Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
BMC Plant Biol ; 24(1): 633, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971752

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) experiences many negative effects under salinity stress, which may be mediated by recurrent selection. Salt-tolerant alfalfa may display unique adaptations in association with rhizobium under salt stress. RESULTS: To elucidate inoculation effects on salt-tolerant alfalfa under salt stress, this study leveraged a salt-tolerant alfalfa population selected through two cycles of recurrent selection under high salt stress. After experiencing 120-day salt stress, mRNA was extracted from 8 random genotypes either grown in 0 or 8 dS/m salt stress with or without inoculation by Ensifer meliloti. Results showed 320 and 176 differentially expressed genes (DEGs) modulated in response to salinity stress or inoculation x salinity stress, respectively. Notable results in plants under 8 dS/m stress included upregulation of a key gene involved in the Target of Rapamycin (TOR) signaling pathway with a concomitant decrease in expression of the SNrK pathway. Inoculation of salt-stressed plants stimulated increased transcription of a sulfate-uptake gene as well as upregulation of the Lysine-27-trimethyltransferase (EZH2), Histone 3 (H3), and argonaute (AGO, a component of miRISC silencing complexes) genes related to epigenetic and post-transcriptional gene control. CONCLUSIONS: Salt-tolerant alfalfa may benefit from improved activity of TOR and decreased activity of SNrK1 in salt stress, while inoculation by rhizobiumstimulates production of sulfate uptake- and other unique genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Tolerância ao Sal , Medicago sativa/genética , Medicago sativa/fisiologia , Medicago sativa/microbiologia , Tolerância ao Sal/genética , Estresse Salino/genética , Salinidade , Sinorhizobium meliloti/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia
2.
Plant Sci ; 346: 112171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969140

RESUMO

The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.


Assuntos
Produtos Agrícolas , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
3.
Physiol Plant ; 176(3): e14356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828569

RESUMO

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Assuntos
Amaranthaceae , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Amaranthaceae/genética , Amaranthaceae/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Germinação/genética , Germinação/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Potássio/metabolismo , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia
4.
BMC Plant Biol ; 24(1): 604, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926703

RESUMO

BACKGROUND AND AIMS: Seed heteromorphism is a plant strategy that an individual plant produces two or more distinct types of diaspores, which have diverse morphology, dispersal ability, ecological functions and different effects on plant life history traits. The aim of this study was to test the effects of seasonal soil salinity and burial depth on the dynamics of dormancy/germination and persistence/depletion of buried trimorphic diaspores of a desert annual halophyte Atriplex centralasiatica. METHODS: We investigated the effects of salinity and seasonal fluctuations of temperature on germination, recovery of germination and mortality of types A, B, C diaspores of A. centralasiatica in the laboratory and buried diaspores in situ at four soil salinities and three depths. Diaspores were collected monthly from the seedbank from December 2016 to November 2018, and the number of viable diaspores remaining (not depleted) and their germinability were determined. RESULTS: Non-dormant type A diaspores were depleted in the low salinity "window" in the first year. Dormant diaspore types B and C germinated to high percentages at 0.3 and 0.1 mol L-1 soil salinity, respectively. High salinity and shallow burial delayed depletion of diaspore types B and C. High salinity delayed depletion time of the three diaspore types and delayed dormancy release of types B and C diaspores from autumn to spring. Soil salinity modified the response of diaspores in the seedbank by delaying seed dormancy release in autum and winter and by providing a low-salt concentration window for germination of non-dormant diaspores in spring and early summer. CONCLUSIONS: Buried trimorphic diaspores of annual desert halophyte A. centralasiatica exhibited diverse dormancy/germination behavior in respond to seasonal soil salinity fluctuation. Prolonging persistence of the seedbank and delaying depletion of diaspores under salt stress in situ primarily is due to inhibition of dormancy-break. The differences in dormancy/germination and seed persistence in the soil seedbank may be a bet-hadging strategy adapted to stressful temporal and spatial heterogeneity, and allows A. centralasiatica to persist in the unpredictable cold desert enevironment.


