Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783320

RESUMO

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Engenharia Metabólica/métodos , Pirrolnitrina/biossíntese , Pirrolnitrina/metabolismo , Fermentação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Triptofano/biossíntese , Triptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases
2.
Microbiol Res ; 260: 127050, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504237

RESUMO

Pseudomonas chlororaphis G05 has the capability to repress the mycelial growth of many phytopathogenic fungi by producing and secreting certain antifungal compounds, including phenazines and pyrrolnitrin. Although some regulatory genes have been identified to be involved in antifungal metabolite production, the regulatory mechanism and pathway of phenazine-1-carboxylic acid biosynthesis remain poorly defined. To identify more new regulatory genes, we applied transposon mutagenesis with the chromosomal lacZ fusion strain G05Δphz::lacZ as an acceptor. In the white conjugant colony G05W05, a novel transcriptional regulator gene, eppR, was verified to be interrupted by the transposon mini-Tn5Kan. To evaluate the specific function of eppR, we created a set of eppR-deletion mutants, including G05ΔeppR, G05Δphz::lacZΔeppR and G05Δprn::lacZΔeppR. By quantifying the production of antifungal compounds and ß-galactosidase expression, we found that the expression of the phenazine biosynthetic gene cluster (phz) and the production of phenazine-1-carboxylic acid were markedly reduced in the absence of EppR. Moreover, the pathogen suppression test verified that the yield of phenazine-1-carboxylic acid was significantly decreased when eppR was deleted in frame. At the same time, no changes in the expression of the phzI/phzR quorum-sensing (QS) system and the production of N-acyl homoserine lactones (AHLs) and pyrrolnitrin were found in the EppR-deficient mutant. In addition, chromosomal fusion analyses and quantitative real-time polymerase chain reaction (qRT-PCR) results also showed that EppR could positively mediate the expression of the phz cluster at the posttranscriptional level. In summary, EppR is specifically essential for phenazine biosynthesis but not for pyrrolnitrin biosynthesis in P. chlororaphis.


Assuntos
Pseudomonas chlororaphis , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenazinas/metabolismo , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Pirrolnitrina/metabolismo
3.
Appl Environ Microbiol ; 87(14): e0017821, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33962985

RESUMO

Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants' fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1 cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies. IMPORTANCE Many organisms partner with microbes to defend themselves against parasites and pathogens. Fungus-growing ants must protect Leucoagaricus spp., the fungal mutualist that provides sustenance for the ants, from a specialized fungal parasite, Escovopsis. The ants take multiple approaches, including weeding their fungus gardens to remove Escovopsis spores, as well as harboring Pseudonocardia spp., bacteria that produce antifungals that inhibit Escovopsis. In addition, a genus of bacteria commonly found in fungus gardens, Burkholderia, is known to produce secondary metabolites that inhibit Escovopsis spp. In this study, we isolated Burkholderia spp. from fungus-growing ants, assessed the isolates' ability to inhibit Escovopsis spp., and identified two compounds responsible for inhibition. Our findings suggest that Burkholderia spp. are often found in fungus gardens, adding another possible mechanism within the fungus-growing ant system to suppress the growth of the specialized parasite Escovopsis.


Assuntos
Antifúngicos/metabolismo , Formigas , Burkholderia/metabolismo , Hypocreales/crescimento & desenvolvimento , Lipopeptídeos/metabolismo , Parasitos/crescimento & desenvolvimento , Pirrolnitrina/metabolismo , Animais , Burkholderia/genética , Microbiota , Família Multigênica , Filogenia , Simbiose
4.
J Med Microbiol ; 69(3): 361-371, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32043956

RESUMO

Pseudomonas chlororaphis isolates have been studied intensively for their beneficial traits. P. chlororaphis species function as probiotics in plants and fish, offering plants protection against microbes, nematodes and insects. In this review, we discuss the classification of P. chlororaphis isolates within four subspecies; the shared traits include the production of coloured antimicrobial phenazines, high sequence identity between housekeeping genes and similar cellular fatty acid composition. The direct antimicrobial, insecticidal and nematocidal effects of P. chlororaphis isolates are correlated with known metabolites. Other metabolites prime the plants for stress tolerance and participate in microbial cell signalling events and biofilm formation among other things. Formulations of P. chlororaphis isolates and their metabolites are currently being commercialized for agricultural use.


