Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cardiovasc Res ; 114(14): 1871-1882, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032247

RESUMO

Aims: The prevalence of heart failure with a preserved ejection fraction (HFpEF) is increasing, but therapeutic options are limited. Oxidative stress is suggested to play an important role in the pathophysiology of HFpEF. However, whether oxidative stress is a bystander due to comorbidities or causative in itself remains unknown. Recent results have shown that depletion of 5-oxoprolinase (OPLAH) leads to 5-oxoproline accumulation, which is an important mediator of oxidative stress in the heart. We hypothesize that oxidative stress induced by elevated levels of 5-oxoproline leads to the onset of a murine HFpEF-like phenotype. Methods and results: Oplah full body knock-out (KO) mice had higher 5-oxoproline levels coupled to increased oxidative stress. Compared with wild-type (WT) littermates, KO mice had increased cardiac and renal fibrosis with concurrent elevated left ventricular (LV) filling pressures, impaired LV relaxation, yet a normal LV ejection fraction. Following the induction of cardiac ischaemia/reperfusion (IR) injury, 52.4% of the KO mice died compared with only 15.4% of the WT mice (P < 0.03). Furthermore, KO mice showed a significantly increased atrial, ventricular, kidney, and liver weights compared with WT mice (P < 0.05 for all). Cardiac and renal fibrosis were more pronounced following cardiac IR injury in the KO mice and these mice developed proteinuria post-IR injury. To further address the link between 5-oxoproline and HFpEF, 5-oxoproline was measured in the plasma of HFpEF patients. Compared with healthy controls (3.8 ± 0.6 µM), 5-oxoproline levels were significantly elevated in HFpEF patients (6.8 ± 1.9 µM, P < 0.0001). Furthermore, levels of 5-oxoproline were independently associated with more concentric remodelling on echocardiography. Conclusion: Oxidative stress induced by 5-oxoproline results in a murine phenotype reminiscent of the clinical manifestation of HFpEF without the need for surgical or pharmacological interference. Better understanding of the role of oxidative stress in HFpEF may potentially lead to novel therapeutic options.


Assuntos
Insuficiência Cardíaca/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Piroglutamato Hidrolase/deficiência , Ácido Pirrolidonocarboxílico/metabolismo , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Estresse Oxidativo , Fenótipo , Piroglutamato Hidrolase/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Transdução de Sinais
2.
Braz J Med Biol Res ; 51(3): e6853, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29340523

RESUMO

Glutathione synthetase deficiency (GSSD) is a rare inborn error of glutathione metabolism with autosomal recessive inheritance. The severe form of the disease is characterized by acute metabolic acidosis, usually present in the neonatal period with hemolytic anemia and progressive encephalopathy. A case of a male newborn infant who had severe metabolic acidosis with high anion gap, hemolytic anemia, and hyperbilirubinemia is reported. A high level of 5-oxoproline was detected in his urine and a diagnosis of generalized GSSD was made. DNA sequence analysis revealed the infant to be compound heterozygous with two mutations, c.738dupG in exon 8 of GSS gene resulting in p.S247fs and a repetitive sequence in exon 3 of GSS gene. Treatment after diagnosis of GSSD included supplementation with antioxidants and oral sodium hydrogen bicarbonate. However, he maintained a variable degree of metabolic acidosis and succumbed shortly after his parents requested discontinuation of therapy because of dismal prognosis and medical futility when he was 18 days old.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Mutação , Acidose/etiologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Ácido Glutâmico/análise , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Humanos , Recém-Nascido , Masculino , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Análise de Sequência de DNA/métodos
3.
Curr Genet ; 64(1): 285-301, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28918485