Assuntos
Atriplex , Germinação , Salinidade , Plantas Tolerantes a Sal , Estações do Ano , Sementes , Solo , Germinação/fisiologia , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , China , Solo/química , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Atriplex/fisiologia , Atriplex/crescimento & desenvolvimento , Banco de Sementes , Dormência de Plantas/fisiologia , Temperatura
5.
Environ Sci Pollut Res Int ; 31(25): 37652-37662, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780847

RESUMO

A huge amount of phosphogypsum (PG) wastes generated from the processing phosphate ore in Tunisia Industrial Group Area-Gabes is getting discarded into the sea. Within this framework, the basic objective of this research is to elaborate and discuss a natural-based solution focused on phytoremediation of contaminated (PG) soils and marine sediments with the halophilic plant Salicornia europaea. A significant drop of the organic matter (53.09%), moisture (26.47%), and sediment porosity with (5.88%) was detected in the rhizosphere Salicornia europaea area (RS). Removal of hazardous elements concentrations, such as Pb, Fe, Cu, Cd, and Zn, between contaminated sediment (CS) and RS displayed a significant difference, ranging from 5.33 to 50.02% of hazardous elements removal concentration, which was observed in the rhizosphere zone. The microbiota of both areas (RS and CS) were analyzed by massive sequencing. In both samples, all the sequences belong to only four phyla: Firmicutes and, to a much lower extent, Proteobacteria, Bacteroidetes, and Actinobacteria. The CS sediment seems to be heavily polluted by human activities. Most of the found genera are inhabitants of the intestine of warm-blooded animals (Escherichia, Bacteroides, Prevotella, Faecalibacterium, Ruminococcus, Enterococcus); hence, activities in this area pose a health risk. On the other hand, it may be surprising that 76.4% of the total high-quality sequences retrieved from the RS sample were affiliated to the family Bacillaceae. The salinity of the studied soil exerts a stress on the microbial populations that inhabit it, directing the selection of halotolerant species.


Assuntos
Biodegradação Ambiental , Chenopodiaceae , Sedimentos Geológicos , Resíduos Industriais , Poluentes Químicos da Água , Sedimentos Geológicos/química , Água do Mar , Tunísia , Humanos , Microbiota , Poluentes Químicos da Água/análise , Plantas Tolerantes a Sal/fisiologia , Chenopodiaceae/fisiologia , Microbiologia do Solo , Monitoramento Ambiental
6.
J Plant Res ; 137(3): 505-520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38427146

RESUMO

Rice production is seriously affected by saline-alkaline stress worldwide. To elucidate the saline-alkaline tolerance mechanisms in a novel tolerant rice variety, Shwe Nang Gyi (SNG), we investigated ion accumulation in SNG and Koshihikari (KSH), which is a saline-alkaline sensitive rice variety, and the candidates for saline-alkaline inducible genes in SNG using RNA-seq. SNG had superior ion accumulation capacity, such as K and Zn, compared to KSH. In contrast, SNG accumulated the same level of Na content in its leaf blades as KSH despite the higher dry weight of the SNG leaf blades. We further found that the expression of numerous genes, including several K+ transporter/high-affinity K+ transporter/K+ uptake protein/K+ transporter (HAK/KUP/KT) family members, were upregulated in SNG, and that OsHAK17 and OsHAK21 expression levels in the roots were significantly higher in SNG than in KSH. Moreover, yeast complementation analysis revealed that OsHAK17 was involved in K+ uptake under high-Na conditions. These results suggested that SNG has an effective K+ acquisition system supported by OsHAK17 functioning in saline-alkaline environments.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Plantas Tolerantes a Sal , Álcalis , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo
7.
Plant J ; 118(4): 1119-1135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308390

RESUMO

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Assuntos
Homeostase , Peróxido de Hidrogênio , NADPH Oxidases , Oxirredução , Raízes de Plantas , Potássio , Ácido Salicílico , Tolerância ao Sal , Sódio , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Potássio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Regulação da Expressão Gênica de Plantas , Rhizophoraceae/fisiologia , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Phytoremediation ; 26(6): 913-927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37985450