Assuntos
Anti-Infecciosos/metabolismo , Biofilmes/crescimento & desenvolvimento , Fenazinas/metabolismo , Plantas/microbiologia , Probióticos , Pseudomonas chlororaphis/classificação , Acil-Butirolactonas/metabolismo , Agricultura , Antinematódeos/metabolismo , Cianeto de Hidrogênio/metabolismo , Inseticidas/metabolismo , Fenótipo , Plantas/imunologia , Pseudomonas chlororaphis/química , Pseudomonas chlororaphis/crescimento & desenvolvimento , Pseudomonas chlororaphis/fisiologia , Pirrolnitrina/metabolismo , Resorcinóis/metabolismo , Sideróforos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
5.
Appl Biochem Biotechnol ; 190(3): 803-825, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31493159

RESUMO

The extensive use of chemical fungicide in the health and agriculture sectors has increased environmental concerns and promoted an extensive search for alternative bioactives from the microbial system. In the present study, two rhizospheric strains of Serratia spp. (TO-2 and TW-3) have been shown to secrete pyrrolnitrin (PRN) in the range of 11.35 to 35.97 µg ml-1 using MSG and MSD medium after 72 h under static and shake conditions, respectively, but thereafter marginally declined in 96 to 240 h. Alternative one variable assortment at a time (OVAT) for PRN secretion by TW-3 yielded 59.27 µg ml-1 using (gl-1) glycerol (20), monosodium glutamate (14), KH2PO4 (14), NH4Cl (3), Na2HPO4 (4), and MgSO4 (0.3) at pH 7, 120 rpm within 72 h. Further, the Placket-Burman Design (PBD) identified KH2PO4, glycerol, pH, and monosodium glutamate as significant variables and optimized by centered composite design. Accordingly, 3% glycerol, 1.72% KH2PO4, 1.1% monosodium glutamate, 0.4% Na2HPO4, 0.03% MgSO4, 0.05% FeSO4, and 0.01% ZnSO4 were found to enhance the yield of PRN to 96.54 µg ml-1 by TW-3 in 72 h, 120 rpm. Thus, the statistical tool employed in the present study showed a threefold hike in PRN secretion over the OVAT approach, thereby indicating the scope for more PRN production from rhizobacteria. Further, seed application of low PRN (30 µg ml-1) concentration in treatments I and II showed > 90% germination in the initial seed germination and pot assay with the Fusarium oxysporum challenge compared to the control. Also, various growth parameters calculated during 11 days of experiment were significantly increased compared to the negative control (seed + fungus) in both treatments. Thus, the application of PRN at a low concentration to seeds of Vigna radiata (L.) offered protection against the phytopathogenic F. oxysporum MTCC 9913 challenge, suggesting biocontrol activity potential for use in agriculture soils particularly salt-affected soil.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Pirrolnitrina/isolamento & purificação , Rizosfera , Sementes/metabolismo , Serratia marcescens/metabolismo , Vigna/embriologia , Fusarium/patogenicidade , Pirrolnitrina/metabolismo , Solo , Microbiologia do Solo
6.
Biomolecules ; 9(9)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484394

RESUMO

Pyrrolnitrin (PRN) is a microbial pyrrole halometabolite of immense antimicrobial significance for agricultural, pharmaceutical and industrial implications. The compound and its derivatives have been isolated from rhizospheric fluorescent or non-fluorescent pseudomonads, Serratia and Burkholderia. They are known to confer biological control against a wide range of phytopathogenic fungi, and thus offer strong plant protection prospects against soil and seed-borne phytopathogenic diseases. Although chemical synthesis of PRN has been obtained using different steps, microbial production is still the most useful option for producing this metabolite. In many of the plant-associated isolates of Serratia and Burkholderia, production of PRN is dependent on the quorum-sensing regulation that usually involves N-acylhomoserine lactone (AHL) autoinducer signals. When applied on the organisms as antimicrobial agent, the molecule impedes synthesis of key biomolecules (DNA, RNA and protein), uncouples with oxidative phosphorylation, inhibits mitotic division and hampers several biological mechanisms. With its potential broad-spectrum activities, low phototoxicity, non-toxic nature and specificity for impacts on non-target organisms, the metabolite has emerged as a lead molecule of industrial importance, which has led to developing cost-effective methods for the biosynthesis of PRN using microbial fermentation. Quantum of work narrating focused research efforts in the emergence of this potential microbial metabolite is summarized here to present a consolidated, sequential and updated insight into the chemistry, biology and applicability of this natural molecule.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Pirrolnitrina/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Burkholderia/química , Fermentação/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas/classificação , Pirrolnitrina/química , Pirrolnitrina/metabolismo , Serratia/química
7.
Microbiol Res ; 219: 123-131, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642463

