Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Growth Differ ; 61(6): 365-377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31270814

RESUMO

Neural induction and patterning in vertebrates are regulated during early development by several morphogens, such as bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Ventral ectoderm differentiates into epidermis in response to BMPs, whereas BMP signaling is tightly inhibited in the dorsal ectoderm which develops into neural tissues. Here, we show that Cdc2-like kinase 2 (Clk2) promotes early neural development and inhibits epidermis differentiation in Xenopus embryos. clk2 is specifically expressed in neural tissues along the anterior-posterior axis during early Xenopus embryogenesis. When overexpressed in ectodermal explants, Clk2 induces the expression of both anterior and posterior neural marker genes. In agreement with this observation, overexpression of Clk2 in whole embryos expands the neural plate at the expense of epidermal ectoderm. Interestingly, the neural-inducing activity of Clk2 is increased following BMP inhibition and activation of the FGF signaling pathway in ectodermal explants. Clk2 also downregulates the level of p-Smad1/5/8 in cooperation with BMP inhibition, in addition to increasing the level of activated MAPK together with FGF. These results suggest that Clk2 plays a role in early neural development of Xenopus possibly via modulation of morphogen signals such as the BMP and FGF pathways.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Ectoderma/embriologia , Ectoderma/enzimologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/enzimologia , Sistema Nervoso/embriologia , Sistema Nervoso/enzimologia , Placa Neural/embriologia , Placa Neural/enzimologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais
2.
Cell Mol Life Sci ; 75(8): 1483-1497, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29103146

RESUMO

Chemical modifications of RNA have been attracting increasing interest because of their impact on RNA fate and function. Therefore, the characterization of enzymes catalyzing such modifications is of great importance. The RNA cytosine methyltransferase NSUN3 was recently shown to generate 5-methylcytosine in the anticodon loop of mitochondrial tRNAMet. Further oxidation of this position is required for normal mitochondrial translation and function in human somatic cells. Because embryonic stem cells (ESCs) are less dependent on oxidative phosphorylation than somatic cells, we examined the effects of catalytic inactivation of Nsun3 on self-renewal and differentiation potential of murine ESCs. We demonstrate that Nsun3-mutant cells show strongly reduced mt-tRNAMet methylation and formylation as well as reduced mitochondrial translation and respiration. Despite the lower dependence of ESCs on mitochondrial activity, proliferation of mutant cells was reduced, while pluripotency marker gene expression was not affected. By contrast, ESC differentiation was skewed towards the meso- and endoderm lineages at the expense of neuroectoderm. Wnt3 was overexpressed in early differentiating mutant embryoid bodies and in ESCs, suggesting that impaired mitochondrial function disturbs normal differentiation programs by interfering with cellular signalling pathways. Interestingly, basal levels of reactive oxygen species (ROS) were not altered in ESCs, but Nsun3 inactivation attenuated induction of mitochondrial ROS upon stress, which may affect gene expression programs upon differentiation. Our findings not only characterize Nsun3 as an important regulator of stem cell fate but also provide a model system to study the still incompletely understood interplay of mitochondrial function with stem cell pluripotency and differentiation.


Assuntos
Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Células-Tronco Embrionárias Murinas/enzimologia , Placa Neural/enzimologia , RNA de Transferência de Metionina/metabolismo , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metiltransferases/genética , Camundongos , Mitocôndrias/genética , Células-Tronco Embrionárias Murinas/citologia , Placa Neural/citologia , Placa Neural/crescimento & desenvolvimento , Fosforilação Oxidativa , RNA de Transferência de Metionina/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transcriptoma
3.
Genesis ; 53(2): 203-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619400

RESUMO

Despite its tremendous complexity, the vertebrate nervous system emerges from a homogenous layer of neuroepithelial cells, the neural plate. Its formation relies on the time- and space-controlled progression of developmental programs. Apoptosis is a biological process that removes superfluous and potentially dangerous cells and is implemented through the activation of a molecular pathway conserved during evolution. Apoptosis and an unconventional function of one of its main effectors, caspase-3, contribute to the patterning and growth of the neuroepithelium. Little is known about the intrinsic and extrinsic cues controlling activities of the apoptotic machinery during development. The BarH-like (Barhl) proteins are homeodomain-containing transcription factors. The observations in Caenorhabditis elegans, Xenopus, and mice document that Barhl proteins act in cell survival and as cell type-specific regulators of a caspase-3 function that limits neural progenitor proliferation. In this review, we discuss the roles and regulatory modes of the apoptotic machinery in the development of the neural plate. We focus on the Barhl2, the Sonic Hedgehog, and the Wnt pathways and their activities in neural progenitor survival and proliferation.