RESUMO

Salt excretory halophytes are the major sources of phytoremediation of salt-affected soils. Cressa cretica is a widely distributed halophyte in hypersaline lands in the Cholistan Desert. Therefore, identification of key physio-anatomical traits related to phytoremediation in differently adapted C. cretica populations was focused on. Four naturally adapted ecotypes of non-succulent halophyte Cressa cretica L. form hyper-arid and saline desert Cholistan. The selected ecotypes were: Derawar Fort (DWF, ECe 20.8 dS m-1) from least saline site, Traway Wala Toba (TWT, ECe 33.2 dS m-1) and Bailah Wala Dahar (BWD, ECe 45.4 dS m-1) ecotypes were from moderately saline sites, and Pati Sir (PAS, ECe 52.4 dS m-1) was collected from the highly saline site. The natural population of this species was collected and carefully brought to the laboratory for different structural and functional traits. As a result of high salinity, Na+, Cl-, K+, and Ca2+ content significantly increased at root and shoot level. At root level, some distinctive modifications such as increased sclerification in vascular bundles, enlarged vascular bundles, metaxylem vessels, phloem region, and storage parenchyma (cortex) are pivotal for water storage under extreme arid and osmotic condition. At the stem level, enhanced sclerification in outer cortex and vascular bundles, stem cellular area, cortical proportion, metaxylem and phloem area, and at the leaf level, very prominent structural adaptations were thicker and smaller leaves with increased density of salt glands and trichomes at surface, few and large stomata, reduced cortical and mesophyll parenchyma, and narrow xylem vessels and phloem area represent their non-succulent nature. The ecotype collected from hypersaline environments was better adapted regarding growth traits, ion uptake and excretion, succulence, and phytoremediation traits. More importantly, structural and functional traits such as root length and biomass, accumulation of toxic ions along with K+ in root and shoot, accumulation of Ca2+ in shoot and Mg2+ in root, excretion of toxic ions were the highest in this ecotype. In conclusion, all these alterations strongly favor water conservation, which certainly contributes to ecotypes survival under salt-induced physiological drought.


Naturally adapted salt tolerant plants provide exceptional material for exploring adaptive mechanisms they use to confront high salt concentrations. Cressa cretica is a hypersaline hyperarid desert colonizer, which was previously underexplored. In the present study, we focused on the new insight on relationship among anatomical modifications, salt accumulation and excretion and phytoremediation potential of this rare species.


Assuntos
Álcalis , Solo , Biodegradação Ambiental , Solo/química , Solução Salina , Cloreto de Sódio , Íons , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/fisiologia , Salinidade
9.
Sci Rep ; 13(1): 16361, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773347

RESUMO

This paper presents new data on the salt tolerance and avoidance mechanisms among various groups of halophytes in India. The halophytic flora in general has positive effect of high saline environments on growth and physiology. The coastal area of the Kachchh district in Gujarat includes about 350 km of shoreline along the Gulf of Kachchh. This study presents data on the elemental accumulation mechanisms in soil and halophytic flora (succulent and non-succulents). The halophytes were divided into two groups namely succulent with thick and fleshy leaves and stems as well as non-succulents with thin leaves and stem. The succulent halophytes included species such as Salicornia brachiata, Suaeda fruticosa and Suaeda nudiflora. The non-succulent halophytes include Aeluropus lagopoides and Urochondra setulosa. Plant parts namely leaves (Phylloclade for Salicornia), stems and roots were analyzed during the monsoon season. The results of soil and plant mineral ion contents differed widely across the intertidal zones in the same habitat. Likewise, the intra species have varied in all nutrient levels and salt concentration. The accumulation of elemental concentration was high during the monsoon season in the succulent Salicornia brachiata, especially in leaves that showed Na+ reaching high up to 7.6 meq g-1, whereas Cl- was noted to be 4.34 meq g-1. In the non-succulent halophytes, the accumulation of mineral ion concentration was lower when compared to succulent plants.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/fisiologia , Ecossistema , Solo , Minerais
10.
PLoS One ; 18(8): e0288547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37582102

