Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.540
Filtrar
1.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805830

RESUMO

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Assuntos
Monitoramento Ambiental , Água Doce , Ácidos Ftálicos , Plastificantes , Poluentes Químicos da Água , Qualidade da Água , Ácidos Ftálicos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Água Doce/química , Monitoramento Ambiental/métodos , Plastificantes/análise , Plastificantes/toxicidade , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Ésteres , China , Animais , Dibutilftalato/toxicidade
2.
J Hazard Mater ; 472: 134593, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38749249

RESUMO

Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.


Assuntos
Desnitrificação , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Desnitrificação/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Tibet , Microplásticos/toxicidade , Plastificantes/toxicidade , Plastificantes/metabolismo , Microbiota/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Metais Pesados/toxicidade
3.
Waste Manag ; 183: 21-31, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38714119

RESUMO

Poly(vinyl chloride) (PVC) is one of the most widely used plastics. However, a major challenge in recycling PVC is that there is no economical method to separate and remove its toxic phthalate plasticizers. This research made a breakthrough by extracting PVC with liquefied dimethyl ether (DME) and successfully separating the plasticizer components. Nearly all (97.1 %) of the di(2-ethylhexyl) phthalate plasticizer was extracted within 30 min by passing liquefied DME (285 g) through PVC at 25 °C. The compatibility of PVC with organic solvents, including liquefied DME, was derived theoretically from their Hansen solubility parameters (HSP), and actual dissolution experiments were conducted to determine the optimal PVC solvents. A liquefied DME mixture was used to dissolve PVC, and the extract was diluted with ethanol to precipitate the dissolved PVC. We demonstrated that liquefied DME is a promising method for producing high quality recycled products and that the process retains the fundamental properties of plasticizers and PVC without inducing degradation or depolymerization. Because of its low boiling point, DME can be easily separated from the solute after extraction, allowing for efficient reuse of the solvent, extracted plasticizer, and PVC. DME does not require heat and produces little harmful wastewater, which significantly reduces the energy consumption of the plasticizer additive separation process.


Assuntos
Dietilexilftalato , Éteres Metílicos , Plastificantes , Cloreto de Polivinila , Reciclagem , Cloreto de Polivinila/química , Dietilexilftalato/química , Reciclagem/métodos , Éteres Metílicos/química , Éteres Metílicos/análise , Solventes/química , Ácidos Ftálicos/química
4.
Environ Pollut ; 355: 124217, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797346

RESUMO

Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.


Assuntos
Biodegradação Ambiental , Biofilmes , Ácidos Ftálicos , Plastificantes , Espécies Reativas de Oxigênio , Plastificantes/toxicidade , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Rhodococcus/metabolismo , Rhodococcus/efeitos dos fármacos , Cloreto de Polivinila/toxicidade , Dietilexilftalato/toxicidade
5.
J Hazard Mater ; 473: 134554, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759407

RESUMO

The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration. By contrast, 50 mg/L BPA exhibited the strongest inhibition on methane production. Physicochemical analysis showed plasticizers inhibited the metabolism efficiency of soluble polysaccharide and volatile fatty acids. Microbial communities analyses suggested that plasticizers inhibited the direct interspecies electron transfer participators of methanogenic archaea (especially Methanosarcina) and syntrophic bacteria. Furthermore, plasticizers inhibited the methane metabolisms, key coenzymes (CoB, CoM, CoF420 and methanofuran) biosynthesis and the metabolisms of major organic matters. This study shed light on the effects of plasticizers on AD performance and provided new insights for assessing the influences of plasticizers or plastic additives on the disposal of organic wastes.


Assuntos
Compostos Benzidrílicos , Metano , Fenóis , Plastificantes , Anaerobiose , Plastificantes/metabolismo , Metano/metabolismo , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Reatores Biológicos , Eliminação de Resíduos/métodos , Ácidos Ftálicos/metabolismo , Alimentos , Perda e Desperdício de Alimentos
6.
Arch Toxicol ; 98(7): 2153-2171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806720

RESUMO

Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.