Assuntos
Apoptose , Caspase 3/fisiologia , Placa Neural/enzimologia , Animais , Sobrevivência Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Placa Neural/citologia , Placa Neural/embriologia , Transdução de Sinais
4.
Stem Cell Rev Rep ; 8(4): 1098-108, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22833419

RESUMO

Activation of nuclear factor kappa B (NF-κB) is accomplished by a specific kinase complex (IKK-complex), phosphorylating inhibitors of NF-κB (IκB). In embryonic stem cells (ESCs), NF-κB signaling causes loss of pluripotency and promotes differentiation towards a mesodermal phenotype. Here we show that NF-κB signaling is involved in cell fate determination during retinoic acid (RA) mediated differentiation of ESCs. Knockdown of IKK1 and IKK2 promotes differentiation of ESCs into neuroectoderm at the expense of neural crest derived myofibroblasts. Our data indicate that RA is not only able to induce neuronal differentiation in vitro but also drives ESCs into a neural crest cell lineage represented by differentiation towards peripheral neurons and myofibroblasts. The NC is a transiently existing, highly multipotent embryonic cell population generating a wide range of different cell types. During embryonic development the NC gives rise to distinct precursor lineages along the anterior-posterior axis determining differentiation towards specific derivates. Retinoic acid (RA) signaling provides essential instructive cues for patterning the neuroectoderm along the anterior-posterior axis. The demonstration of RA as a sufficient instructive signal for the differentiation of pluripotent cells towards NC and the involvement of NF-κB during this process provides useful information for the generation of specific NC-lineages, which are valuable for studying NC development or disease modeling.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/enzimologia , Quinase I-kappa B/metabolismo , Mesoderma/enzimologia , Placa Neural/enzimologia , Animais , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Técnicas de Silenciamento de Genes , Humanos , Quinase I-kappa B/genética , Mesoderma/citologia , Miofibroblastos/citologia , Miofibroblastos/enzimologia , NF-kappa B/genética , NF-kappa B/metabolismo , Placa Neural/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tretinoína/farmacologia
5.
Endocrinology ; 151(4): 1884-92, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20185768

RESUMO

Hydroxysteroid (17beta) dehydrogenase 7 (HSD17B7) has been shown to catalyze the conversion of both estrone to estradiol (17-ketosteroid reductase activity) and zymosterone to zymosterol (3-ketosteroid reductase activity involved in cholesterol biosynthesis) in vitro. To define the metabolic role of the enzyme in vivo, we generated knockout mice deficient in the enzyme activity (HSD17B7KO). The data showed that the lack of HSD17B7 results in a blockage in the de novo cholesterol biosynthesis in mouse embryos in vivo, and HSD17BKO embryos die at embryonic day (E) 10.5. Analysis of neural structures revealed a defect in the development of hemispheres of the front brain with an increased apoptosis in the neuronal tissues. Morphological defects in the cardiovascular system were also observed from E9.5 onward. Mesodermal, endodermal, and hematopoietic cells were all detected by the histological analysis of the visceral yolk sac, whereas no organized vessels were observed in the knockout yolk sac. Immunohistological staining for platelet endothelial cell adhesion molecule-1 indicated that the complexity of the vasculature also was reduced in the HSD17B7KO embryos, particularly in the head capillary plexus and branchial arches. At E8.5-9.5, the heart development and the looping of the heart appeared to be normal in the HSD17B7KO embryos. However, at E10.5 the heart was dilated, and the thickness of the cardiac muscle and pericardium in the HSD17B7KO embryos was markedly reduced, and immunohistochemical staining for GATA-4 revealed that HSD17B7KO embryos had a reduced number of myocardial cells. The septum of the atrium was also defected in the knockout mice.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Diferenciação Celular/genética , Colesterol/biossíntese , Coração/embriologia , Placa Neural/embriologia , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Apoptose/genética , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Placa Neural/enzimologia , Saco Vitelino/irrigação sanguínea , Saco Vitelino/embriologia
6.
Int J Dev Biol ; 54(10): 1503-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302259

