Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 136: 102656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876531

RESUMO

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Assuntos
Baías , Proliferação Nociva de Algas , Fitoplâncton , Planktothrix , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Baías/microbiologia , Microcistinas/metabolismo , Microcistinas/análise , Monitoramento Ambiental , Estações do Ano , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Cianobactérias/genética
2.
Ecotoxicol Environ Saf ; 273: 116154, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422789

RESUMO

Blooms of the red, filamentous cyanobacterium Planktothrix rubescens occur frequently in pre-alpine lakes in Europe, often with concomitant toxic microcystin (MC) production. Trophic transfer of MCs has been observed in bivalves, fish, and zooplankton species, while uptake of MCs into Diptera species could facilitate distribution of MCs into terrestrial food webs and habitats. In this study, we characterized a Planktothrix bloom in summer 2019 in Lake Mindelsee and tracked possible trophic transfer and/or bioaccumulation of MCs via analysis of phytoplankton, zooplankton (Daphnia) and emergent aquatic insects (Chaoborus, Chironomidae and Trichoptera). Using 16 S rRNA gene amplicon sequencing, we found that five sequence variants of Planktothrix spp. were responsible for bloom formation in September and October of 2019, and these MC-producing variants, provisionally identified as P. isothrix and/or P. serta, occurred exclusively in Lake Mindelsee (Germany), while other variants were also detected in nearby Lake Constance. The remaining cyanobacterial community was dominated by Cyanobiaceae species with high species overlap with Lake Constance, suggesting a well-established exchange of cyanobacteria species between the adjacent lakes. With targeted LC-HRMS/MS we identified two MC-congeners, MC-LR and [Asp3]MC-RR with maximum concentrations of 45 ng [Asp3]MC-RR/L in lake water in September. Both MC congeners displayed different predominance patterns, suggesting that two different MC-producing species occurred in a time-dependent manner, whereby [Asp3]MC-RR was clearly associated with the Planktothrix spp. bloom. We demonstrate an exclusive transfer of MC-LR, but not [Asp3]MC-RR, from phytoplankton into zooplankton reaching a 10-fold bioconcentration, yet complete absence of these MC congeners or their conjugates in aquatic insects. The latter demonstrated a limited trophic transfer of MCs from zooplankton to zooplanktivorous insect larvae (e.g., Chaoborus), or direct transfer into other aquatic insects (e.g. Chironomidae and Trichoptera), whether due to avoidance or limited uptake and/or rapid excretion of MCs by higher trophic emergent aquatic insects.


Assuntos
Chironomidae , Cianobactérias , Animais , Lagos/microbiologia , Planktothrix , Cadeia Alimentar , Microcistinas/toxicidade , Cianobactérias/genética , Fitoplâncton , Alemanha
3.
Toxins (Basel) ; 16(2)2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38393188

RESUMO

Common bloom-forming cyanobacteria produce complex strain-specific mixtures of secondary metabolites. The beneficial and toxic properties of these metabolite mixtures have attracted both research and public health interest. The advancement of mass spectrometry-based platforms and metabolomics data processing has accelerated the identification of new metabolites and feature dereplication from microbial sources. The objective of this study was to use metabolomics data processing to decipher the intracellular cyanopeptide diversity of six Planktothrix strains collected from Canadian lakes. Data-dependent acquisition experiments were used to collect a non-targeted high-resolution mass spectrometry dataset. Principal component analysis and factor loadings were used to visualize cyanopeptide variation between strains and identified features contributing to the observed variation. GNPS molecular networking was subsequently used to show the diversity of cyanopeptides produced by the Planktothrix strains. Each strain produced a unique mixture of cyanopeptides, and a total of 225 cyanopeptides were detected. Planktothrix sp. CPCC 735 produced the most (n = 68) cyanopeptides, and P. rubescens CPCC 732 produced the fewest (n = 27). Microcystins and anabaenopeptins were detected from all strains. Cyanopeptolins, microviridins and aeruginosins were detected from five, four and two strains, respectively. Cyanopeptolin (n = 80) and anabaenopeptin (n = 61) diversity was the greatest, whereas microcystins (n = 21) were the least diverse. Interestingly, three of the P. rubescens strains had different cyanopeptide profiles, despite being collected from the same lake at the same time. This study highlights the diversity of cyanopeptides produced by Planktothrix and further hints at the underestimated cyanopeptide diversity from subpopulations of chemotypic cyanobacteria in freshwater lakes.