Assuntos
Simulação por Computador , Queratinócitos , Ácidos Ftálicos , Humanos , Queratinócitos/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Células HaCaT , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Relação Quantitativa Estrutura-Atividade , Plastificantes/toxicidade , Células THP-1 , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Linhagem Celular
7.
Int J Biol Macromol ; 270(Pt 1): 132392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754681

RESUMO

The most likely materials for use in packaging are plastics. A lot of synthetic polymers are harming the environment. A plasticizer is required for all polymers to improve their characteristics and workability. The plasticizers come in liquid form and are also derived from fossil fuels, which are harmful to the environment. Producing functional and affordable biopolymer for packaging applications is a difficult task nowadays. The preparation of biofilm for packaging using biopolymer and bioplasticizer is the main aim of this work. The biopolymer poly L-lactic acid (PLA) is used, and the bio plasticizer is extracted from Pedalium murex plant. Chemical and mechanical methods are used to extract the plasticizer. Plasticization of polylactic acid biopolymer was done using the extracted plasticizer at additions of 1 %, 2 %, 3 %, 4 %, and 5 %. FT-IR spectroscopy, X-ray diffraction spectroscopy, and surface roughness values are used to characterise the prepared biofilms. Scanning electron spectroscopy pictures are utilised to evaluate the morphological orientation of the biofilms. Strawberries packed with biofilms are used to evaluate the barrier properties of biofilms using UV spectroscopy analysis. Thermal degradation behaviour is investigated using thermo gravimetric analysis. We examined the mechanical characteristics, such as tensile strength, elongation modulus, and elongation break percentage. The plasticizing effect of the plasticizer raises the elongation break percentage while decreasing the tensile strength and modulus. For 2 % plasticizer addition the elongation break increases and the tensile not much affected. To demonstrate biodegradability and microbial resistance, the soil degradation behaviour and antimicrobial activities were examined.


Assuntos
Biofilmes , Embalagem de Alimentos , Plastificantes , Poliésteres , Poliésteres/química , Plastificantes/química , Embalagem de Alimentos/métodos , Biofilmes/efeitos dos fármacos , Frutas/química , Biopolímeros/química , Biopolímeros/farmacologia , Resistência à Tração , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Biol Macromol ; 269(Pt 2): 132162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723825

RESUMO

Polylactic acid (PLA) attains much attention because of its biodegradability, biocompatibility, and high strength, but its further application was remarkably hindered by its brittleness. In order to improve the toughness of PLA, a biodegradable composite was prepared by blending ductile polycaprolactone (PCL), stiff microcrystalline cellulose (MCC), and green plasticizer tributyl citrate (TBC) with PLA by melting extrusion. The physicochemical properties and microstructure of PLA composites were thoroughly investigated using FTIR, TGA, DSC, XRD, melting rheology, optical transmittance, 3d printing, tensile tests, and SEM. The tensile tests results show that introduction of TBC exhibited a remarkable improvement effect in the elongation at break of PLA/PCL/MCC (PPM) composite, increasing from 2.9 % of PPM to up to 30 % of PPM/6TBC and PPM/8TBC. Noticeably, the strength of PPM/TBC composites (at least 33.1 MPa) was enhanced compared with that of PPM (28.2 MPa). The plasticization of TBC, enhancing the compatibility of composites, and reinforcing effect of MCC were identified as pivotal factors in toughening and reinforcing PLA. Furthermore, it is observed that the incorporation of TBC contributed to enhanced thermal stability, crystallinity, and rheology property of composites. This research supplies a novel approach to bolstering the toughness of PLA and broaden its potential applications.


Assuntos
Plastificantes , Poliésteres , Impressão Tridimensional , Poliésteres/química , Plastificantes/química , Celulose/química , Resistência à Tração , Reologia
9.
J Hazard Mater ; 472: 134557, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735188

RESUMO

Di (2-ethylhexyl) phthalate (DEHP), a toxic phthalate ester (PAE) plasticizer, is often detected in marine sediment and biota. Our understanding of DEHP-degrading marine bacteria and the associated genetic mechanisms is limited. This study established a synthetic bacterial consortium (A02) consisting of three marine bacteria (OR05, OR16, and OR21). Consortium A02 outperformed the individual strains in DEHP degradation. Investigations into the degradation of DEHP intermediates revealed that OR05 and OR16 likely contributed to enhanced DEHP degradation by Consortium A02 via the utilization of DEHP intermediates, such as protocatechuic acid and mono (ethylhexyl) phthalate, with OR21 as the key DEHP degrader. A pathway of DEHP degradation by Consortium A02 was predicted based on genome analysis and experimental degradation. Bioaugmentation with Consortium A02 led to 80% DEHP degradation in 26 days in saline sediment (100 mg/kg), surpassing the 53% degradation by indigenous microbes, indicating the potential of A02 for treating DEHP-contaminated sediments. Meanwhile, bioaugmentation notably changed the bacterial community, with the exclusive presence of certain bacterial genera in the A02 bioaugmented microcosms, and was predicted to result in a more dynamic and active sediment bacterial community. This study contributes to the limited literature on DEHP degradation by marine bacteria and their associated genes.