RESUMO

The iodotyrosine dehalogenase1 (DEHAL1) enzyme is a transmembrane protein that belongs to the nitroreductase family and shows a highly conserved N-terminal domain. DEHAL1 is present in the liver, kidney and thyroid of mammals. DEHAL1 is known to act on diiodotyrosine (DIT) and monoiodotyrosine (MIT), and is involved in iodine recycling in relation to thyroglobulin. Here, we show the distribution of DEHAL1 during gastrulation to neurulation in developing chick. Immunocytochemistry using an anti-serum directed against the N-terminal domain (met(27)-trp(180) fragment) of human DEHAL1 revealed labelled cells in the embryonic ectoderm, embryonic endoderm, neural plate and in the yolk platelets of the chick embryo at gastrulation stage. Distinct DEHAL1 positive cells were located in the presumptive head ectoderm, presumptive neural crest, head mesenchymal cells and in the dorsal, lateral and ventral parts of neural tube during neurulation. Some cells located at the margin of the developing notochord and somites were also DEHAL1-positive. While the functional significance of this observation is not known, it is likely that DEHAL1 might serve as an agent that regulates cell specific deiodination of MIT and DIT before the onset of thyroidal secretion. The presence of DEHAL1 in different components of the chick embryo suggests its involvement in iodine turnover prior to the formation of functional thyroid.


Assuntos
Embrião de Galinha/enzimologia , Di-Iodotirosina/metabolismo , Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Monoiodotirosina/metabolismo , Glândula Tireoide/embriologia , Animais , Padronização Corporal , Ectoderma/enzimologia , Endoderma/enzimologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Hidrolases/genética , Immunoblotting , Iodo/metabolismo , Mesoderma/enzimologia , Crista Neural/enzimologia , Placa Neural/enzimologia , Tubo Neural/enzimologia , Neurulação , Glândula Tireoide/enzimologia , Saco Vitelino/enzimologia
7.
Development ; 136(4): 575-84, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19144724

RESUMO

Syndecan-4 (Syn4) is a heparan sulphate proteoglycan that is able to bind to some growth factors, including FGF, and can control cell migration. Here we describe a new role for Syn4 in neural induction in Xenopus. Syn4 is expressed in dorsal ectoderm and becomes restricted to the neural plate. Knockdown with antisense morpholino oligonucleotides reveals that Syn4 is required for the expression of neural markers in the neural plate and in neuralised animal caps. Injection of Syn4 mRNA induces the cell-autonomous expression of neural, but not mesodermal, markers. We show that two parallel pathways are involved in the neuralising activity of Syn4: FGF/ERK, which is sensitive to dominant-negative FGF receptor and to the inhibitors SU5402 and U0126, and a PKC pathway, which is dependent on the intracellular domain of Syn4. Neural induction by Syn4 through the PKC pathway requires inhibition of PKCdelta and activation of PKCalpha. We show that PKCalpha inhibits Rac GTPase and that c-Jun is a target of Rac. These findings might account for previous reports implicating PKC in neural induction and allow us to propose a link between FGF and PKC signalling pathways during neural induction.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurogênese , Neurônios/enzimologia , Proteína Quinase C/metabolismo , Sindecana-4/metabolismo , Xenopus laevis/embriologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Ectoderma/citologia , Ectoderma/enzimologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Ativação Enzimática/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Placa Neural/citologia , Placa Neural/efeitos dos fármacos , Placa Neural/enzimologia , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/antagonistas & inibidores , Sindecana-4/genética , Fator de Transcrição AP-1/metabolismo , Fosfolipases Tipo C/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Yi Chuan ; 31(12): 1233-40, 2009 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-20042391

