RESUMO
Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4(+), but not CD8(+), T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection.
Assuntos
Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium yoelii/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Imunização , Malária/imunologia , Malária/mortalidade , Malária/parasitologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Masculino , Merozoítos/química , Merozoítos/crescimento & desenvolvimento , Merozoítos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium yoelii/química , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Esporozoítos/química , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologiaRESUMO
We characterized the immunogenicity of the hybrid Ty-virus-like carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein of Plasmodium yoelii (TyCS-VLP), a rodent malaria parasite. Balb/c mice were immunized with hybrid TyCS-VLP, and their CS-specific CD8(+) T cell response was quantitatively evaluated with the ELISPOT assay, based on the enumeration of epitope specific gamma-interferon secreting CD8(+) T cell. A single immunization with the TyCS-VLP by a variety of routes and doses indicated that the maximal response occurred in mice, which were immunized with 50 micrograms of these particles, administered via intramuscular. Combined immunization of mice with this TyCS-VLP followed by recombinant vaccinia virus expressing the entire P. yoelii CS protein (VacPyCS) or irradiated sporozoites, induced high levels of IFN-gamma-producing cells. The immunization regime, priming with TyCS-VLP and boosting with VacPyCS generated a potent protective immune response, which strongly inhibited P. yoelii liver stages development and protected 62% of the mice against a subsequent live P. yoelii sporozoite challenge.