RESUMO

In eukaryotic organisms, the 5-oxoprolinase is one of the six key enzymes in the γ-glutamyl cycle that is involved in the biosynthetic pathway of glutathione (GSH, an antioxidative tripeptide counteracting the oxidative stress). To date, little is known about the biological functions of the 5-oxoprolinase in filamentous phytopathogenic fungi. In this study, we investigated the 5-oxoprolinase in Fusarium graminearum for the first time. In F. graminearum, two paralogous genes (FgOXP1 and FgOXP2) were identified to encode the 5-oxoprolinase while only one homologous gene encoding the 5-oxoprolinase could be found in other filamentous phytopathogenic fungi or Saccharomyces cerevisiae. Deletion of FgOXP1 or FgOXP2 in F. graminearum led to significant defects in its virulence on wheat. This is likely caused by an observed decreased deoxynivalenol (DON, a mycotoxin) production in the gene deletion mutant strains as DON is one of the best characterized virulence factors of F. graminearum. The FgOXP2 deletion mutant strains were also defective in conidiation and sexual reproduction while the FgOXP1 deletion mutant strains were normal for those phenotypes. Double deletion of FgOXP1 and FgOXP2 led to more severe defects in conidiation, DON production and virulence on plants, suggesting that both FgOXP1 and FgOXP2 play a role in fungal development and plant colonization. Although transformation of MoOXP1into ΔFgoxp1 was able to complement ΔFgoxp1, transformation of MoOXP1 into ΔFgoxp2 failed to restore its defects in sexual development, DON production and pathogenicity. Taken together, these results suggest that FgOXP1 and FgOXP2 are likely to have been functionally diversified and play significant roles in fungal development and full virulence in F. graminearum.


Assuntos
Fusarium/fisiologia , Piroglutamato Hidrolase/metabolismo , Esporos Fúngicos , Tricotecenos/biossíntese , Evolução Biológica , Parede Celular/genética , Parede Celular/metabolismo , Biologia Computacional/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Teste de Complementação Genética , Mutação , Filogenia , Transporte Proteico , Piroglutamato Hidrolase/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Braz. j. med. biol. res ; 51(3): e6853, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889048

RESUMO

Glutathione synthetase deficiency (GSSD) is a rare inborn error of glutathione metabolism with autosomal recessive inheritance. The severe form of the disease is characterized by acute metabolic acidosis, usually present in the neonatal period with hemolytic anemia and progressive encephalopathy. A case of a male newborn infant who had severe metabolic acidosis with high anion gap, hemolytic anemia, and hyperbilirubinemia is reported. A high level of 5-oxoproline was detected in his urine and a diagnosis of generalized GSSD was made. DNA sequence analysis revealed the infant to be compound heterozygous with two mutations, c.738dupG in exon 8 of GSS gene resulting in p.S247fs and a repetitive sequence in exon 3 of GSS gene. Treatment after diagnosis of GSSD included supplementation with antioxidants and oral sodium hydrogen bicarbonate. However, he maintained a variable degree of metabolic acidosis and succumbed shortly after his parents requested discontinuation of therapy because of dismal prognosis and medical futility when he was 18 days old.


Assuntos
Humanos , Masculino , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Mutação , Acidose/etiologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Ácido Glutâmico/análise , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Análise de Sequência de DNA/métodos
5.
Mol Genet Metab ; 119(1-2): 44-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477828

RESUMO

Primary 5-oxoprolinuria (pyroglutamic aciduria) is caused by a genetic defect in the γ-glutamyl cycle, affecting either glutathione synthetase or 5-oxoprolinase. While several dozens of patients with glutathione synthetase deficiency have been reported, with hemolytic anemia representing the clinical key feature, 5-oxoprolinase deficiency due to OPLAH mutations is less frequent and so far has not attracted much attention. This has prompted us to investigate the clinical phenotype as well as the underlying genotype in patients from 14 families of various ethnic backgrounds who underwent diagnostic mutation analysis following the detection of 5-oxoprolinuria. In all patients with 5-oxoprolinuria studied, bi-allelic mutations in OPLAH were indicated. An autosomal recessive mode of inheritance for 5-oxoprolinase deficiency is further supported by the identification of a single mutation in all 9/14 parent sample sets investigated (except for the father of one patient whose result suggests homozygosity), and the absence of 5-oxoprolinuria in all tested heterozygotes. It is remarkable, that all 20 mutations identified were novel and private to the respective families. Clinical features were highly variable and in several sib pairs, did not segregate with 5-oxoprolinuria. Although a pathogenic role of 5-oxoprolinase deficiency remains possible, this is not supported by our findings. Additional patient ascertainment and long-term follow-up is needed to establish the benign nature of this inborn error of metabolism. It is important that all symptomatic patients with persistently elevated levels of 5-oxoproline and no obvious explanation are investigated for the genetic etiology.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Ácido Pirrolidonocarboxílico/metabolismo , Adolescente , Alelos , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Criança , Pré-Escolar , Feminino , Glutationa/metabolismo , Glutationa Sintase/genética , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mutação
6.
Brain Dev ; 37(10): 952-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851806

