate a specific interaction of the KCO pinacidil with the first nucleotide binding domain (NBD1) from SUR2A, the regulatory SUR protein in cardiac K(ATP) channels. Intrinsic tryptophan fluorescence titrations also demonstrate binding of pinacidil to SUR2A NBD1, and fluorescent nucleotide binding studies show that pinacidil binding increases the affinity of SUR2A NBD1 for ATP. In contrast, the KCO diazoxide does not interact with SUR2A NBD1 under the same conditions. NMR relaxation experiments and size exclusion chromatography indicate that SUR2A NBD1 is monomeric under the conditions used in drug binding studies. These studies identify additional binding sites for commonly used KCOs and provide a foundation for testing binding of drugs to the SUR NBDs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação/genética , Diazóxido/metabolismo , Ressonância Magnética Nuclear Biomolecular , Nucleotídeos/metabolismo , Pinacidil/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Estrutura Terciária de Proteína , Ratos , Receptores de Droga/fisiologia , Receptores de Sulfonilureias
4.
Br J Pharmacol ; 159(3): 669-77, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20128805

RESUMO

BACKGROUND AND PURPOSE: ATP-sensitive potassium channels (K(ATP) channels) in beta cells are a major target for insulinotropic drugs. Here, we studied the effects of selected stimulatory and inhibitory pharmacological agents in islets lacking K(ATP) channels. EXPERIMENTAL APPROACH: We compared insulin secretion (IS) and cytosolic calcium ([Ca(2+)](c)) changes in islets isolated from control mice and mice lacking sulphonylurea receptor1 (SUR1), and thus K(ATP) channels in their beta cells (Sur1KO). KEY RESULTS: While similarly increasing [Ca(2+)](c) and IS in controls, agents binding to site A (tolbutamide) or site B (meglitinide) of SUR1 were ineffective in Sur1KO islets. Of two non-selective blockers of potassium channels, quinine was inactive, whereas tetraethylammonium was more active in Sur1KO compared with control islets. Phentolamine, efaroxan and alinidine, three imidazolines binding to K(IR)6.2 (pore of K(ATP) channels), stimulated control islets, but only phentolamine retained weaker stimulatory effects on [Ca(2+)](c) and IS in Sur1KO islets. Neither K(ATP) channel opener (diazoxide, pinacidil) inhibited Sur1KO islets. Calcium channel blockers (nimodipine, verapamil) or diphenylhydantoin decreased [Ca(2+)](c) and IS in both types of islets, verapamil and diphenylhydantoin being more efficient in Sur1KO islets. Activation of alpha(2)-adrenoceptors or dopamine receptors strongly inhibited IS while partially (clonidine > dopamine) lowering [Ca(2+)](c) (control > Sur1KO islets). CONCLUSIONS AND IMPLICATIONS: Those drugs retaining effects on IS in islets lacking K(ATP) channels, also affected [Ca(2+)](c), indicating actions on other ionic channels. The greater effects of some inhibitors in Sur1KO than in control islets might be relevant to medical treatment of congenital hyperinsulinism caused by inactivating mutations of K(ATP) channels.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Canais KATP/deficiência , Canais de Potássio/metabolismo , Tolbutamida/farmacologia , Animais , Benzofuranos , Cálcio/metabolismo , Cálcio/farmacologia , Citosol/metabolismo , Diazóxido/metabolismo , Diazóxido/farmacologia , Feminino , Imidazóis , Imidazolinas/metabolismo , Imidazolinas/farmacologia , Insulina/farmacologia , Secreção de Insulina , Camundongos , Camundongos Knockout , Fentolamina/metabolismo , Fentolamina/farmacologia , Pinacidil/metabolismo , Pinacidil/farmacologia , Canais de Potássio/farmacologia , Tolbutamida/metabolismo
5.
Dev Biol ; 289(2): 395-405, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16343479