Assuntos
Cianobactérias , Microcistinas , Microcistinas/metabolismo , Planktothrix , Lagos , Canadá , Cianobactérias/metabolismo
4.
Water Res ; 249: 120980, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101053

RESUMO

Cyanobacterial blooms are a concerning issue that threaten ecosystems, ecology and animal health. Bloom frequency has increased tremendously in recent times due to pollution, eutrophication of waterways, climate change, and changes in microbial community dynamics within the aquatic environment. Information about the spatiotemporal variation in microbial communities that drive a cyanobacterial bloom is very limited. Here, we analysed the spatiotemporal diversity and composition of bacterial communities, with a focus on cyanobacteria, during the bloom phase in a natural reservoir in Eastern Australia using high throughput amplicon sequencing. Sampling points and season had no influence on the richness and evenness of microbial communities during the bloom period, however some compositional differences were apparent across the seasons. Cyanobacteria were highly abundant during summer and autumn compared to winter and spring. The dominant cyanobacterial taxa were Planktothrix, Cyanobium and Microcystis and were found to be significantly abundant during summer and autumn. While cyanobacterial abundance soared in summer (25.4 %), dominated by Planktothrix (12.2 %) and Cyanobium (8.0 %), the diversity was highest in autumn (24.9 %) and consisted of Planktothrix (7.8 %), Nodularia (5.3 %), Planktothricoides (4.6 %), Microcystis (3.5 %), and Cyanobium (2.3 %). The strongly correlated non-photosynthetic Gastranaerophilales found in the sediment and water, suggested vertical transmission from the animal gut through faeces. To our knowledge, this is the first report of Planktothrix-driven toxic cyanobacterial bloom in Australia. Our study expands current understanding of the spatiotemporal variation in bacterial communities during a cyanobacterial bloom and sheds light on setting future management strategies for its control.


Assuntos
Cianobactérias , Microbiota , Microcystis , Animais , Planktothrix , Cianobactérias/genética , Eutrofização , Lagos
5.
Mar Drugs ; 21(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132959

RESUMO

Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins.


Assuntos
Cianobactérias , Microcystis , Planktothrix , Cianobactérias/genética , Microcistinas/genética , Água Doce , Recombinação Genética
6.
Harmful Algae ; 117: 102285, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944963

RESUMO

Cyanobacterial blooms can modify the dynamic of aquatic ecosystems and have harmful consequences for human activities. Moreover, cyanobacteria can produce a variety of cyanotoxins, including microcystins, but little is known about the role of environmental factors on the prevalence of microcystin producers in the cyanobacterial bloom dynamics. This study aimed to better understand the success of Planktothrix in various environments by unveiling the variety of strategies governing cell responses to sudden changes in light intensity and temperature. The cellular responses (photosynthesis, photoprotection, heat shock response and metabolites synthesis) of four Planktothrix strains to high-light or high-temperature were studied, focusing on how distinct ecotypes (red- or green-pigmented) and microcystin production capability affect cyanobacteria's ability to cope with such abiotic stimuli. Our results showed that high-light and high-temperature impact different cellular processes and that Planktothrix responses are heterogeneous, specific to each strain and thus, to genotype. The ability of cyanobacteria to cope with sudden increase in light intensity and temperature was not related to red- or green-pigmented ecotype or microcystin production capability. According to our results, microcystin producers do not cope better to high-light or high-temperature and microcystin content does not increase in response to such stresses.