RESUMO

Saline agriculture may contribute to food production in the face of the declining availability of fresh water and an expanding area of salinized soils worldwide. However, there is currently little known about the biomass and nutrient/antinutrient accumulation response of many edible halophytes to increasing levels of salinity and nitrogen source. To address this, two glass house experiments were carried out. The first to study the shoot biomass, and nutrient accumulation response, measured by ICP-MS analysis, of edible halophyte species, including Mesembryanthemum crystallinum (ice plant), Salsola komarovii (Land seaweed), Enchylaena tomentosa (Ruby Saltbush), Crithmum maritimum (Rock Samphire), Crambe maritima (Sea Kale) and Mertensia maritima (Oyster Plant), under increasing levels of salinity (0 to 800 mM). The second experiment studied the effects of nitrogen source combined with salinity, on levels of oxalate, measured by HPLC, in ice plant and ruby saltbush. Species differences for biomass and sodium (Na), potassium (K), chloride (Cl), nitrogen (N) and phosphorus (P) accumulation were observed across the range of salt treatments (0 to 800mM). Shoot concentrations of the anti-nutrient oxalate decreased significantly in ice plant and ruby saltbush with an increase in the proportion of N provided as NH4+ (up to 100%), while shoot oxalate concentrations in ice plant and ruby saltbush grown in the absence of NaCl were not significantly different to oxalate concentrations in plants treated with 200 mM or 400 mM NaCl. However, the lower shoot oxalate concentrations observed with the increase in NH4+ came with concurrent reductions in shoot biomass. Results suggest that there will need to be a calculated tradeoff between oxalate levels and biomass when growing these plants for commercial purposes.


Assuntos
Plantas Tolerantes a Sal , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Plantas Tolerantes a Sal/fisiologia , Nitrogênio , Salinidade , Sódio , Valor Nutritivo
11.
J Plant Res ; 136(1): 117-137, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36409432

RESUMO

Tolerance mechanisms employed by plants under environmental stresses can protect them against other co-occurring stresses. In this study, the effect of pre-exposure and simultaneous salt treatment on nickel (Ni) toxicity tolerance in one halophyte (L. sativum) and one glycophyte (L. latifolium) Lepidium species in hydroponics was investigated. In order to compare the species independent from their salt and Ni tolerance level, the glycophyte was subjected to lower salt and Ni concentrations and for a shorter period of time than the halophyte. Salt (NaCl) was applied at 50 and 100 mM concentrations and Ni was provided at an equal free Ni2+ activity by adding 100 and 200 µM Ni as single stresses, but 130 and 300 µM Ni for the treatment of its combination with salt in the glycophyte and halophyte, respectively. Temporal analyses of signaling molecules revealed that the halophyte is characteristically different from the glycophyte in that it exhibits a higher constitutive level of nitric oxide and hydrogen peroxide, a longer duration of response to Ni, and its augmentation by salt. In addition to higher biomass and less Ni accumulation in salt-treated plants, the concentrations of free thiol groups, leaf pigments, proline, free and cell wall-bound phenolics contents, and the activity of phenolic metabolizing enzymes were higher in L. latifolium under the combined salt and Ni treatments than under the single Ni stress. In contrast, the biomass and most biochemical parameters of Ni-stressed L. sativum plants were not enhanced by salt treatment but rather decreased. Our findings shed light on cross-tolerance mechanisms in halophytes and uncovered halophyte survival strategies under multiple stresses.


Assuntos
Lepidium , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Plantas Tolerantes a Sal/fisiologia , Níquel/toxicidade , Estresse Fisiológico
12.
BMC Plant Biol ; 22(1): 53, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081916

RESUMO

BACKGROUND: Salinization of soil is an urgent problem that restricts agroforestry production and environmental protection. Substantial accumulation of metal ions or highly alkaline soil alters plant metabolites and may even cause plant death. To explore the differences in the response strategies between Suaeda salsa (S. salsa) and Puccinellia tenuiflora (P. tenuiflora), two main constructive species that survive in saline-alkali soil, their metabolic differences were characterized. RESULT: Metabolomics was conducted to study the role of metabolic differences between S. salsa and P. tenuiflora under saline-alkali stress. A total of 68 significantly different metabolites were identified by GC-MS, including 9 sugars, 13 amino acids, 8 alcohols, and 34 acids. A more detailed analysis indicated that P. tenuiflora utilizes sugars more effectively and may be saline-alkali tolerant via sugar consumption, while S. salsa utilizes mainly amino acids, alcohols, and acids to resist saline-alkali stress. Measurement of phenolic compounds showed that more C6C3C6-compounds accumulated in P. tenuiflora, while more C6C1-compounds, phenolic compounds that can be used as signalling molecules to defend against stress, accumulated in S. salsa. CONCLUSIONS: Our observations suggest that S. salsa resists the toxicity of saline-alkali stress using aboveground organs and that P. tenuiflora eliminates this toxicity via roots. S. salsa has a stronger habitat transformation ability and can provide better habitat for other plants.