RESUMO

OBJECTIVE: 5-Oxoprolinuria is a rare inherited metabolic disorder caused by a defective gamma-glutamyl cycle resulting from mutations in the genes encoding 5-oxoprolinase (OPLAH) and glutathione synthetase (GSS). No inherited 5-oxoprolinuria case has been reported in mainland China until now. In this study, clinical, biochemical, and genetic aspects of five Chinese 5-oxoprolinuria patients with OPLAH or GSS gene mutations were investigated. METHODS: Three boys and two girls from five unrelated Chinese families with symptomatic 5-oxoprolinuria were identified within the past 3years in Peking University First Hospital. OPLAH and GSS genes were analyzed. RESULTS: Patients were hospitalized between the age of 13days to 1year and 3months for hypersomnia, developmental retardation, feeding deficiency, vomiting, icterus and recurrent pneumonia. All patients had significantly elevated urine 5-oxoproline. Three novel mutations (c.1904G>A and c.2813_2815delGGG in Patient 1, c.2978G>T in Patient 2) on OPLAH, on GSS, one novel mutation (c.1252C>T in Patient 3) and a reported mutation (c.491G>A in Patients 3-5) were detected. Patient 4 has homozygous mutation c.491G>A, the others are heterozygous. After treatment by l-carnitine, vitamin E, B1, B2 and coenzyme Q10, three patients with GSS deficiency improved, but the two 5-oxoprolinase-deficient patients did not respond to treatment. CONCLUSIONS: 5-Oxoprolinase deficiency and GSS deficiency share some clinical and biochemical features. Genetic analysis is important for the deferential diagnosis. In this study, five Chinese patients had severe central nervous system damage. Antioxidant treatments were proved effective for the three patients with GSS deficiency but not for the two patients with 5-oxoprolinase deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/urina , Glutationa Sintase/deficiência , Hidroxiprolina/urina , Piroglutamato Hidrolase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Povo Asiático , Estudos de Casos e Controles , Pré-Escolar , China , Feminino , Predisposição Genética para Doença , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Glutationa Sintase/urina , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Piroglutamato Hidrolase/genética , Piroglutamato Hidrolase/metabolismo , Piroglutamato Hidrolase/urina
7.
Eur J Pediatr ; 174(3): 407-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25129617

RESUMO

UNLABELLED: Inherited 5-oxoprolinase (OPLAH) deficiency is a rare inborn condition characterised by 5-oxoprolinuria. To date, three OPLAH mutations have been described: p.H870Pfs in a homozygous state, which results in a truncated protein, was reported in two siblings, and two heterozygous missense changes, p.S323R and p.V1089I, were independently identified in two unrelated patients. We describe the clinical context of a young girl who manifested 5-oxoprolinuria together with dusky episodes and who is compound heterozygote for two novel OPLAH variations: p.G860R and p.D1241V. To gain insight into the aetiology of the 5-oxoprolinase deficiency, we investigated the pathogenicity of all the reported missense mutations in the OPLAH gene. A yeast in vivo growth assay revealed that only p.S323R, p.G860R and p.D1241V affected the activity of the enzyme. CONCLUSION: Taken together, this report further suggests that hereditary 5-oxoprolinase deficiency is a benign biochemical condition caused by mutations in the OPLAH gene, which are transmitted in an autosomal recessive manner, but 5-oxoprolinuria may be a chance association in other disorders.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Mutação de Sentido Incorreto , Piroglutamato Hidrolase/deficiência , Feminino , Genes Recessivos , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Piroglutamato Hidrolase/genética
9.
Clin Genet ; 82(2): 193-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21651516