Assuntos
Cianobactérias , Planktothrix , Cianobactérias/fisiologia , Ecossistema , Genótipo , Humanos , Temperatura
7.
PLoS One ; 17(8): e0273454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998200

RESUMO

Planktothrix agardhii is a filamentous cyanobacterial species that dominates harmful algal blooms in Sandusky Bay, Lake Erie and other freshwater basins across the world. P. agardhii isolates were obtained from early (June) blooms via single filament isolation; eight have been characterized from 2016, and 12 additional isolates have been characterized from 2018 for a total of 20 new cultures. These novel isolates were processed for genomic sequencing, where reads were used to generate scaffolds and contigs which were annotated with DIAMOND BLAST hit, Pfam, and GO. Analyses include whole genome alignment to generate phylogenetic trees and comparison of genetic rearrangements between isolates. Nitrogen acquisition and metabolism was compared across isolates. Secondary metabolite production was genetically explored including microcystins, two types of aeruginosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides. Two common and 4 unique CRISPR-cas islands were analyzed for similar sequences across all isolates and against the known Planktothrix-specific cyanophage, PaV-LD. Overall, the uniqueness of each genome from Planktothrix blooms sampled from the same site and at similar times belies the unexplored diversity of this genus.


Assuntos
Cianobactérias , Lagos , Cianobactérias/metabolismo , Genoma Bacteriano , Genômica , Lagos/microbiologia , Microcistinas/genética , Filogenia , Planktothrix
8.
Environ Sci Process Impacts ; 24(8): 1212-1227, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35833582

RESUMO

Cyanobacterial blooms present challenges for water treatment, especially in regions like the Canadian prairies where poor water quality intensifies water treatment issues. Buoyant cyanobacteria that resist sedimentation present a challenge as water treatment operators attempt to balance pre-treatment and toxic disinfection by-products. Here, we used microscopy to identify and describe the succession of cyanobacterial species in Buffalo Pound Lake, a key drinking water supply. We used indicator species analysis to identify temporal grouping structures throughout two sampling seasons from May to October 2018 and 2019. Our findings highlight two key cyanobacterial bloom phases - a mid-summer diazotrophic bloom of Dolichospermum spp. and an autumn Planktothrix agardhii bloom. Dolichospermum crassa and Woronichinia compacta served as indicators of the mid-summer and autumn bloom phases, respectively. Different cyanobacterial metabolites were associated with the distinct bloom phases in both years: toxic microcystins were associated with the mid-summer Dolichospermum bloom and some newly monitored cyanopeptides (anabaenopeptin A and B) with the autumn Planktothrix bloom. Despite forming a significant proportion of the autumn phytoplankton biomass (>60%), the Planktothrix bloom had previously not been detected by sensor or laboratory-derived chlorophyll-a. Our results demonstrate the power of targeted taxonomic identification of key species as a tool for managers of bloom-prone systems. Moreover, we describe an autumn Planktothrix agardhii bloom that has the potential to disrupt water treatment due to its evasion of detection. Our findings highlight the importance of identifying this autumn bloom given the expectation that warmer temperatures and a longer ice-free season will become the norm.


Assuntos
Cianobactérias , Lagos , Canadá , Eutrofização , Lagos/química , Fitoplâncton , Planktothrix
9.
Environ Sci Pollut Res Int ; 29(53): 80849-80859, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729384

RESUMO

In July 2017, a massive bloom of the potentially toxic cyanobacterial species Planktothrix sp. was observed in the Béni-Haroun Reservoir (Algeria), which was followed by a massive fish death. Many questions were raised in association with the role of cyanotoxins and the fish massive mortality. The objective of this paper is twofold: (1) to investigate the variability of physicochemical and cyanobacterial parameters (chlorophyll-a, phycocyanin, allophycocyanin, and microcystins) throughout the period of July 2017 to June 2018; and (2) to determine the free and total MC levels in viscera and muscle tissues of the common carp (Cyprinus carpio), which are found dead in the considered reservoir in October 2017. Our results showed microcystin (MC) concentrations in water samples (by the protein phosphatase PP2A assay) had reached 651.2 ng MC-LR equiv./L. Total MC levels (free + bound) in the viscera and muscle tissues of sampled dead fish were at 960.24 and 438.54 µg MC-LR equiv./kg dw, respectively. It is assumed that high concentrations of MC observed in the tissues of common carp induced a strong degradation of the visceral contents resulting in the complete lysis of the hepatopancreas, and presumably the massive fish death.