RESUMO

The hedgehog (Hh) pathway plays an important role during the embryonic development and is related to the progression of cancers. Rab23 is a crucial functional molecule in Hh pathway. However, there is no report about amphioxus Rab23 up to now except the annotations of two isoforms in the genome of Florida lancelet (Branchiostoma floridae). Here a 2062 bp full-length cDNA sequence of the Rab23, AmphiRab23b, was isolated from Chinese amphioxus (Branchiostoma belcheri), which included the UTRs and an open reading frame of 714 bp, encoding a protein of 237 amino acids. Phylogenetic analysis suggested that AmphiRab23b falled outside the vertebrate clade. But sequence analysis indicated that this putative AmphiRab23b protein contained a specific Rab23_lke domain, which implied that Rab23 gene was functional conservative during evolution. And its developmental expression pattern showed that AmphiRab23b was expressed in the differentiating neural plate and alimentary canal, as the same as the expression pattern of the homologous vertebrate genes, which suggested that AmphiRab23b may function in the development of nervous system and alimentary canal.


Assuntos
Cordados/crescimento & desenvolvimento , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cordados/classificação , Cordados/genética , Cordados/metabolismo , Sistema Digestório/enzimologia , Sistema Digestório/crescimento & desenvolvimento , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Placa Neural/enzimologia , Placa Neural/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo
9.
J Cell Biol ; 183(6): 1129-43, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19064670

RESUMO

Cell rearrangements require dynamic changes in cell-cell contacts to maintain tissue integrity. We investigated the function of Cdc42 in maintaining adherens junctions (AJs) and apical polarity in the Drosophila melanogaster neuroectodermal epithelium. About one third of cells exit the epithelium through ingression and become neuroblasts. Cdc42-compromised embryos lost AJs in the neuroectoderm during neuroblast ingression. In contrast, when neuroblast formation was suppressed, AJs were maintained despite the loss of Cdc42 function. Loss of Cdc42 function caused an increase in the endocytotic uptake of apical proteins, including apical polarity factors such as Crumbs, which are required for AJ stability. In addition, Cdc42 has a second function in regulating endocytotic trafficking, as it is required for the progression of apical cargo from the early to the late endosome. The Par complex acts as an effector for Cdc42 in controlling the endocytosis of apical proteins. This study reveals functional interactions between apical polarity proteins and endocytosis that are critical for stabilizing dynamic basolateral AJs.


Assuntos
Junções Aderentes/enzimologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Endocitose , Proteínas de Ligação ao GTP/metabolismo , Placa Neural/citologia , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/enzimologia , Ativação Enzimática , Epitélio/enzimologia , Genes Dominantes , Proteínas de Membrana/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Placa Neural/enzimologia , Fenótipo , Proteína Quinase C/metabolismo , Transporte Proteico , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo
10.
Mol Biol Cell ; 19(5): 2289-99, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18337466

RESUMO

Although Rho-GTPases are well-known regulators of cytoskeletal reorganization, their in vivo distribution and physiological functions have remained elusive. In this study, we found marked apical accumulation of Rho in developing chick embryos undergoing folding of the neural plate during neural tube formation, with similar accumulation of activated myosin II. The timing of accumulation and biochemical activation of both Rho and myosin II was coincident with the dynamics of neural tube formation. Inhibition of Rho disrupted its apical accumulation and led to defects in neural tube formation, with abnormal morphology of the neural plate. Continuous activation of Rho also altered neural tube formation. These results indicate that correct spatiotemporal regulation of Rho is essential for neural tube morphogenesis. Furthermore, we found that a key morphogenetic signaling pathway, the Wnt/PCP pathway, was implicated in the apical accumulation of Rho and regulation of cell shape in the neural plate, suggesting that this signal may be the spatiotemporal regulator of Rho in neural tube formation.


Assuntos
Polaridade Celular , Forma Celular , Placa Neural/citologia , Placa Neural/enzimologia , Tubo Neural/citologia , Tubo Neural/embriologia , Proteínas rho de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Embrião de Galinha , Embrião não Mamífero/citologia , Embrião não Mamífero/ultraestrutura , Ativação Enzimática , Miosina Tipo II/metabolismo , Placa Neural/embriologia , Placa Neural/ultraestrutura , Tubo Neural/enzimologia , Tubo Neural/ultraestrutura , Neurulação , Transporte Proteico , Proteínas Wnt/metabolismo , Xenopus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...