RESUMO

Pseudomonas sp. MP12 was isolated from a soil sample collected in a typical warm-temperate deciduous forest near Brescia, Northern Italy. Phylogenetic analysis identified the species as Pseudomonas protegens. We evidenced in this strain the presence of the genes phlD, pltB and prnC responsible for the synthesis of the antifungal compounds 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin and pyrrolnitrin, respectively. P. protegens MP12 was also shown to produce siderophores and ammonia, yielded positive results with the indole-3-acetic acid test, and was capable of phosphate solubilization. Moreover, P. protegens MP12 exhibited inhibitory effects on in vitro mycelial growth of prominent grapevine (Vitis vinifera) phytopathogens such as Botrytis cinerea, Alternaria alternata, Aspergillus niger, Penicillium expansum and Neofusicoccum parvum. The strain showed activity even against Phaeomoniella chlamydospora and Phaeoacremonium aleophilum, which cause the devastating tracheomycosis/esca disease of grapevine trunks for which no efficacious control methods have been demonstrated so far. Furthermore, the MP12 strain manifested in vivo antifungal activity against B. cinerea on grapevine leaves. Culture-dependent and culture-independent analysis revealed the ability of P. protegens MP12 to efficiently and permanently colonize inner grapevine tissues. These results suggest that P. protegens MP12 could be worth of exploitation as an antifungal biocontrol agent for applications in viticulture.


Assuntos
Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Fungos/efeitos dos fármacos , Fenóis/metabolismo , Floroglucinol/análogos & derivados , Pseudomonas/metabolismo , Pirróis/metabolismo , Pirrolnitrina/metabolismo , Vitis/microbiologia , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Endófitos/metabolismo , Fenóis/farmacologia , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Folhas de Planta/microbiologia , Pseudomonas/isolamento & purificação , Pirróis/farmacologia , Pirrolnitrina/farmacologia , Microbiologia do Solo , Vitis/crescimento & desenvolvimento
8.
Microbiol Res ; 215: 55-64, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30172309

RESUMO

Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) disease in cereal crops worldwide. Infection with this fungal phytopathogen can regularly cause severe yield and quality losses and mycotoxin contamination in grains. In previous other studies, one research group reported that pyrrolnitrin had an ability to suppress of mycelial growth of F. graminearum. Other groups revealed that phenazine-1-carboxamide, a derivative of phenazine-1-carboxylic acid, could also inhibit the growth of F. graminearum and showed great potentials in the bioprotection of crops from FHB disease. In our recent work with Pseudomonas chlororaphis strain G05, however, we found that although the phz operon (phenazine biosynthetic gene cluster) was knocked out, the phenazine-deficient mutant G05Δphz still exhibited effective inhibition of the mycelial growth of some fungal phytopathogens in pathogen inhibition assay, especially including F. graminearum, Colletotrichum gloeosporioides, Botrytis cinerea. With our further investigations, including deletion and complementation of the prn operon (pyrrolnitrin biosynthetic gene cluster), purification and identification of fungal compounds, we first verified that not phenazines but pyrrolnitrin biosynthesized in P. chlororaphis G05 plays an essential role in growth suppression of F. graminearum and the bioprotection of cereal crops against FHB disease.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fenazinas/antagonistas & inibidores , Fenazinas/metabolismo , Pseudomonas chlororaphis/metabolismo , Pirrolnitrina/antagonistas & inibidores , Pirrolnitrina/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Produtos Agrícolas , Grão Comestível , Fungicidas Industriais/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos/genética , Família Multigênica , Mutação , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Óperon/genética , Controle Biológico de Vetores , Fenazinas/química , Fenazinas/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas chlororaphis/genética
9.
J Basic Microbiol ; 58(9): 793-805, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29995319