Assuntos
Bactérias , Biodegradação Ambiental , Dietilexilftalato , Sedimentos Geológicos , Consórcios Microbianos , Poluentes Químicos da Água , Sedimentos Geológicos/microbiologia , Dietilexilftalato/metabolismo , Bactérias/metabolismo , Bactérias/genética , Consórcios Microbianos/genética , Poluentes Químicos da Água/metabolismo , Plastificantes/metabolismo , Genoma Bacteriano
10.
Sci Rep ; 14(1): 11161, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750054

RESUMO

Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.


Assuntos
Plásticos Biodegradáveis , Óleo de Rícino , Quitosana , Plastificantes , Amido , Quitosana/química , Quitosana/farmacologia , Óleo de Rícino/química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Plastificantes/química , Amido/química , Animais , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Mariposas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
11.
Arch Microbiol ; 206(6): 254, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727835

RESUMO

Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.


Assuntos
Biodegradação Ambiental , Ácidos Ftálicos , Sphingomonadaceae , Ácidos Ftálicos/metabolismo , Sphingomonadaceae/metabolismo , Sphingomonadaceae/genética , Dibutilftalato/metabolismo , Plastificantes/metabolismo , Cromatografia Líquida de Alta Pressão , Hidroxibenzoatos/metabolismo
12.
Sci Total Environ ; 932: 172984, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710392

RESUMO

The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.07 to 3794.08 ng/g dw (mean = 514.35 ng/g dw). The PAE pollution levels in the five shellfish species were as follows: Ostreidae (mean = 1064.12 ng/g dw) > Mytilus edulis (mean = 509.88 ng/g dw) > Babylonia areolate (mean = 458.14 ng/g dw) > Mactra chinensis (mean = 378.90 ng/g dw) > Haliotis diversicolor (mean = 335.28 ng/g dw). Dimethyl phthalate (DMP, mean = 69.85 ng/g dw), diisobutyl phthalate (DIBP, mean = 41.39 ng/g dw), dibutyl phthalate (DBP, mean = 130.91 ng/g dw), and di(2-ethylhexyl) phthalate (DEHP, mean = 226.23 ng/g dw) were the most abundant congeners. Notably, DEHP constituted the most predominant fraction (43.98 %) of the 13 PAEs detected in all shellfish from the PRD. Principal component analysis indicated that industrial and domestic emissions served as main sources for the PAE pollution in shellfish from the PRD. It was estimated that the daily intake of PAEs via shellfish consumption among adults and children ranged from 0.004 to 1.27 µg/kgbw/day, without obvious non-cancer risks (< 0.034), but the cancer risks raised some alarm (2.0 × 10-9-1.4 × 10-5). These findings highlight the necessity of focusing on marine environmental pollutants and emphasize the importance of ongoing monitoring of PAE contamination in seafood.


Assuntos
Ácidos Ftálicos , Plastificantes , Frutos do Mar , Poluentes Químicos da Água , Ácidos Ftálicos/análise , Plastificantes/análise , Frutos do Mar/análise , China , Animais , Humanos , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental , Ésteres/análise , Contaminação de Alimentos/análise
13.
Ecotoxicol Environ Saf ; 277: 116394, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663197

RESUMO

Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of the plasticizer di-2-ethylhexyl phthalic acid (DEHP), and studies have shown that MEHP causes serious reproductive effects. However, its exact mechanisms of action remain elusive. In this study, we aimed to investigate the reproductive effects of MEHP and preliminarily explore its underlying molecular mechanisms. We found that TM3 cells gradually secreted less testosterone and intracellular free cholesterol with increasing MEHP exposure. MEHP exposure inhibited lipophagy and the Sirt1/Foxo1/Rab7 signaling pathway in TM3 cells, causing aberrant accumulation of intracellular lipid droplets. Addition of the Sirt1 agonist SRT1720 and Rab7 agonist ML-098 alleviated the inhibition of lipophagy and increased free cholesterol and testosterone contents in TM3 cells. SRT1720 alleviated the inhibitory effect of MEHP on the Sirt1/Foxo1/Rab7 signaling pathway, whereas ML-098 only alleviated the inhibition of Rab7 protein expression by MEHP and had no effect on Sirt1 and Foxo1 protein expression. This suggests that MEHP inhibits lipophagy in TM3 cells by suppressing the Sirt1/Foxo1/Rab7 signaling pathway, ultimately leading to a further decrease in cellular testosterone secretion. This study improves our current understanding of the toxicity and molecular mechanisms of action of MEHP and provides new insights into the reproductive effects of phthalic acid esters.


