Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.759
Filtrar
1.
Science ; 384(6703): 1394-1395, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935719

RESUMO

First synthetic "gene drive" for plants could help tame weeds-or transform them.


Assuntos
Plantas Daninhas , Plantas Daninhas/genética , Tecnologia de Impulso Genético/métodos , Plantas Geneticamente Modificadas , Genes de Plantas
2.
J Agric Food Chem ; 72(25): 14402-14410, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875520

RESUMO

Tripyrasulfone is currently the only HPPD-inhibiting herbicide that possesses outstanding selectivity even for direct-seeded rice (Oryza sativa) when applied POST to control grass weeds; however, the underlying mechanisms remain unclear. In this study, the inhibitory effects of the real active HDT of tripyrasulfone on recombinant 4-hydroxyphenylpyruvate dioxygenase (HPPDs) from rice and barnyard grass (Echinochloa crus-galli) were similar, with consistent structural interactions and similar binding energies predicted by molecular docking. However, the HPPD expression level in rice was significantly greater than that in barnyard grass after tripyrasulfone treatment. Tripyrasulfone was rapidly taken up and hydrolyzed into HDT, which was similarly distributed within the whole plants of rice and barnyard grass at 24 h after treatment. Compared with barnyard grass, rice has more uniform epicuticular wax in the cuticle of its leaves, absorbing less tripyrasulfone and metabolizing much more tripyrasulfone. Overall, to a greater extent, the different sensitivities to tripyrasulfone between barnyard grass and rice resulted from metabolic variations.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Echinochloa , Herbicidas , Simulação de Acoplamento Molecular , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/química , Echinochloa/efeitos dos fármacos , Echinochloa/genética , Echinochloa/metabolismo , Echinochloa/crescimento & desenvolvimento , Echinochloa/química , Herbicidas/farmacologia , Herbicidas/química , Herbicidas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
Braz J Biol ; 84: e281402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922196

RESUMO

One of the major limitations to proper weed management is the lack of knowledge about the biology of the species. The aim of this study was to understand the influence of temperature and light on the germination and emergence of Commelina benghalensis and Richardia brasiliensis, as well as the influence of burial depth in the soil and the presence of mulch. The experiment regarding the influence of light and temperature on germination was conducted using a 2x4 factorial design, with two light conditions (presence for 12 hours and absence for 24 hours) and four temperature alternations every 12 hours (20-25 ºC, 20-30 ºC, 20-35 ºC, and 15-35 ºC), with four replications. The second experiment was conducted in a completely randomized design with four replications, testing seven sowing depths (0.0; 0.5; 1.0; 2.0; 4.0; 6.0; 10.0 cm) in clay-textured soil. In the third experiment, millet, black oat, and sun hemp straw were placed on the surface of the pot where the weeds were sown. R. brasiliensis showed high germination rates at 15°-35°C and in the presence of light, indicating positive photoblastism, as the germination percentage was 63.50% in the presence of light and 1% without light. C. benghalensis showed higher germination rates at 20-35ºC, with a germination percentage of 46.5% under light treatment and 44% in the absence of light. R. brasiliensis exhibited the highest germination percentage at a depth of 0.5 cm, with 72.50%. C. benghalensis showed better germination at depths of 1 and 4 cm, with 48.33% and 49.16%, respectively. Both crotalaria and millet caused significant inhibition of germination in both weed species. R. brasiliensis and C. benghalensis exhibit higher seed germination under alternating temperatures, with R. brasiliensis displaying positive photoblastism and C. benghalensis being neutral. Greater seeding depths negatively influence germination, and cover crops such as crotalaria and millet can be used to suppress these weeds.