RESUMO

In previous studies with Pseudomonas chlororaphis G05, two operons (phzABCDEFG and prnABCD) were confirmed to respectively encode enzymes for biosynthesis of phenazine-1-carboxylic acid and pyrrolnitrin that mainly contributed to suppression of some fungal phytopathogens. Although some regulators were identified to govern their expression, it is not known how two operons coordinately interact. By constructing the phz- or/and prn- deletion mutants, we found that in comparison with the wild-type strain G05, phenazine-1-carboxylic acid production in the mutant G05Δprn obviously decreased in GA broth in the absence of prn, and pyrrolnitrin production in the mutant G05Δphz remarkably declined in the absence of phz. By generating the phzA and prnA transcriptional and translational fusions with a truncated lacZ on shuttle vector or on the chromosome, we found that expression of the phz or prn operon was correspondingly increased in the presence of the prn or phz operon at the post-transcriptional level, not at the transcriptional level. These results indicated that the presence of one operon would promote the expression of the other one operon between the phz and prn. This reciprocal enhancement would keep the strain G05 producing more different antifungal compounds coordinately and living better with growth suppression of other microorganisms.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Pseudomonas chlororaphis/genética , Antifúngicos/análise , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Mutação , Fenazinas/análise , Fenazinas/metabolismo , Pseudomonas chlororaphis/enzimologia , Pseudomonas chlororaphis/metabolismo , Pirrolnitrina/análise , Pirrolnitrina/metabolismo
10.
Sci Rep ; 6: 29211, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384076

RESUMO

We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316.


Assuntos
Antinematódeos/metabolismo , Genoma Bacteriano/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Regiões Antárticas , Genômica/métodos , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Prolina/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Pirrolnitrina/metabolismo
11.
Microbiol Res ; 188-189: 106-112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27296968

RESUMO

Pseudomonas fluorescens FD6 has been shown to possess many beneficial traits involved in the biocontrol of fungal plant pathogens, such as Botrytis cinerea and Monilinia fructicola. Vfr (virulence factor regulator) a highly conserved global regulator of gram-negative bacteria, such as the human pathogen Pseudomonas aeruginosa, is required for the expression of many important virulence traits. The role of Vfr in the regulation of biocontrol traits, such as the production of antibiotics to control fungal pathogens by antagonistic bacteria, has not been elucidated. This study investigated the effect of a vfr mutant derived from P. fluorescens FD6 to better understand the regulation of some important biocontrol traits associated with the bacterium. Biochemical studies indicated that the production of the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin and pyoluteorin, was markedly enhanced in the vfr mutant. The vfr mutation also increased biofilm production, swimming motility and the expression of exopolysaccharide-associated gene (pelA, pslA and pslB) transcripts, but reduced protease production. Wheat rhizosphere and root tip colonization by the vfr mutant was higher than that by the wild type at 7 and 21days after inoculation. These findings demonstrate that Vfr modulates the expression of several key traits and the production of important antibiotics involved in the biocontrol potential of P. fluorescens FD6.


Assuntos
Antifúngicos/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenóis/metabolismo , Floroglucinol/análogos & derivados , Pseudomonas fluorescens/metabolismo , Pirróis/metabolismo , Pirrolnitrina/metabolismo , Antibiose , Proteína Receptora de AMP Cíclico/genética , Técnicas de Inativação de Genes , Humanos , Controle Biológico de Vetores , Floroglucinol/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiologia , Microbiologia do Solo , Triticum/microbiologia
12.
Microbiol Res ; 180: 23-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26505308

RESUMO

A hybrid sensor kinase termed RetS (regulator of exopolysaccharide and Type III secretion) controls expression of numerous genes in Pseudomonas aeruginosa. To investigate the function of RetS in P. fluorescens FD6, the retS gene was disrupted. Genetic inactivation of retS resulted in enhanced production of 2, 4-diacetylphloroglucinol, pyrrolnitrin, and pyoluteorin. The retS mutant also exhibited significant increase in phlA-lacZ, prnA-lacZ, and pltA-lacZ transcription levels, influencing expression levels of the small regulatory RNAs RsmX and RsmZ. In the gacSretS double mutant, all the phenotypic changes caused by the retS deletion were reversed to the level of gacS single mutant. Furthermore, the retS mutation drastically elevated biofilm formation and improved the colonization ability of strain FD6 on wheat rhizospheres. Based on these results, we proposed that RetS negatively controlled the production of antibiotics through the Gac/Rsm pathway in P. fluorescens FD6.