Assuntos
Carpas , Cianobactérias , Proliferação Nociva de Algas , Animais , Argélia , Clorofila , Cianobactérias/patogenicidade , Microcistinas/toxicidade , Fosfoproteínas Fosfatases , Ficocianina , Planktothrix
10.
Biochim Biophys Acta Bioenerg ; 1863(7): 148584, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752265

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


Assuntos
Cianobactérias , Planktothrix , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cianobactérias/metabolismo , Fluorescência
11.
J Environ Sci (China) ; 115: 103-113, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969441

RESUMO

Lake mixing influences aquatic chemical properties and microbial community composition, and thus, we hypothesized that it would alter microbial community assembly and interaction. To clarify this issue, we explored the community assembly processes and cooccurrence networks in four seasons at two depths (epilimnion and hypolimnion) in a mesotrophic and stratified lake (Chenghai Lake), which formed stratification in the summer and turnover in the winter. During the stratification period, the epilimnion and hypolimnion went through contrary assembly processes but converged to similar assembly patterns in the mixing period. In a highly homogeneous selection environment, species with low niche breadth were filtered, resulting in decreased species richness. Water mixing in the winter homogenized the environment, resulting in a simpler microbial cooccurrence network. Interestingly, we observed a high abundance of the cyanobacterial genus Planktothrix in the winter, probably due to nutrient redistribution and Planktothrix adaptivity to the winter environment in which mixing played important roles. Our study provides deeper fundamental insights into how environmental factors influence microbial community structure through community assembly processes.


Assuntos
Cianobactérias , Lagos , Proliferação de Células , Interações Microbianas , Planktothrix , Estações do Ano
12.
Toxins (Basel) ; 13(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34564670

RESUMO

Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC-MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake.


Assuntos
Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Lagos/microbiologia , Microcistinas/biossíntese , Microcistinas/toxicidade , Planktothrix/crescimento & desenvolvimento , Planktothrix/metabolismo , Alemanha
13.
Toxins (Basel) ; 13(7)2021 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199141

RESUMO

The understanding of deep chlorophyll layers (DCLs) in the Great Lakes-largely reported as a mix of picoplankton and mixotrophic nanoflagellates-is predominantly based on studies of deep (>30 m), offshore locations. Here, we document and characterize nearshore DCLs from two meso-oligotrophic embayments, Twelve Mile Bay (TMB) and South Bay (SB), along eastern Georgian Bay, Lake Huron (Ontario, Canada) in 2014, 2015, and 2018. Both embayments showed the annual formation of DCLs, present as dense, thin, metalimnetic plates dominated by the large, potentially toxic, and bloom-forming cyanobacteria Planktothrix cf. isothrix. The contribution of P. cf. isothrix to the deep-living total biomass (TB) increased as thermal stratification progressed over the ice-free season, reaching 40% in TMB (0.6 mg/L at 9.5 m) and 65% in South Bay (3.5 mg/L at 7.5 m) in 2015. The euphotic zone in each embayment extended down past the mixed layer, into the nutrient-enriched hypoxic hypolimnia, consistent with other studies of similar systems with DCLs. The co-occurrence of the metal-oxidizing bacteria Leptothrix spp. and bactivorous flagellates within the metalimnetic DCLs suggests that the microbial loop plays an important role in recycling nutrients within these layers, particularly phosphate (PO4) and iron (Fe). Samples taken through the water column in both embayments showed measurable concentrations of the cyanobacterial toxins microcystins (max. 0.4 µg/L) and the other bioactive metabolites anabaenopeptins (max. ~7 µg/L) and cyanopeptolins (max. 1 ng/L), along with the corresponding genes (max. in 2018). These oligopeptides are known to act as metabolic inhibitors (e.g., in chemical defence against grazers, parasites) and allow a competitive advantage. In TMB, the 2018 peaks in these oligopeptides and genes coincided with the P. cf. isothrix DCLs, suggesting this species as the main source. Our data indicate that intersecting physicochemical gradients of light and nutrient-enriched hypoxic hypolimnia are key factors in supporting DCLs in TMB and SB. Microbial activity and allelopathy may also influence DCL community structure and function, and require further investigation, particularly related to the dominance of potentially toxigenic species such as P. cf. isothrix.