Assuntos
Germinação , Luz , Temperatura , Germinação/fisiologia , Plantas Daninhas/fisiologia , Solo , Fatores de Tempo
4.
Molecules ; 29(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893290

RESUMO

Herbicides are useful tools for managing weeds and promoting food production and sustainable agriculture. In this study, we report on the development of a novel class of lipophilic pyrimidine-biphenyl (PMB) herbicides. Firstly, three PMBs, Ia, IIa, and IIIa, were rationally designed via a scaffold hopping strategy and were determined to inhibit acetohydroxyacid synthase (AHAS). Computational simulation was carried out to investigate the molecular basis for the efficiency of PMBs against AHAS. With a rational binding mode, and the highest in vitro as well as in vivo potency, Ia was identified as a preferable hit. Furthermore, these integrated analyses guided the design of eighteen new PMBs, which were synthesized via a one-step Suzuki-Miyaura cross-coupling reaction. These new PMBs, Iba-ic, were more effective in post-emergence control of grass weeds compared with Ia. Interestingly, six of the PMBs displayed 98-100% inhibition in the control of grass weeds at 750 g ai/ha. Remarkably, Ica exhibited ≥ 80% control against grass weeds at 187.5 g ai/ha. Overall, our comprehensive and systematic investigation revealed that a structurally distinct class of lipophilic PMB herbicides, which pair excellent herbicidal activities with new interactions with AHAS, represent a noteworthy development in the pursuit of sustainable weed control solutions.


Assuntos
Herbicidas , Pirimidinas , Herbicidas/química , Herbicidas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Acetolactato Sintase/química , Compostos de Bifenilo/química , Compostos de Bifenilo/antagonistas & inibidores , Simulação de Acoplamento Molecular , Plantas Daninhas/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular
5.
Sci Rep ; 14(1): 14260, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902463

RESUMO

Sosnowski hogweed is an invasive weed in eastern-middle Europe that is dangerous to human health and the environment. The efficacy of its control using chemical and mechanical methods is limited. Electromagnetic radiation (microwaves) could be an environmentally friendly alternative for controlling this species. This study aims to: (1) Determine the effect of varying microwave treatment (MWT) durations on the control of S. hogweed using a device emitting microwaves at 2.45 GHz, 32.8 kW/m2; (2) Evaluate the impact of MWT on soil by an ecotoxicological bioassays; (3) Analyze biochemical changes occurring in the roots during the process. A field study was performed to assess the efficacy of S. hogweed control using MWT in times from 2.5 to 15 min. The MWT-treated soil was collected immediately after treatment (AT) and tested using bioassays (Phytotoxkit, Ostracodtoxkit, and Microtox). Fourteen days AT, the MWT hogweed roots were dug out, air-dried, and analyzed for the content and composition of essential oil, sugars, and fatty acids. According to the ecotoxicological biotests, the MWT soils were classified as non-toxic or low-toxic. The regeneration of hogweed was observed only in non-treated plants (control). Hogweed MWT for 2.5-15 min did not regenerate up to 14 days AT. The average weight of roots in hogweed MWT for 15.0 min was ca. two times smaller than the control plants. Those roots contained significantly higher amounts of sugars and saturated fatty acids than the control. We did not find a correlation between S. hogweed root essential oil content and composition and MWT time. The main compounds of essential oil were p­cymene and myristicin. No highly photosensitizing compounds were identified in the tested root oil. We conclude that MWT of S. hogweed could be an environmentally safe and prospective control method, but more studies are needed.


Assuntos
Ecotoxicologia , Heracleum , Micro-Ondas , Raízes de Plantas , Raízes de Plantas/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Heracleum/química , Ecotoxicologia/métodos , Solo/química , Plantas Daninhas/efeitos da radiação , Plantas Daninhas/efeitos dos fármacos , Óleos Voláteis/farmacologia , Ácidos Graxos/análise
6.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
7.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790173

RESUMO

Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.


Assuntos
Amaranthaceae , Genoma de Cloroplastos , Espécies Introduzidas , Filogenia , Genoma de Cloroplastos/genética , Amaranthaceae/genética , Plantas Daninhas/genética , Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Evolução Molecular
8.
J Agric Food Chem ; 72(22): 12425-12433, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781442

RESUMO

Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 µg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.


Assuntos
Echinochloa , Herbicidas , Oxirredutases , Proteínas de Plantas , Plantas Daninhas , Piridazinas , Herbicidas/farmacologia , Herbicidas/química , Piridazinas/farmacologia , Piridazinas/química , Echinochloa/efeitos dos fármacos , Echinochloa/enzimologia , Echinochloa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inibidores , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Plantas Daninhas/genética , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Estrutura Molecular
9.
J Agric Food Chem ; 72(23): 12946-12955, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809794

RESUMO

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.