RESUMO

Gamma-glutamyl cycle is a six-enzyme cycle that represents the primary pathway for glutathione synthesis and degradation. 5-Oxoprolinase deficiency is an extremely rare disorder of the gamma-glutamyl cycle with only eight patients reported to date. Debate continues as to whether this is a benign biochemical defect because of the heterogeneity of the clinical presentation which ranges from normal to significant neurological involvement. Here, we report the first molecularly characterized patients with 5-oxoprolinase deficiency due to a mutation in OPLAH (which encodes 5-oxoprolinase). The largely benign clinical course of the patients described herein despite persistent 5-oxoprolinuria highlights the importance of establishing a molecular diagnosis in the few cases with abnormal neurological outcome to exclude potentially overlapping biochemical defects and to explore potential genotype/phenotype correlation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Mutação , Piroglutamato Hidrolase/genética , Sequência de Bases , Mutação da Fase de Leitura , Heterozigoto , Humanos , Lactente , Masculino , Piroglutamato Hidrolase/deficiência
10.
FEMS Yeast Res ; 10(4): 394-401, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20402795

RESUMO

OXP1/YKL215c, an uncharacterized ORF of Saccharomyces cerevisiae, encodes a functional ATP-dependent 5-oxoprolinase of 1286 amino acids. The yeast 5-oxoprolinase activity was demonstrated in vivo by utilization of 5-oxoproline as a source of glutamate and OTC, a 5-oxoproline sulfur analogue, as a source of sulfur in cells overexpressing OXP1. In vitro characterization by expression and purification of the recombinant protein in S. cerevisiae revealed that the enzyme exists and functions as a dimer, and has a K(m) of 159 microM and a V(max) of 3.5 nmol h(-1) microg(-1) protein. The enzyme was found to be functionally separable in two distinct domains. An 'actin-like ATPase motif' could be identified in 5-oxprolinases, and mutation of key residues within this motif led to complete loss in ATPase and 5-oxoprolinase activity of the enzyme. The results are discussed in the light of the previously postulated truncated gamma-glutamyl cycle of yeasts.


Assuntos
Trifosfato de Adenosina/metabolismo , Piroglutamato Hidrolase/genética , Piroglutamato Hidrolase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Dimerização , Expressão Gênica , Ácido Glutâmico/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Piroglutamato Hidrolase/isolamento & purificação , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Enxofre/metabolismo
11.
Nutr Cancer ; 60(4): 518-25, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18584486

RESUMO

Malignancy depletes host glutathione (GSH) levels to increase treatment-related toxicity and increases itself to resist the treatments. Our previous studies have shown that dietary glutamine (GLN) prevented 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors through enhancing gut GSH release and reducing tumor GSH level. In addition, GSH synthesis, metabolism, and recycling are accomplished in gamma-glutamyl cycle. We hypothesized that the GLN prevention might be through a differential regulation of the gamma-glutamyl cycle enzymes. Female Sprague-Dawley rats were randomized into DMBA-tumor bearing, DMBA-treated, and control groups subdivided into GLN and water groups. GLN supplementation was given at 1 g/kg/day by gastric gavage. The activities and messenger RNA levels of gamma-glutamyl transpeptidase (GTP), gamma-glutamylcysteine synthetase (GCS), 5-oxo-L-prolinase (OPase), gamma-glutamyl transferase (GTF), and glutaminase (GLNase) were determined in gut mucosa and breast tumor using specific enzyme assays and semiquantitative reverse transcription polymerase chain reaction. GLN upregulated gut GTP, GCS, OPase, and GLNase in DMBA-tumor bearing, DMBA-treated, and/or control rats; however, it downregulated these enzymes in the tumor. The paradoxical effect of GLN on key GSH recycling enzymes in the gut versus tumor suggests that dietary supplemental GLN could be used in the clinical practice to increase the therapeutic index of cancer treatments by protecting normal tissues from, and sensitizing tumor cells to, chemotherapy and radiation-related injury.