Assuntos
Toxinas Bacterianas/análise , Baías/análise , Baías/microbiologia , Lagos/análise , Lagos/microbiologia , Poluentes da Água/análise , Biomassa , Clorofila , Monitoramento Ambiental , Luz , Metais Pesados/análise , Compostos de Nitrogênio/análise , Ontário , Oxigênio , Fosfatos/análise , Planktothrix
14.
Sci Total Environ ; 784: 146956, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33894604

RESUMO

The presence of harmful algal bloom in many reservoirs around the world, alongside the lack of sanitation law/ordinance regarding cyanotoxin monitoring (particularly in developing countries), create a scenario in which the local population could potentially chronically consume cyanotoxin-contaminated waters. Therefore, it is crucial to develop low cost tools to detect possible systems failures and consequent toxin release inferred by morphological changes of cyanobacteria in the raw water. This paper aimed to look for the best combination of convolutional neural network (CNN), optimizer and image segmentation technique to differentiate P. agardhii trichomes before and after chemical stress caused by the addition of hydrogen peroxide. This method takes a step towards accurate monitoring of cyanobacteria in the field without the need for a mobile lab. After testing three different network architectures (AlexNet, 3ConvLayer and 2ConvLayer), four different optimizers (Adam, Adagrad, RMSProp and SDG) and five different image segmentations methods (Canny Edge Detection, Morphological Filter, HP filter, GrabCut and Watershed), the combination 2ConvLayer with Adam optimizer and GrabCut segmentation, provided the highest median accuracy (93.33%) for identifying H2O2-induced morphological changes in P. agardhii. Our results emphasize the fact that the trichome classification problem can be adequately tackled with a limited number of learned features due to the lack of complexity in micrographs from before and after chemical stress. To the authors' knowledge, this is the first time that CNNs were applied to detect morphological changes in cyanobacteria caused by chemical stress. Thus, it is a significant step forward in developing low cost tools based on image recognition, to shield water consumers, especially in the poorest regions, against cyanotoxin-contaminated water.


Assuntos
Cianobactérias , Planktothrix , Proliferação Nociva de Algas , Peróxido de Hidrogênio , Redes Neurais de Computação
15.
Toxins (Basel) ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670338

RESUMO

Due to increased frequency of cyanobacterial blooms and emerging evidence of cyanotoxicity in biofilm, reliable methods for early cyanotoxin threat detection are of major importance for protection of human, animal and environmental health. To complement the current methods of risk assessment, this study aimed to evaluate selected qPCR assays for detection of potentially toxic cyanobacteria in environmental samples. In the course of one year, 25 plankton and 23 biofilm samples were collected from 15 water bodies in Slovenia. Three different analyses were performed and compared to each other; qPCR targeting mcyE, cyrJ and sxtA genes involved in cyanotoxin production, LC-MS/MS quantifying microcystin, cylindrospermopsin and saxitoxin concentration, and microscopic analyses identifying potentially toxic cyanobacterial taxa. qPCR analyses detected potentially toxic Microcystis in 10 lake plankton samples, and potentially toxic Planktothrix cells in 12 lake plankton and one lake biofilm sample. A positive correlation was observed between numbers of mcyE gene copies and microcystin concentrations. Potential cylindrospermopsin- and saxitoxin-producers were detected in three and seven lake biofilm samples, respectively. The study demonstrated a potential for cyanotoxin production that was left undetected by traditional methods in both plankton and biofilm samples. Thus, the qPCR method could be useful in regular monitoring of water bodies to improve risk assessment and enable timely measures.