Assuntos
Inibidores Enzimáticos , Herbicidas , Simulação de Acoplamento Molecular , Oximas , Proteínas de Plantas , Plantas Daninhas , Protoporfirinogênio Oxidase , Protoporfirinogênio Oxidase/antagonistas & inibidores , Protoporfirinogênio Oxidase/química , Protoporfirinogênio Oxidase/metabolismo , Herbicidas/farmacologia , Herbicidas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oximas/química , Oximas/farmacologia , Relação Estrutura-Atividade , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Triazinas/química , Triazinas/farmacologia , Ésteres/química , Ésteres/farmacologia , Estrutura Molecular , Éteres/química , Éteres/farmacologia , Descoberta de Drogas
10.
J Agric Food Chem ; 72(19): 10772-10780, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703122

RESUMO

Protoporphyrinogen IX oxidase (PPO, E.C. 1.3.3.4) plays a pivotal role in chlorophyll biosynthesis in plants, making it a prime target for herbicide development. In this study, we conducted an investigation aimed at discovering PPO-inhibiting herbicides. Through this endeavor, we successfully identified a series of novel compounds based on the pyridazinone scaffold. Following structural optimization and biological assessment, compound 10ae, known as ethyl 3-((6-fluoro-5-(6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate, emerged as a standout performer. It exhibited robust activity against Nicotiana tabacum PPO (NtPPO) with an inhibition constant (Ki) value of 0.0338 µM. Concurrently, we employed molecular simulations to obtain further insight into the binding mechanism with NtPPO. Additionally, another compound, namely, ethyl 2-((6-fluoro-5-(5-methyl-6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate (10bh), demonstrated broad-spectrum and highly effective herbicidal properties against all six tested weeds (Leaf mustard, Chickweed, Chenopodium serotinum, Alopecurus aequalis, Poa annua, and Polypogon fugax) at the dosage of 150 g a.i./ha through postemergence application in a greenhouse. This work identified a novel lead compound (10bh) that showed good activity in vitro and excellent herbicidal activity in vivo and had promising prospects as a new PPO-inhibiting herbicide lead.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Herbicidas , Nicotiana , Proteínas de Plantas , Protoporfirinogênio Oxidase , Piridazinas , Protoporfirinogênio Oxidase/antagonistas & inibidores , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinogênio Oxidase/química , Protoporfirinogênio Oxidase/genética , Piridazinas/química , Piridazinas/farmacologia , Herbicidas/farmacologia , Herbicidas/química , Herbicidas/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Nicotiana/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Simulação de Acoplamento Molecular , Estrutura Molecular , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Cinética
11.
J Environ Sci Health B ; 59(6): 350-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736380

RESUMO

The aim of this study was to assess the efficacy of herbicides in association to control Rottboellia exaltata and Ipomoea quamoclit during pre-emergence while also to evaluate the potential impact on the sugarcane. The experimental design employed a randomized block with seven treatments and four replications. The treatments were: 1 - no herbicide application; 2 - indaziflam + sulfentrazone; 3 - indaziflam + diclosulam; 4 - indaziflam + tebuthiuron; 5 - flumioxazin + diclosulam, 6 - flumioxazin + pyroxasulfone and 7 - clomazone + sulfentrazone. The evaluated parameters were: percentage of weeds control, green coverage percentage (Canopeo® system), weed biomass (g m-2), itchgrass height, and sugarcane tiller. Several herbicide associations have been proven effective alternatives for managing itchgrass and cypressvine morningglory. The most successful treatments for itchgrass control were indaziflam + tebuthiuron (100%) and indaziflam + diclosulam (97%), whereas for cypressvine morningglory, the betters were indaziflam + sulfentrazone (97%), indaziflam + diclosulam (98%), indaziflam + tebuthiuron (97%), flumioxazin + diclosulam (94%), and clomazone + sulfentrazone (96%). All treatments reduced the weed biomass, with indaziflam + tebuthiuron being the safest option for protecting sugarcane.