RESUMO

Mammalian sperm must undergo a series of physiological changes after leaving the testis to become competent for fertilization. These changes, collectively known as capacitation, occur in the female reproductive tract where the sperm plasma membrane is modified in terms of its components and ionic permeability. Among other events, mouse sperm capacitation leads to an increase in the intracellular Ca(2+) and pH as well as to a hyperpolarization of the membrane potential. It is well known that ion channels play a crucial role in these events, though the molecular identity of the particular channels involved in capacitation is poorly defined. In the present work, we report the identification and potential functional role of K(ATP) channels in mouse spermatogenic cells and sperm. By using whole-cell patch clamp recordings in mouse spermatogenic cells, we found K(+) inwardly rectifying (K(ir)) currents that are sensitive to Ba(2+), glucose and the sulfonylureas (tolbutamide and glibenclamide) that block K(ATP) channels. The presence of these channels was confirmed using inhibitors of the ATP synthesis and K(ATP) channel activators. Furthermore, RT-PCR assays allowed us to detect transcripts for the K(ATP) subunits SUR1, SUR2, K(ir)6.1 and K(ir)6.2 in total RNA from elongated spermatids. In addition, immunoconfocal microscopy revealed the presence of these K(ATP) subunits in mouse spermatogenic cells and sperm. Notably, incubation of sperm with tolbutamide during capacitation abolished hyperpolarization and significantly decreased the percentage of AR in a dose-dependent fashion. Together, our results provide evidence for the presence of K(ATP) channels in mouse spermatogenic cells and sperm and disclose the contribution of these channels to the capacitation-associated hyperpolarization.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Capacitação Espermática/fisiologia , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bário/metabolismo , Bário/farmacologia , Diazóxido/metabolismo , Diazóxido/farmacologia , Relação Dose-Resposta a Droga , Glibureto/metabolismo , Glibureto/farmacologia , Canais KATP , Masculino , Potenciais da Membrana , Camundongos , Microscopia Confocal , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pinacidil/metabolismo , Pinacidil/farmacologia , RNA Mensageiro/metabolismo , Receptores de Droga , Espermatozoides/citologia , Receptores de Sulfonilureias , Fatores de Tempo , Tolbutamida/metabolismo , Tolbutamida/farmacologia
6.
Eur J Pharmacol ; 523(1-3): 109-18, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-16226739

RESUMO

Changes in the activity of K+ channels represent a major mechanism that regulates vascular tone. Cerebrovascular adenosine 5'-triphosphate-sensitive K+(K(ATP)) channels were characterized in studies of the molecular expression and vasomotor reactivity to different K(ATP) channel openers in rat basilar and middle cerebral arteries. Both arteries showed strong mRNA expression of the subunits of the pore-forming inward-rectifying K+ channel type 6.1 (Kir6.1), Kir6.2 and the connected sulfonylurea receptor (SUR) subunits, SUR1 and SUR2B, while only weak bands for SUR2A were seen. The K(ATP) channel openers induced relaxation of prostaglalndin F2alpha-precontracted isolated basilar and middle cerebral arteries with the order of potency N-Cyano-N-(1,1-dimethylpropyl)-N''-3pyridylguanidine (P-1075)>levcromakalim>N-(4-Phenylsulfonylphenyl)-3,3,3-trifluoro-2-hydroxy-2-methylpropanamide (ZM226600)>pinacidil>diazoxide. The responses induced by levcromakalim, ZM226600 and diazoxide were significantly more potent in basilar arteries than in middle cerebral arteries, while pinacidil and P-1075 were equipotent. Endothelium removal decreased (P<0.05) the sensitivity (pIC50) of basilar arteries, but not of middle cerebral arteries, to pinacidil, levcromakalim, P-1075 and ZM226600. The maximum relaxant response to P-1075 was stronger (P<0.005) in basilar arteries with endothelium than without endothelium. Correlation of the relaxant potency of K(ATP) channel openers in rat basilar and middle cerebral arteries with historical measurements of affinity obtained in COS-7 cell lines expressing either SUR1, SUR2A or SUR2B showed that vasodilatation by K(ATP) channel openers correlated with binding to either the SUR2A or the SUR2B subunit. Glibenclamide was a blocker of relaxation induced by pinacidil, levcromakalim, P-1075 and ZM226600 in basilar arteries. Only a weak antagonistic effect of glibenclamide on pinacidil-, levcromakalim- and ZM226600-induced relaxations was found in middle cerebral arteries. The subunit profile and the observed pharmacological properties suggest that the K(ATP) channels expressed in rat basilar and middle cerebral artery are likely to be composed of SUR2B co-associated with Kir6.1 or Kir6.2. In basilar arteries, but not in middle cerebral arteries, endothelial K(ATP) channels may be involved.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Artéria Basilar/efeitos dos fármacos , Artéria Cerebral Média/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , RNA Mensageiro/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Artéria Basilar/metabolismo , Sítios de Ligação , Células COS , Chlorocebus aethiops , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glibureto/farmacologia , Guanidinas/metabolismo , Guanidinas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais KATP , Masculino , Artéria Cerebral Média/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Compostos Orgânicos/metabolismo , Compostos Orgânicos/farmacologia , Pinacidil/metabolismo , Pinacidil/farmacologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Piridinas/metabolismo , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Droga/genética , Receptores de Droga/metabolismo , Receptores de Sulfonilureias , Transfecção , Vasodilatadores/metabolismo
7.
Toxicon ; 43(7): 743-50, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15284008