Assuntos
Chenopodiaceae/metabolismo , Pradaria , Poaceae/metabolismo , Solo/química , Ácidos/metabolismo , Álcoois/metabolismo , Álcalis , China , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal/fisiologia , Especificidade da Espécie , Estresse Fisiológico
13.
Mol Plant ; 15(1): 45-64, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915209

RESUMO

Abiotic stress tolerance has been weakened during the domestication of all major staple crops. Soil salinity is a major environmental constraint that impacts over half of the world population; however, given the increasing reliance on irrigation and the lack of available freshwater, agriculture in the 21st century will increasingly become saline. Therefore, global food security is critically dependent on the ability of plant breeders to create high-yielding staple crop varieties that will incorporate salinity tolerance traits and account for future climate scenarios. Previously, we have argued that the current agricultural practices and reliance on crops that exclude salt from uptake is counterproductive and environmentally unsustainable, and thus called for a need for a major shift in a breeding paradigm to incorporate some halophytic traits that were present in wild relatives but were lost in modern crops during domestication. In this review, we provide a comprehensive physiological and molecular analysis of the key traits conferring crop halophytism, such as vacuolar Na+ sequestration, ROS desensitization, succulence, metabolic photosynthetic switch, and salt deposition in trichomes, and discuss the strategies for incorporating them into elite germplasm, to address a pressing issue of boosting plant salinity tolerance.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Melhoramento Vegetal/métodos , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Agricultura , Abastecimento de Alimentos
14.
Plant Mol Biol ; 108(1-2): 127-143, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34950990

RESUMO

KEY MESSAGE: Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.


Assuntos
Plumbaginaceae/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Perfilação da Expressão Gênica , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plumbaginaceae/fisiologia , Proteoma , Reação em Cadeia da Polimerase em Tempo Real , Plantas Tolerantes a Sal/fisiologia , Sódio/metabolismo
15.
Microbiol Spectr ; 9(2): e0076721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704793

RESUMO

Salinity is an important abiotic stress affecting plant growth. We have known that plants can recruit beneficial microbes from the surrounding soil. However, the ecological functions of the core microbiome in salt-tolerant plants, together with their driving factors, remain largely unexplored. Here, we employed both amplicon and shotgun metagenomic sequencing to investigate the microbiome and function signatures of bulk soil and rhizocompartment samples from three salt-tolerant plants (legumes Glycine soja and Sesbania cannabina and nonlegume Sorghum bicolor). Strong filtration effects for microbes and functional genes were found in the rhizocompartments following a spatial gradient. The dominant bacteria belonged to Ensifer for legumes and Bacillus for S. bicolor. Although different salt-tolerant plants harbored distinct bacterial communities, they all enriched genes involved in cell motility, Na+ transport, and plant growth-promoting function (e.g., nitrogen fixation and phosphate solubilization) in rhizoplane soils, implying that the microbiome assembly of salt-tolerant plants might depend on the ecological functions of microbes rather than microbial taxa. Moreover, three metagenome-assembled genomes affiliated to Ensifer were obtained, and their genetic basis for salt stress alleviation were predicted. Soil pH, electrical conductivity, and total nitrogen were the most important driving factors for explaining the above microbial and functional gene selection. Correspondingly, the growth of an endophyte, Ensifer meliloti CL09, was enhanced by providing root exudates, suggesting that root exudates might be one of factors in the selection of rhizosphere and endosphere microbiota. Overall, this study reveals the ecological functions of the populations inhabiting the root of salt-tolerant plants. IMPORTANCE Salinity is an important but little-studied abiotic stressor affecting plant growth. Although several previous reports have examined salt-tolerant plant microbial communities, we still lack a comprehensive understanding about the functional characteristics and genomic information of this population. The results of this study revealed the root-enriched and -depleted bacterial groups, and found three salt-tolerant plants harbored different bacterial populations. The prediction of three metagenome-assembled genomes confirmed the critical role of root dominant species in helping plants tolerate salt stress. Further analysis indicated that plants enriched microbiome from soil according to their ecological functions but not microbial taxa. This highlights the importance of microbial function in enhancing plant adaptability to saline soil and implies that we should pay more attention to microbial function and not only to taxonomic information. Ultimately, these results provide insight for future agriculture using the various functions of microorganisms on the saline soil.