Assuntos
9,10-Dimetil-1,2-benzantraceno , Carcinógenos , Glutamina/farmacologia , Glutationa/metabolismo , Neoplasias Mamárias Animais/enzimologia , Animais , Dieta , Feminino , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Glutationa/análise , Mucosa Intestinal/química , Mucosa Intestinal/enzimologia , Neoplasias Mamárias Animais/induzido quimicamente , Piroglutamato Hidrolase/genética , Piroglutamato Hidrolase/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
12.
Appl Environ Microbiol ; 66(8): 3201-5, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10919770

RESUMO

The gene encoding a novel 5-oxoprolinase without ATP-hydrolyzing activity from Alcaligenes faecalis N-38A was cloned and characterized. The coding region of this gene is 1,299 bp long. The predicted primary protein is composed of 433 amino acid residues, with a 31-amino-acid signal peptide. The mature protein is composed of 402 amino acid residues with a molecular mass of 46,163 Da. The derived amino acid sequence of the enzyme showed no significant sequence similarity to any other proteins reported so far. The 5-oxoprolinase gene was expressed in Escherichia coli by using a regulatory expression system with an isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter, and its expression level was approximately 16 mg per liter. The purified enzyme has the same characteristics as the authentic enzyme, except for the amino terminus, which has three additional amino acids. The enzyme was markedly inhibited by p-chloromercuribenzoic acid, EDTA, o-phenanthroline, HgCl(2), and CuSO(4). The EDTA-inactivated enzyme was completely restored by the addition of Zn(2+) or Co(2+). In addition, the enzyme was found to contain 1 g-atom of zinc per mol of protein. These results suggest that the 5-oxoprolinase produced by A. faecalis N-38A is a zinc metalloenzyme.


Assuntos
Alcaligenes/enzimologia , Alcaligenes/genética , Escherichia coli/genética , Piroglutamato Hidrolase/genética , Piroglutamato Hidrolase/metabolismo , Trifosfato de Adenosina/metabolismo , Alcaligenes/química , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/enzimologia , Hidrólise , Dados de Sequência Molecular , Piroglutamato Hidrolase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
13.
Chem Biol Interact ; 111-112: 113-21, 1998 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-9679548

RESUMO

In the gamma-glutamyl cycle, hereditary defects have been described in four of the six enzymes namely: gamma-GC synthetase; GSH synthetase; gamma-glutamyl transpeptidase and 5-oxoprolinase. Mutants are still to be found in gamma-glutamyl cyclotransferase and in the dipeptidase. Deficiency of GSH synthatase or gamma-GC synthetases results in low levels of GSH. In gamma-GC synthetase deficiency hemolytic anemia is the most prominent symptom, with or without hepatosplenomegaly. In generalized GSH synthetase deficiency 5-oxoproline is overproduced due to lack of feedback inhibition of gamma-GC synthetase. These patients have metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and about 50% of them also have progressive neurological symptoms. Treatment includes acidosis correction, high doses of vitamin E and C and avoidance of drugs precipitating hemolytic crises in G6PD deficiency. Therapeutic trials with GSH analogues, N-acetylcysteine and GSH esters have been carried out. Glutathione synthetase deficiency restricted to erythrocytes results in hemolytic anemia but no 5-oxoprolinuria. gamma-Glutamyl transpeptidase deficiency is associated with GSH-emia and GSH-uria whereas 5-oxoprolinase deficiency is associated with 5-oxoprolinuria. In diagnostic work it must be emphasized that erythrocytes contain an incomplete gamma-glutamyl cycle; they lack both gamma-glutamyl transpeptidase and 5-oxoprolinase and these enzyme activities must therefore be analyzed in other types of cells such as leukocytes and fibroblasts. It is also important to investigate other patients with inherited defects in the gamma-glutamyl cycle to learn more about the biological role of GSH in man.