Assuntos
Toxinas Bacterianas/genética , Monitoramento Ambiental , Água Doce/microbiologia , Toxinas Marinhas/genética , Microcystis/genética , Planktothrix/genética , Reação em Cadeia da Polimerase , Microbiologia da Água , Alcaloides/genética , Biofilmes/crescimento & desenvolvimento , Toxinas de Cianobactérias , Regulação Bacteriana da Expressão Gênica , Proliferação Nociva de Algas , Microcistinas/genética , Microcystis/crescimento & desenvolvimento , Microcystis/isolamento & purificação , Planktothrix/crescimento & desenvolvimento , Planktothrix/isolamento & purificação , Saxitoxina/genética , Eslovênia
16.
Harmful Algae ; 101: 101942, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526179

RESUMO

Planktothrix species are distributed worldwide, and these prevalent cyanobacteria occasionally form potentially devastating toxic blooms. Given the ecological and taxonomic importance of Planktothrix agardhii as a bloom species, we set out to determine the complete genome sequence of the type strain Planktothrix agardhii NIES-204. Remarkably, we found that the 5S ribosomal RNA genes are not adjacent to the 16S and 23S ribosomal RNA genes. The genomic structure of P. agardhii NIES-204 is highly similar to that of another P. agardhii strain isolated from a geographically distant site, although they differ distinctly by a large inversion. We identified numerous gene clusters that encode the components of the metabolic pathways that generate secondary metabolites. We found that the aeruginosin biosynthetic gene cluster was more similar to that of another toxic bloom-forming cyanobacterium Microcystis aeruginosa than to that of other strains of Planktothrix, suggesting horizontal gene transfer. Prenyltransferases encoded in the prenylagaramide gene cluster of Planktothrix strains were classified into two phylogenetically distinct types, suggesting a functional difference. In addition to the secondary metabolite gene clusters, we identified genes for inorganic nitrogen and phosphate uptake components and gas vesicles. Our findings contribute to further understanding of the ecologically important genus Planktothrix.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Proliferação Nociva de Algas , Microcystis/genética , Família Multigênica , Planktothrix
17.
Protein Sci ; 30(5): 1081-1086, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33641210

RESUMO

Gas vesicles (GVs) are cylindrical or spindle-shaped protein nanostructures filled with air and used for flotation by various cyanobacteria, heterotrophic bacteria, and Archaea. Recently, GVs have gained interest in biotechnology applications due to their ability to serve as imaging agents and actuators for ultrasound, magnetic resonance and several optical techniques. The diameter of GVs is a crucial parameter contributing to their mechanical stability, buoyancy function and evolution in host cells, as well as their properties in imaging applications. Despite its importance, reported diameters for the same types of GV differ depending on the method used for its assessment. Here, we provide an explanation for these discrepancies and utilize electron microscopy (EM) techniques to accurately estimate the diameter of the most commonly studied types of GVs. We show that during air drying on the EM grid, GVs flatten, leading to a ~1.5-fold increase in their apparent diameter. We demonstrate that GVs' diameter can be accurately determined by direct measurements from cryo-EM samples or alternatively indirectly derived from widths of flat collapsed and negatively stained GVs. Our findings help explain the inconsistency in previously reported data and provide accurate methods to measure GVs dimensions.


Assuntos
Microscopia Eletrônica , Nanoestruturas/ultraestrutura , Planktothrix/ultraestrutura
18.
Commun Biol ; 3(1): 737, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277584

RESUMO

Cyanobacterial blooms are a global ecological problem that directly threatens human health and crop safety. Cyanobacteria have toxic effects on aquatic microorganisms, which could drive the selection for resistance genes. The effect of cyanobacterial blooms on the dispersal and abundance of antibiotic-resistance genes (ARGs) of concern to human health remains poorly known. We herein investigated the effect of cyanobacterial blooms on ARG composition in Lake Taihu, China. The numbers and relative abundances of total ARGs increased obviously during a Planktothrix bloom. More pathogenic microorganisms were present during this bloom than during a Planktothrix bloom or during the non-bloom period. Microcosmic experiments using additional aquatic ecosystems (an urban river and Lake West) found that a coculture of Microcystis aeruginosa and Planktothrix agardhii increased the richness of the bacterial community, because its phycosphere provided a richer microniche for bacterial colonization and growth. Antibiotic-resistance bacteria were naturally in a rich position, successfully increasing the momentum for the emergence and spread of ARGs. These results demonstrate that cyanobacterial blooms are a crucial driver of ARG diffusion and enrichment in freshwater, thus providing a reference for the ecology and evolution of ARGs and ARBs and for better assessing and managing water quality.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ecossistema , Eutrofização , Planktothrix/genética , Planktothrix/fisiologia , China , Lagos , Planktothrix/efeitos dos fármacos
19.
Harmful Algae ; 99: 101906, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33218452