Assuntos
Microbiota/fisiologia , Estresse Salino , Plantas Tolerantes a Sal/microbiologia , Plantas Tolerantes a Sal/fisiologia , Agricultura , Bactérias/classificação , Bactérias/genética , Biodiversidade , Metagenômica , Microbiota/genética , Nitrogênio , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
16.
BMC Plant Biol ; 21(1): 488, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696731

RESUMO

BACKGROUND: Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response at the physiological and molecular level of different Broccoli (Brassica oleracea L. var. Italica Plenck) cultivars that were previously characterized in field and greenhouse trials as salt sensitive or salt tolerant. This study aimed to identify functional and molecular traits capable of predicting the ability of uncharacterized lines to cope with salt stress. For this purpose, this study measured different physiological parameters, hormones and metabolites under control and salt stress conditions. RESULTS: This study found significant differences among cultivars for stomatal conductance, transpiration, methionine, proline, threonine, abscisic acid, jasmonic acid and indolacetic acid. Salt tolerant cultivars were shown to accumulate less sodium and potassium in leaves and have a lower sodium to potassium ratio under salt stress. Analysis of primary metabolites indicated that salt tolerant cultivars have higher concentrations of several intermediates of the Krebs cycle and the substrates of some anaplerotic reactions. CONCLUSIONS: This study has found that the energetic status of the plant, the sodium extrusion and the proline content are the limiting factors for broccoli tolerance to salt stress. Our results establish physiological and molecular traits useful as distinctive markers to predict salt tolerance in Broccoli or to design novel biotechnological or breeding strategies for improving broccoli tolerance to salt stress.


Assuntos
Brassica/genética , Brassica/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino/genética , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Genes de Plantas , Variação Genética , Genótipo , Prolina/metabolismo , Cloreto de Sódio/metabolismo
17.
BMC Plant Biol ; 21(1): 284, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157974

RESUMO

BACKGROUND: Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. RESULTS: The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. CONCLUSION: These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plumbaginaceae/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Clonagem Molecular , Genes de Plantas/fisiologia , Hibridização In Situ , Pressão Osmótica , Proteínas de Plantas/fisiologia , Plumbaginaceae/metabolismo , Plumbaginaceae/fisiologia , Reação em Cadeia da Polimerase , Estresse Salino , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Técnicas do Sistema de Duplo-Híbrido
18.
Plant Signal Behav ; 16(9): 1913556, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34184613

RESUMO

Serine proteases are a class of versatile proteolytic enzymes. They are necessary for protein catabolism, intracellular amino acid turnover, and regulation of proteins involved in diverse molecular and cellular processes across taxa. In this study, bioinformatic analyses revealed a significantly large number of serine proteases in the halotolerant cyanobacterium Halothece sp. PCC7418 (hereafter referred to as Halothece 7418) compared to the model freshwater cyanobacterium Synechococcus elongatus PCC7942 (hereafter referred to as S. elongatus 7942). The cyanobacterial serine proteases are likely derived from different linages since no conserved motifs were detected. The presence of highly diverse serine proteases in Halothece 7418 implicated an evolutionary-mediated modification of several proteases, which may play numerous physiological roles. We also examined the gene expression patterns of 34 serine protease encoding genes in Halothece 7418 exposed to salt stress. Our results revealed that several serine protease genes were drastically up-regulated under salt with high concentration but remained unchanged under salt with low concentration. All four clp genes (H1996, H1997, H0950, and H3375) and H3553 gene (which encodes a putative HtrA protease) were significantly induced upon salt stress. These responses support the roles of the housekeeping pathways in both the degradation of damaged proteins induced by salt stress and regulation of proteins involved in the molecular recovery from salt stress. Since serine proteases share several biochemical features and physiological functions, the results from this study provide an insight into diversification of serine proteases in cyanobacteria. Further, these results will increase our understanding of several mechanisms at the subcellular level.