Assuntos
Glutationa/genética , Glutationa/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mutação , Eritrócitos/enzimologia , Feminino , Glutamato-Cisteína Ligase/deficiência , Glutamato-Cisteína Ligase/genética , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Humanos , Masculino , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , gama-Glutamiltransferase/deficiência , gama-Glutamiltransferase/genética
15.
J Biol Chem ; 271(50): 32293-300, 1996 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-8943290

RESUMO

5-Oxoprolinase (EC 3.5.2) catalyzes a reaction in which the endergonic cleavage of 5-oxo-L-proline to form L-glutamate is coupled to the exergonic hydrolysis of ATP to ADP and inorganic phosphate. Highly purified preparations of the enzyme have been obtained from rat kidney and Pseudomonas putida. The rat kidney enzyme is composed of two strongly interacting, apparently identical subunits (Mr = 142,000), whereas that from P. putida is composed of two functionally different protein components that can readily be dissociated. Here we report the cloning of rat kidney 5-oxoprolinase with preliminary expression studies. cDNA clones encoding the enzyme were isolated by screening a lambdagt11 cDNA library beginning with a degenerate oligonucleotide probe based on peptide sequence data obtained from the purified enzyme. The whole cDNA clone was completed by amplifying its 5' end from a premade library of rat kidney Marathon-ReadyTM cDNAs using polymerase chain reaction methodology. The composite cDNA (4,016 bases) revealed an uninterrupted open reading frame encoding 1,288 amino acid residues (Mr = 137,759). The deduced amino acid sequence contains all four of the peptide sequences that were independently found in peptide fragments derived from the enzyme. Expression of the full-length clone in Escherichia coli yielded a product of the same size as the rat kidney enzyme and which reacted with antibodies directed against the rat kidney enzyme. The predicted amino acid sequence is almost 50% identical throughout its entire length to that of a hypothetical yeast protein YKL215C. It is also 26% identical in half its length to the bacterial hydantoinase HyuA and 26% identical in the other half to the bacterial hydantoinase HyuB. The results suggest unexpected evolutionary relationships among the hydantoinases and rat kidney 5-oxoprolinase which share the common property of hydrolyzing the imide bond of 5-membered rings but which do not all require ATP.


Assuntos
Rim/enzimologia , Piroglutamato Hidrolase/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/química , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Piroglutamato Hidrolase/genética , RNA Mensageiro/metabolismo , Ratos , Mapeamento por Restrição , Distribuição Tecidual
16.
Acta Paediatr Scand ; 70(3): 301-8, 1981.
Artigo em Inglês | MEDLINE | ID: mdl-6113726

RESUMO

Two brothers, aged 16 and 11 years, had recurrent episodes of vomiting, diarrhoea and abdominal pain, starting in infancy. In spite of extensive investigations no cause of their enterocolitis could be established. After several years symptomatic treatment was discontinued without any recurrence of symptoms. Their father and several paternal relatives have had kidney stones. Both boys developed urolithiasis and an oxalate-containing stone was removed from the elder brother's kidney. He had no hypercalciuria. His glomerular and tubular function tests were normal. Gas chromatography of urine from both brothers revealed massive excretion of L-5-oxoproline (pyroglutamic acid). Glutathione levels in erythrocytes of both patients were normal. The activities of enzymes of the gamma-glutamyl cycle were analysed in erythrocytes, leukocytes and cultured skin fibroblasts. The level of glutathione synthetase was normal, as was the affinity of this enzyme for its substrate gamma-glutamyl-cysteine. Feedback inhibition of gamma-glutamyl-cysteine synthetase by glutathione was also normal. Both patients had a specific deficiency of 5-oxoprolinase, the activity of which was 2-4% of that of control subjects. Their parents had intermediate 5-oxoprolinase activities in fibroblasts, indicating a recessive mode of inheritance. Thus, 5-oxoprolinuria in these two patients was due to a lack of 5-oxoprolinase, i.e., a new inborn error in the gamma-glutamyl cycle.


Assuntos
Amidoidrolases/deficiência , Glutationa/metabolismo , Piroglutamato Hidrolase/deficiência , Pirrolidinonas/urina , Ácido Pirrolidonocarboxílico/urina , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Criança , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutationa Sintase/metabolismo , Humanos , Masculino , Piroglutamato Hidrolase/genética , gama-Glutamilciclotransferase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...