RESUMO

An extract of toxin(s) from the Australian paralysis tick, Ixodes holocyclus, produced positive inotropic responses in rat left ventricular papillary muscles and positive contractile responses in rat thoracic aortic rings. There was no measurable chronotropic response in rat right atria, but positive inotropic concentrations in papillary muscles produced arrhythmias in right atria. Positive inotropic responses were attenuated by verapamil, but unaffected by metoprolol, cimetidine, pyrilamine, tetrodotoxin and pinacidil. Microelectrode studies on isolated left ventricular papillary muscles demonstrated that the extract prolonged action potential duration at 20, 50 and 90% of repolarisation and delayed ventricular papillary muscle relaxation. Cardiovascular tissues isolated from rats with experimentally induced tick paralysis showed no myocardial damage as identified by histological and ultrastructural examination. The basal rate and force of contraction of isolated cardiac tissues were lower from tick-paralysed than normal rats. Concentration-response curves to dobutamine and calcium chloride were similar between tissues from tick-paralysed and normal rats. Thus, the Australian paralysis tick, I. holocyclus, produces one or more toxins with direct cardiovascular effects which mimic the effects produced by direct blockade of cardiac and vascular K+ channels.


Assuntos
Antitoxinas/metabolismo , Ixodes/química , Contração Miocárdica/efeitos dos fármacos , Venenos de Aranha/toxicidade , Potenciais de Ação/fisiologia , Animais , Antiarrítmicos/metabolismo , Cimetidina/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Técnicas Histológicas , Masculino , Metoprolol/metabolismo , Microeletrodos , Microscopia Eletrônica , Miocárdio/patologia , Miocárdio/ultraestrutura , Pinacidil/metabolismo , Pirilamina/metabolismo , Ratos , Ratos Wistar , Venenos de Aranha/metabolismo , Tetrodotoxina/metabolismo , Verapamil/metabolismo
8.
Biochem Biophys Res Commun ; 296(2): 463-9, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-12163042

RESUMO

ATP-sensitive K+ (K(ATP)) channels couple metabolic changes to membrane excitability in vascular smooth muscle cells (SMCs). While the electrophysiological properties of K(ATP) channels have been examined, little is known about the molecular basis of K(ATP) complex in vascular SMCs. We identified and cloned four K(ATP) subunit genes from rat mesenteric artery, namely rvKir6.1, rvKir6.2, rvKirSUR1, and rvSUR2B. These clones showed over 99.6% amino acid sequence identity with other previously reported isoforms. The mRNA expression patterns of the K(ATP) subunits varied among rat aorta, mesenteric artery, pulmonary artery, tail artery, hepatic artery, and portal vein. Heterologous co-expression of rvKir6.1 and rvSUR2B yielded functional K(ATP) channels that were inhibited by glibenclamide, and opened by pinacidil. Our results for the first time reported the expression of four K(ATP) subunits in same vascular tissues, unmasking the diversity of native K(ATP) channels in vascular SMCs.


Assuntos
Trifosfato de Adenosina/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Antiarrítmicos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Clonagem Molecular , Glibureto/metabolismo , Humanos , Masculino , Técnicas de Patch-Clamp , Pinacidil/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vasodilatadores/metabolismo
9.
J Biol Chem ; 277(43): 40196-205, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12171936

RESUMO

ATP-dependent K(+) channels (K(ATP) channels) are composed of pore-forming subunits Kir6.x and sulfonylurea receptors (SURs). Cyanoguanidines such as pinacidil and P1075 bind to SUR and enhance MgATP binding to and hydrolysis by SUR, thereby opening K(ATP) channels. In the vasculature, openers of K(ATP) channels produce vasorelaxation. Some novel cyanoguanidines, however, selectively reverse opener-induced vasorelaxation, suggesting that they might be K(ATP) channel blockers. Here we have analyzed the interaction of the enantiomers of a racemic cyanoguanidine blocker, PNU-94750, with Kir6.2/SUR channels. In patch clamp experiments, the R-enantiomer (PNU-96293) inhibited Kir6.2/SUR2 channels (IC(50) approximately 50 nm in the whole cell configuration), whereas the S-enantiomer (PNU-96179) was a weak opener. Radioligand binding studies showed that the R-enantiomer was more potent and that it was negatively allosterically coupled to MgATP binding, whereas the S-enantiomer was weaker and positively coupled. Binding experiments also suggested that both enantiomers bound to the P1075 site of SUR. This is the first report to show that the enantiomers of a K(ATP) channel modulator affect channel activity and coupling to MgATP binding in opposite directions and that these opposite effects are apparently mediated by binding to the same (opener) site of SUR.