Assuntos
Antibacterianos/biossíntese , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Biofilmes , Galactosidases/metabolismo , Inativação Gênica , Meristema/microbiologia , Mutação , Fenóis/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Pirróis/metabolismo , Pirrolnitrina/metabolismo , Rizosfera , Triticum/microbiologia
13.
Mol Plant Microbe Interact ; 28(3): 249-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25679537

RESUMO

Pseudomonas chlororaphis PCL1606 is a rhizobacterium that has biocontrol activity against many soilborne phytopathogenic fungi. The whole genome sequence of this strain was obtained using the Illumina Hiseq 2000 sequencing platform and was assembled using SOAP denovo software. The resulting 6.66-Mb complete sequence of the PCL1606 genome was further analyzed. A comparative genomic analysis using 10 plant-associated strains within the fluorescent Pseudomonas group, including the complete genome of P. chlororaphis PCL1606, revealed a diverse spectrum of traits involved in multitrophic interactions with plants and microbes as well as biological control. Phylogenetic analysis of these strains using eight housekeeping genes clearly placed strain PCL1606 into the P. chlororaphis group. The genome sequence of P. chlororaphis PCL1606 revealed the presence of sequences that were homologous to biosynthetic genes for the antifungal compounds 2-hexyl, 5-propyl resorcinol (HPR), hydrogen cyanide, and pyrrolnitrin; this is the first report of pyrrolnitrin encoding genes in this P. chlororaphis strain. Single-, double-, and triple-insertional mutants in the biosynthetic genes of each antifungal compound were used to test their roles in the production of these antifungal compounds and in antagonism and biocontrol of two fungal pathogens. The results confirmed the function of HPR in the antagonistic phenotype and in the biocontrol activity of P. chlororaphis PCL1606.


Assuntos
Antifúngicos/farmacologia , Genoma Bacteriano/genética , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Resorcinóis/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Sequência de Bases , Agentes de Controle Biológico , Hibridização Genômica Comparativa , Fusarium/fisiologia , Genômica , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Mutagênese Insercional , Persea/microbiologia , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/química , Pseudomonas/metabolismo , Pirrolnitrina/isolamento & purificação , Pirrolnitrina/metabolismo , Pirrolnitrina/farmacologia , Resorcinóis/isolamento & purificação , Resorcinóis/metabolismo , Análise de Sequência de DNA , Xylariales/fisiologia
14.
World J Microbiol Biotechnol ; 30(2): 495-505, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23990066

RESUMO

An Acinetobacter species identified as A. haemolyticus A19 produces an antibiotic and the enzyme chitinase. The antibiotic produced by A. haemolyticus A19 was extracellular and inducible by co-cultivation with Klebsiella pneumoniae in the optimum ratio 2:1, respectively. pH 7, temperature 28 °C, and addition of 2% (w/v) NaCl are the most suitable environmental conditions for production and activity of the antibiotic. The antibiotic was produced in the early stationary growth phase (48 h) of A. haemolyticus A19. It has a very broad spectrum of antimicrobial activity against plant and human pathogenic bacteria and fungi. The antibiotic was extracted with ethyl acetate and purified by column chromatography with further purification by preparative thin-layer chromatography. Yield of the antibiotic was 15 mg/l. The antibiotic was active at very low concentrations, for example 50 µg/ml, and was water-soluble. It was stable at room temperature for up to 7 days. (1)H NMR analysis revealed the antibiotic was a pyrrolnitrin. It was found that pyrrolnitrin production by A. haemolyticus A19 was encoded by plasmid pUPI126 of molecular weight 25.7 kb. Plasmid pUPI126 was transferred to E. coli HB101 at a frequency of 5 × 10(-5) per µg DNA. It was also conjugally transformed to E. coli HB101 rif (r) mutants at a frequency of 5.9 × 10(-8) per recipient cell. Plasmid pUPI126 was 100% stable in Acinetobacter and 95% stable in E. coli HB101. Transconjugants and transformants both produced the antibiotic. This is the first report of plasmid-mediated pyrrolnitrin production by A. haemolyticus A19 isolated from wheat rhizosphere.