RESUMO

The development of anthropic activities during the 20th century increased the nutrient fluxes in freshwater ecosystems, leading to the eutrophication phenomenon that most often promotes harmful algal blooms (HABs). Recent years have witnessed the regular and massive development of some filamentous algae or cyanobacteria in Lake Geneva. Consequently, important blooms could result in detrimental impacts on economic issues and human health. In this study, we tried to lay the foundation of an HAB forecast model to help scientists and local stakeholders with the present and future management of this peri-alpine lake. Our forecast strategy was based on pairing two machine learning models with a long-term database built over the past 34 years. We created HAB groups via a K-means model. Then, we introduced different lag times in the input of a random forest (RF) model, using a sliding window. Finally, we used a high-frequency dataset to compare the natural mechanisms with numerical interaction using individual conditional expectation plots. We demonstrate that some HAB events can be forecasted over a year scale. The information contained in the concentration data of the cyanobacteria was synthesized in the form of four intensity groups that directly depend on the P. rubescens concentration. The categorical transformation of these data allowed us to obtain a forecast with correlation coefficients that stayed above a threshold of 0.5 until one year for the counting cells and two years for the biovolume data. Moreover, we found that the RF model predicted the best P. rubescens abundance for water temperatures around 14°C. This result is consistent with the biological processes of the toxic cyanobacterium. In this study, we found that the coupling between K-means and RF models could help in forecasting the development of the bloom-forming P. rubescens in Lake Geneva. This methodology could create a numerical decision support tool, which should be a significant advantage for lake managers.


Assuntos
Cianobactérias , Lagos , Ecossistema , Proliferação Nociva de Algas , Aprendizado de Máquina , Planktothrix
20.
Toxins (Basel) ; 12(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167347

RESUMO

The combination of a low-dose coagulant (polyaluminium chloride-'Floc') and a ballast able to bind phosphate (lanthanum modified bentonite, LMB-'Sink/Lock') have been used successfully to manage cyanobacterial blooms and eutrophication. In a recent 'Floc and Lock' intervention in Lake de Kuil (the Netherlands), cyanobacterial chlorophyll-a was reduced by 90% but, surprisingly, after one week elevated cyanobacterial concentrations were observed again that faded away during following weeks. Hence, to better understand why and how to avoid an increase in cyanobacterial concentration, experiments with collected cyanobacteria from Lakes De Kuil and Rauwbraken were performed. We showed that the Planktothrix rubescens from Lake de Kuil could initially be precipitated using a coagulant and ballast but, after one day, most of the filaments resurfaced again, even using a higher ballast dose. By contrast, the P. rubescens from Lake Rauwbraken remained precipitated after the Floc and Sink/Lock treatment. We highlight the need to test selected measures for each lake as the same technique with similar species (P. rubescens) yielded different results. Moreover, we show that damaging the cells first with hydrogen peroxide before adding the coagulant and ballast (a 'Kill, Floc and Lock/Sink' approach) could be promising to keep P. rubescens precipitated.


Assuntos
Hidróxido de Alumínio/química , Bentonita/química , Proliferação Nociva de Algas , Peróxido de Hidrogênio/química , Lagos/microbiologia , Lantânio/química , Purificação da Água , Precipitação Química , Clorofila A/metabolismo , Planktothrix/crescimento & desenvolvimento , Planktothrix/isolamento & purificação , Planktothrix/metabolismo , Fatores de Tempo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...