Assuntos
Trifosfato de Adenosina/metabolismo , Pinacidil/metabolismo , Canais de Potássio/metabolismo , Animais , Linhagem Celular , Humanos , Ativação do Canal Iônico , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio/química , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Ensaio Radioligante , Estereoisomerismo
10.
Biochemistry ; 41(8): 2712-8, 2002 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11851418

RESUMO

The conversion of nitriles to amides is generally considered to be a hydrolytic process that does not involve redox chemistry. We demonstrate here that cytochrome P450 (CYP) is responsible for the conversion of the cyano group of pinacidil to the corresponding amide. The reaction in human liver microsomes was NADPH-dependent and was nearly completely inhibited by an anti-CYP3A4 antibody. Incubations of pinacidil with recombinant CYP enzymes confirm that CYP3A4 is the principal catalyst of this reaction. The kinetics of pinacidil amide formation by CYP3A4 yielded an apparent K(m) of 452 +/- 33 microM and k(cat) of 0.108 min(-1) (k(cat)/K(m) = 0.238 mM(-1).min(-1)). Incubation of pinacidil with CYP3A4 in the presence of (18)O(2) or H(2)(18)O showed that the amide carbonyl oxygen derived exclusively from molecular oxygen. The CYP3A4-mediated reaction also was supported by hydrogen peroxide when incubations were carried out in the absence of cytochrome P450 reductase and NADPH. The reaction can be explained by a nucleophilic attack of a deprotonated ferric peroxide intermediate (Fe(3+)-O-O(-)) on the carbon atom of the -C triple bond N triple bond to form an Enz-Fe(III)-O-O-C(=NH)R intermediate, followed by cleavage of the O-O bond to give pinacidil amide. This nucleophilic addition of an Fe(3+)-O-O(-) intermediate to a -C=N pi-bond in a P450 system resembles the analogous reaction catalyzed by the nitric oxide synthases.


Assuntos
Amidas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo , Nitrilas/metabolismo , Pinacidil/metabolismo , Catálise , Citocromo P-450 CYP3A , Humanos , Cinética , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Oxirredução
11.
Trends Pharmacol Sci ; 21(11): 439-45, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11121575

RESUMO

K(ATP) channel openers are a diverse group of drugs with a wide range of potential therapeutic uses. Their molecular targets, the K(ATP) channels, exhibit tissue-specific responses because they possess different types of regulatory sulfonylurea receptor subunits. It is well recognized that complex interactions occur between K(ATP) channel openers and nucleotides, but the cloning of the K(ATP) channel has introduced a new dimension to the study of these events and has furthered our understanding of the molecular basis of the action of K(ATP) channel openers.


Assuntos
Minoxidil/análogos & derivados , Canais de Potássio/efeitos dos fármacos , Trifosfato de Adenosina/fisiologia , Animais , Sítios de Ligação , Cromakalim/metabolismo , Cromakalim/farmacologia , Diazóxido/metabolismo , Diazóxido/farmacologia , Humanos , Minoxidil/metabolismo , Minoxidil/farmacologia , Nicorandil/metabolismo , Nicorandil/farmacologia , Pinacidil/metabolismo , Pinacidil/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia
12.
EMBO J ; 17(19): 5529-35, 1998 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9755153

RESUMO

KATP channels are composed of a small inwardly rectifying K+ channel subunit, either KIR6.1 or KIR6.2, plus a sulfonylurea receptor, SUR1 or SUR2 (A or B), which belong to the ATP-binding cassette superfamily. SUR1/KIR6.2 reconstitute the neuronal/pancreatic beta-cell channel, whereas SUR2A/KIR6.2 and SUR2B/KIR6.1 (or KIR6.2) are proposed to reconstitute the cardiac and the vascular-smooth-muscle-type KATP channels, respectively. We report that potassium channel openers (KCOs) bind to and act through SURs and that binding to SUR1, SUR2A and SUR2B requires ATP. Non-hydrolysable ATP-analogues do not support binding, and Mg2+ or Mn2+ are required. Point mutations in the Walker A motifs or linker regions of both nucleotide-binding folds (NBFs) abolish or weaken [3H]P1075 binding to SUR2B, rendering reconstituted SUR2B/KIR6.2 channels insensitive towards KCOs. The C-terminus of SUR affects KCO affinity with SUR2B approximately SUR1 > SUR2A. KCOs belonging to different structural classes inhibited specific [3H]P1075 binding to SUR2B in a monophasic manner, with the exception of minoxidil sulfate, which induced a biphasic displacement. The affinities of KCO binding to SUR2B were 3.5-8-fold higher than their potencies for activation of SUR2B/KIR6.2 channels. The results establish that SURs are the KCO receptors of KATP channels and suggest that KCO binding requires a conformational change induced by ATP hydrolysis in both NBFs.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/metabolismo , Receptores de Droga/metabolismo , Animais , Sítios de Ligação/genética , Ligação Competitiva , Cricetinae , Diazóxido/metabolismo , Glibureto/metabolismo , Guanidinas/metabolismo , Humanos , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Pinacidil/metabolismo , Canais de Potássio/agonistas , Canais de Potássio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/metabolismo , Receptores de Droga/genética , Proteínas Recombinantes/metabolismo , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...