Assuntos
Acinetobacter/genética , Acinetobacter/metabolismo , Anti-Infecciosos/metabolismo , Vias Biossintéticas/genética , Plasmídeos , Pirrolnitrina/metabolismo , Acinetobacter/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Pirrolnitrina/isolamento & purificação , Pirrolnitrina/farmacologia , Rizosfera , Microbiologia do Solo , Triticum
15.
PLoS One ; 8(6): e66200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840423

RESUMO

Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.


Assuntos
Acanthamoeba castellanii/fisiologia , Beta vulgaris/microbiologia , Agentes de Controle Biológico , Rhizoctonia/fisiologia , Microbiologia do Solo , Acanthamoeba castellanii/genética , Antibiose , Carga Bacteriana , Vias Biossintéticas , Cadeia Alimentar , Hordeum/microbiologia , Cianeto de Hidrogênio/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Raízes de Plantas/microbiologia , Pirrolnitrina/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(36): 14528-33, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23898207

RESUMO

Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and depresses a nonfarmer's spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a "domesticated" food source.


Assuntos
Proteínas de Bactérias/genética , Dictyostelium/fisiologia , Mutação , Pseudomonas fluorescens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Cromatografia Líquida de Alta Pressão , Códon sem Sentido , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Genes Reguladores/genética , Interações Hospedeiro-Patógeno , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/fisiologia , Pirrolnitrina/química , Pirrolnitrina/metabolismo , Homologia de Sequência de Aminoácidos , Esporos de Protozoários/metabolismo , Esporos de Protozoários/fisiologia
17.
Mikrobiol Z ; 75(6): 28-35, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24450182

RESUMO

Phenazine-1-carboxylic, 2-hydroxy-phenazine-carboxylic acid and 2-hydroxy-phenazine active against phytopathogenic fungi were detected in fermentation broth of Pseudomonas chlororaphis subsp.aureofaciens strains UCM B-111 and UCM B-306--components of insectofungicide biopreparation gaupsin using chromato-mass-spectrometric methods; strain B-306 produced antifungal antibiotic pyrrolnitrin together with phenazines. Supernatants of fermentation broth of P chlororaphis subsp. aureofaciens B-111 and B-306 strains grown in King A medium and exopolymers preparations obtained from these supernatants using evaporation, dialysis and liophylisation were highly active against tobacco mosaic virus (TMV). At a dose of 10 mg/ml they reduced TMV infectivity by 76-96%, at concentrations 1 and 0.1 mg/ml the antiviral effect was decreased to 40-62 and 14-27%, respectively. Dialysis did not influence the antiviral activity of isolated preparations. The latter contained 2-7.6 % of carbohydrates including neutral monosaccharides: fucose, mannose, galactose and glucose.


Assuntos
Antifúngicos/farmacologia , Antivirais/farmacologia , Fungos/efeitos dos fármacos , Pseudomonas/química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antifúngicos/isolamento & purificação , Antivirais/isolamento & purificação , Meios de Cultivo Condicionados/farmacologia , Fermentação , Fungos/crescimento & desenvolvimento , Fungicidas Industriais/química , Monossacarídeos/biossíntese , Monossacarídeos/isolamento & purificação , Fenazinas/isolamento & purificação , Fenazinas/metabolismo , Fenazinas/farmacologia , Pseudomonas/metabolismo , Pirrolnitrina/isolamento & purificação , Pirrolnitrina/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
18.
Plant Physiol ; 158(4): 1883-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22353575

RESUMO

Multigene expression is required for metabolic engineering, i.e. coregulated expression of all genes in a metabolic pathway for the production of a desired secondary metabolite. To that end, several transgenic approaches have been attempted with limited success. Better success has been achieved by transforming plastids with operons. IL-60 is a platform of constructs driven from the geminivirus Tomato yellow leaf curl virus. We demonstrate that IL-60 enables nontransgenic expression of an entire bacterial operon in tomato (Solanum lycopersicum) plants without the need for plastid (or any other) transformation. Delivery to the plant is simple, and the rate of expressing plants is close to 100%, eliminating the need for selectable markers. Using this platform, we show the expression of an entire metabolic pathway in plants and delivery of the end product secondary metabolite (pyrrolnitrin). Expression of this unique secondary metabolite resulted in the appearance of a unique plant phenotype disease resistance. Pyrrolnitrin production was already evident 2 d after application of the operon to plants and persisted throughout the plant's life span. Expression of entire metabolic pathways in plants is potentially beneficial for plant improvement, disease resistance, and biotechnological advances, such as commercial production of desired metabolites.