Assuntos
Herbicidas , Saccharum , Controle de Plantas Daninhas , Herbicidas/farmacologia , Controle de Plantas Daninhas/métodos , Plantas Daninhas/efeitos dos fármacos , Ipomoea/efeitos dos fármacos
12.
Sci Rep ; 14(1): 12288, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811674

RESUMO

In agricultural production activities, the growth of crops always accompanies the competition of weeds for nutrients and sunlight. In order to mitigate the adverse effects of weeds on yield, we apply semantic segmentation techniques to differentiate between seedlings and weeds, leading to precision weeding. The proposed EPAnet employs a loss function coupled with Cross-entropy loss and Dice loss to enhance attention to feature information. A multi-Decoder cooperative module based on ERFnet is designed to enhance information transfer during feature mapping. The SimAM is introduced to enhance position recognition. DO-CONV is used to replace the traditional convolution Feature Pyramid Networks (FPN) connection layer to integrate feature information, improving the model's performance on leaf edge processing, and is named FDPN. Moreover, the Overall Accuracy has been improved by 0.65%, the mean Intersection over Union (mIoU) by 1.91%, and the Frequency-Weighted Intersection over Union (FWIoU) by 1.19%. Compared to other advanced methods, EPAnet demonstrates superior image segmentation results in complex natural environments with uneven lighting, leaf interference, and shadows.


Assuntos
Plantas Daninhas , Plântula , Produtos Agrícolas/crescimento & desenvolvimento , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Semântica , Folhas de Planta , Redes Neurais de Computação , Fabaceae/fisiologia
13.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717990

RESUMO

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Assuntos
Sistema Enzimático do Citocromo P-450 , Echinochloa , Resistência a Herbicidas , Herbicidas , Mutação , Proteínas de Plantas , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , Echinochloa/genética , Echinochloa/efeitos dos fármacos , Echinochloa/metabolismo , Echinochloa/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Butanos , Nitrilas , Sulfonamidas , Uridina/análogos & derivados
15.
Sci Rep ; 14(1): 10356, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710732

RESUMO

Herbicide use may pose a risk of environmental pollution or evolution of resistant weeds. As a result, an experiment was carried out to assess the influence of different non-chemical weed management tactics (one hoeing (HH) at 12 DAS followed by (fb) one hand weeding at 30 DAS, one HH at 12 DAS fb Sesbania co-culture and its mulching, one HH at 12 DAS fb rice straw mulching @ 4t ha-1, one HH at 12 DAS fb rice straw mulching @ 6 t ha-1) on weed control, crop growth and yield, and economic returns in direct-seeded rice (DSR). Experiment was conducted during kharif season in a split-plot design and replicated thrice. Zero-till seed drill-sown crop (PN) had the lowest weed density at 25 days after sowing (DAS), while square planting geometry (PS) had the lowest weed density at 60 DAS. PS also resulted in a lower weed management index (WMI), agronomic management index (AMI), and integrated weed management index (IWMI), as well as higher growth attributes, grain yield (4.19 t ha-1), and net return (620.98 US$ ha-1). The cultivar Arize 6444 significantly reduced weed density and recorded higher growth attributes, yield, and economic return. In the case of weed management treatments, one HH at 12 DAS fb Sesbania co-culture and its mulching had the lowest weed density, Shannon-weinner index and eveness at 25 DAS. However, one hoeing at 12 DAS fb one hand weeding at 30 DAS (HH + WH) achieved the highest grain yield (4.85 t ha-1) and net returns (851.03 US$ ha-1) as well as the lowest weed density at 60 DAS. PS × HH + WH treatment combination had the lowest weed persistent index (WPI), WMI, AMI, and IWMI, and the highest growth attributes, production efficiency, and economic return.