Assuntos
Adaptação Fisiológica/genética , Cianobactérias/genética , Genes de Plantas , Filogenia , Serina Proteases/genética , Synechococcus/genética , Ativação Transcricional/genética , Regulação da Expressão Gênica de Plantas , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia
19.
J Plant Physiol ; 262: 153448, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058643

RESUMO

The halophyte ice plant (Mesembryanthemum crystallinum) converts its mode of photosynthesis from C3 to crassulacean acid metabolism (CAM) during severe water stress. During the transition to CAM, the plant induces CAM-related genes and changes its diurnal stomatal behavior to take up CO2 efficiently at night. However, limited information concerning this signaling exists. Here, we investigated the changes in the diurnal stomatal behavior of M. crystallinum during its shift in photosynthesis using a detached epidermis. M. crystallinum plants grown under C3 conditions opened their stomata during the day and closed them at night. However, CAM-induced plants closed their stomata during the day and opened them at night. Quantitative analysis of endogenous phytohormones revealed that trans-zeatin levels were high in CAM-induced plants. In contrast, the levels of jasmonic acid (JA) and JA-isoleucine were severely reduced in CAM-induced plants, specifically at night. CAM induction did not alter the levels of abscisic acid; however, inhibitors of abscisic acid synthesis suppressed CAM-induced stomatal closure. These results indicate that M. crystallinum regulates the diurnal balance of cytokinin and JA during CAM transition to alter stomatal behavior.


Assuntos
Metabolismo Ácido das Crassuláceas , Mesembryanthemum/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Plantas Tolerantes a Sal/metabolismo , Ácido Abscísico/metabolismo , Ritmo Circadiano , Metabolismo Ácido das Crassuláceas/fisiologia , Ciclopentanos/metabolismo , Citocininas/metabolismo , Citocininas/fisiologia , Regulação da Expressão Gênica de Plantas , Mesembryanthemum/fisiologia , Oxilipinas/metabolismo , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plantas Tolerantes a Sal/fisiologia
20.
Plant Signal Behav ; 16(7): 1918885, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33904377

RESUMO

WRKY is one of the largest families of transcription factors in plants. It not only regulates plant growth and development but also participates in the regulation of plant defense against biological and abiotic stresses. In this study, research was aimed to overexpress WRKY39 gene of P. trichocarpa (PtWRKY39) and to identify its important role played in drought and saline-alkali tolerance in tobacco model plant. Under the control of CaMV35S promoter, the overexpression of PtWRKY39 gene was increased to more than 10 times in T3 generation of transgenic tobacco plant. The drought resistance and saline-alkali tolerance were evidenced in overexpressed PtWRKY39 transgenic lines at germination/seedling stage. The overall germination rate, fresh weight, and chlorophyll contents of overexpressed lines were significantly higher while the level of malondialdehyde was significantly lower in PtWRKY39 transgenic lines than that of wild type (WT) lines. The content of H2O2 in leaves was detected by the 3, 3-Diaminobenzidine method showed that the overexpression of PtWRKY39 gene could reduce the accumulation of ROS (mainly H2O2) and enhance salt-alkali tolerance. Phenotypic analysis at 7-leaf pot transgenic seedlings stage treated with the saline-alkali soil extract and salt NaCl under root irrigation stress, revealed growth of the transgenic line was significantly higher than that of WT. This work concludes that overexpression of PtWRKY39 gene can improve the regulation of drought resistance and saline-alkali tolerance of transgenic plants during seed germination and vegetative growth.


Assuntos
Secas , Nicotiana/genética , Populus/genética , Plantas Tolerantes a Sal/genética , Fatores de Transcrição/genética , Clonagem Molecular , Genes de Plantas , Concentração de Íons de Hidrogênio , Plantas Geneticamente Modificadas , Populus/fisiologia , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/fisiologia , Nicotiana/fisiologia , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...