Assuntos
Regulação Bacteriana da Expressão Gênica , Óperon/genética , Pseudomonas fluorescens/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Cromatografia Líquida de Alta Pressão , Replicação do DNA/genética , Resistência à Doença/imunologia , Genes Bacterianos/genética , Solanum lycopersicum/imunologia , Espectrometria de Massas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pirrolnitrina/química , Pirrolnitrina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizoctonia/fisiologia
19.
FEMS Immunol Med Microbiol ; 63(2): 217-27, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22077225

RESUMO

The effects on pancreatic ß-cell viability and function of three microbial secondary metabolites pyrrolnitrin, phenazine and patulin were investigated, using the rat clonal pancreatic ß-cell line, INS-1. Cells were exposed to 10-fold serial dilutions (range 0-10 µg mL(-1)) of the purified compounds for 2, 24 and 72 h. After 2 h exposure, only patulin (10 µg mL(-1)) was cytotoxic. All compounds showed significant cytotoxicity after 24 h. None of the compounds altered insulin secretion with 2 and 20 mM glucose after 2 h. However, after 24 h treatment, phenazine and pyrrolnitrin (10 and 100 ng mL(-1)) potentiated insulin production and glucose-stimulated insulin secretion, whereas patulin had no effect. Exposure (24 h) to either phenazine (100 ng mL(-1)) or pyrrolnitrin (10 ng mL(-1)) caused similar increases in the Ca(2+) content of INS-1 cells. The outward membrane current was inhibited after 24 h exposure to either phenazine (100 ng mL(-1)) or pyrrolnitrin (10 or 100 ng mL(-1)). This study presents novel data suggesting that high concentrations of pyrrolnitrin and phenazine are cytotoxic to pancreatic ß-cells and thus possibly diabetogenic, whereas at lower concentrations these agents are nontoxic and may be insulinotropic. The possible role of such agents in the development of cystic fibrosis-related diabetes is discussed.


Assuntos
Bactérias/química , Células Secretoras de Insulina/efeitos dos fármacos , Patulina/toxicidade , Fenazinas/toxicidade , Pirrolnitrina/toxicidade , Animais , Bactérias/metabolismo , Cálcio/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Patulina/metabolismo , Fenazinas/metabolismo , Pirrolnitrina/metabolismo , Ratos , Fatores de Tempo
20.
Lett Appl Microbiol ; 52(5): 532-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21362001

RESUMO

AIMS: To determine whether glucose in growth medium affects secondary metabolite production and biocontrol efficacy of Pseudomonas chlororaphis O6. METHODS AND RESULTS: The secondary metabolites pyrrolnitrin and phenazines antagonize phytopathogenic fungi. The expression of the prnA gene encoding tryptophan halogenase, the first step in pyrrolnitrin biosynthesis, required the stationary-phase sigma factor, RpoS. Mutations in rpoS and prnA in Ps. chlororaphis O6 eliminated antifungal activity against Rhizoctonia solani and Fusarium graminearum. Pyrrolnitrin production was reduced by glucose in growth media, whereas phenazine levels were increased. The efficacy of Ps. chlororaphis O6 in the biocontrol of tomato late blight was reduced by addition of glucose to the growth medium. CONCLUSIONS: Regulation by glucose of pyrrolnitrin production influenced the efficacy of the biocontrol of tomato leaf blight. SIGNIFICANCE AND IMPACT OF THE STUDY: The nutritional regulation of secondary metabolite production from a soil pseudomonad may account, at least in part, for the variability of biocontrol under field conditions.


Assuntos
Antifúngicos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Fenazinas/metabolismo , Pirrolnitrina/metabolismo , Solanum lycopersicum/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Glucose/metabolismo , Solanum lycopersicum/metabolismo , Miconazol/metabolismo , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...