Assuntos
Produtos Agrícolas , Oryza , Plantas Daninhas , Controle de Plantas Daninhas , Oryza/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Herbicidas/farmacologia , Produção Agrícola/métodos
16.
Sci Rep ; 14(1): 10544, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719860

RESUMO

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Assuntos
Acetolactato Sintase , Acetil-CoA Carboxilase , Echinochloa , Resistência a Herbicidas , Herbicidas , Microbiologia do Solo , Itália/epidemiologia , Herbicidas/farmacologia , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/genética , Echinochloa/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/antagonistas & inibidores , Plantas Daninhas/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Biodiversidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Solo/química , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/genética
17.
Sci Rep ; 14(1): 10446, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714777

RESUMO

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Assuntos
Alelopatia , Benzoxazinas , Secale , Amaranthus/crescimento & desenvolvimento , Germinação , Técnicas de Cocultura/métodos , Plantas Daninhas , Produtos Agrícolas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
18.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769679

RESUMO

The two stresses of weed competition and salt salinity lead to crop yield losses and decline in the productivity of agricultural land. These constraints threaten the future of food production because weeds are more salt stress tolerant than most crops. Climate change will lead to an increase of soil salinity worldwide, and possibly exacerbate the competition between weeds and crops. This aspect has been scarcely investigated in the context of weed-crop competition. Therefore, we conducted a field experiment on green beans (Phaseolus vulgaris ) to investigate the combined impact of weed competition and salt stress on key morpho-physiological traits, and crop yield. We demonstrated that soil salinity shifted weed composition toward salt tolerant weed species (Portulaca oleracea and Cynodon dactylon ), while it reduced the presence of lower tolerance species. Weed competition activated adaptation responses in green bean such as reduced leaf mass per area and biomass allocation to the stem, unchanged stomatal density and instantaneous water use efficiency, which diverge from those that are typically observed as a consequence of salt stress. The morpho-physiological modifications caused by weeds is attributed to the alterations of light intensity and/or quality, further confirming the pivotal role of the light in crop response to weeds. We concluded that higher yield loss caused by combined salt stress and weed competition is due to impaired morpho-physiological responses, which highlights the negative interaction between salt stress and weed competition. This phenomenon will likely be more frequent in the future, and potentially reduce the efficacy of current weed control methods.


Assuntos
Adaptação Fisiológica , Phaseolus , Plantas Daninhas , Estresse Salino , Phaseolus/fisiologia , Phaseolus/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Salinidade , Solo/química , Biomassa
19.
Genome Biol ; 25(1): 139, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802856

RESUMO

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Assuntos
Genômica , Plantas Daninhas , Plantas Daninhas/genética , Genômica/métodos , Controle de Plantas Daninhas/métodos , Genoma de Planta , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Melhoramento Vegetal/métodos
20.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793920

RESUMO

Soybean is grown worldwide for its high protein and oil content. Weeds compete fiercely for resources, which affects soybean yields. Because of the progressive enhancement of weed resistance to herbicides and the quickly increasing cost of manual weeding, mechanical weed control is becoming the preferred method of weed control. Mechanical weed control finds it difficult to remove intra-row weeds due to the lack of rapid and precise weed/soybean detection and location technology. Rhodamine B (Rh-B) is a systemic crop compound that can be absorbed by soybeans which fluoresces under a specific excitation light. The purpose of this study is to combine systemic crop compounds and computer vision technology for the identification and localization of soybeans in the field. The fluorescence distribution properties of systemic crop compounds in soybeans and their effects on plant growth were explored. The fluorescence was mainly concentrated in soybean cotyledons treated with Rh-B. After a comparison of soybean seedlings treated with nine groups of rhodamine B solutions at different concentrations ranging from 0 to 1440 ppm, the soybeans treated with 180 ppm Rh-B for 24 h received the recommended dosage, resulting in significant fluorescence that did not affect crop growth. Increasing the Rh-B solutions reduced crop biomass, while prolonged treatment times reduced seed germination. The fluorescence produced lasted for 20 days, ensuring a stable signal in the early stages of growth. Additionally, a precise inter-row soybean plant location system based on a fluorescence imaging system with a 96.7% identification accuracy, determined on 300 datasets, was proposed. This article further confirms the potential of crop signaling technology to assist machines in achieving crop identification and localization in the field.


Assuntos
Glycine max , Rodaminas , Plântula , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Plântula/crescimento & desenvolvimento , Rodaminas/química , Produtos Agrícolas/crescimento & desenvolvimento , Germinação/fisiologia , Germinação/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/efeitos dos fármacos , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...