Assuntos
Dietilexilftalato , Transdução de Sinais , Sirtuína 1 , Testosterona , proteínas de unión al GTP Rab7 , Sirtuína 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Linhagem Celular , Proteínas rab de Ligação ao GTP/metabolismo , Proteína Forkhead Box O1/metabolismo , Plastificantes/toxicidade , Colesterol
14.
Int J Biol Macromol ; 268(Pt 1): 131603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626835

RESUMO

The thermoplastic starch with glycerol is easy to retrograde and sensitive to hygroscopicity. In this study, branched 1,4-butanediol citrate oligomers with different molecular weights (P1, P2, and P3) are synthesized, and then mixed with glycerol (G) as the co-plasticizers to prepare thermoplastic starch (CS/PG). The results show that the molecular weight and branching degree of the branched 1,4-butanediol citrate oligomers increase as reaction time prolongs. Compared with glycerol plasticized starch, the thermoplastic starch films with branched 1,4-butanediol citrate oligomers/glycerol (10 wt%/20 wt%) have a better toughness, transmittance, and aging resistance, and have a lower crystallinity, hygroscopicity, and thermal stability. The toughness, transmittance, and aging resistance of CS/PG films are positively correlated with the molecular weight of the branched 1,4-butanediol citrate oligomers. These are due to the fact that the branched 1,4-butanediol citrate oligomer with a high molecular weight could form a stronger hydrogen bond and the more stable cross-linked structure with starch chains than that with a lower molecular weight. The elongation at break of CS/P3G film stored for 3 and 30 d are 98.0 % and 88.1 %, respectively. The mixture of branched butanediol citrate oligomers and glycerol, especially P3/G, has a potential application in the preparation of thermoplastic starch.


Assuntos
Butileno Glicóis , Glicerol , Peso Molecular , Plastificantes , Amido , Amido/química , Glicerol/química , Butileno Glicóis/química , Plastificantes/química , Temperatura , Citratos/química , Plásticos/química
15.
Environ Toxicol Pharmacol ; 108: 104457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677495

RESUMO

Phthalate esters (PAEs) are widely used as plasticizers to enhance the flexibility and durability of different consumer products, including clothing. However, concerns have been raised about the potential adverse health effects associated with the presence of phthalates in textiles, such as endocrine disruption, reproductive toxicity and potential carcinogenicity. Based on examination of more than 120 published articles, this paper presents a comprehensive review of studies concerning the phthalate content in clothing and other textile products, with special emphasis on those conducted in the last decade (2014-2023). The types and role of PAEs as plasticizers, the relevant legislation in different countries (emphasizing the importance of monitoring PAE levels in clothing to protect consumer health) and the analytical methods used for PAE determination are critically evaluated. The review also discusses the models used to evaluate exposure to PAEs and the associated health risks. Finally, the study limitations and challenges related to determining the phthalate contents of textile products are considered.


Assuntos
Vestuário , Ésteres , Ácidos Ftálicos , Plastificantes , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Humanos , Plastificantes/análise , Plastificantes/toxicidade , Ésteres/análise , Têxteis/análise , Animais
16.
Chemosphere ; 358: 142172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685322

RESUMO

In excess of 13,000 chemicals are added to plastics ('additives') to improve performance, durability, and production of plastic products. They are categorized into numerous chemical classes including flame retardants, light stabilizers, antioxidants, and plasticizers. While research on plastic additives in the marine environment has increased over the past decade, there is a lack of methodological standardization. To direct future measurement of plastic additives, we compiled a first-of-its-kind dataset of literature assessing plastic additives in marine environments, delineated by sample type (plastic debris, seawater, sediment, biota). Using this dataset, we performed a meta-analysis to summarize the state of the science. Currently, our dataset includes 217 publications published between 1978 and May 2023. The majority of publications analyzed plastic additives in biota collected from Europe and Asia. Analyses concentrated on plasticizers, brominated flame retardants, and bisphenols. Common sample preparation techniques included Solvent - Agitation extraction for plastic, sediment, and biota samples, and Solid Phase Extraction for seawater samples with dichloromethane and solvent mixtures including dichloromethane as the organic extraction solvent. Finally, most analyses were performed utilizing gas chromatography/mass spectrometry. There are a variety of data gaps illuminated by this meta-analysis, most notably the small number of compounds that have been targeted for detection compared to the large number of additives used in plastic production. The provided dataset facilitates future investigation of trends in plastic additive concentration data in the marine environment (allowing for comparison to toxicity thresholds) and acts as a starting point for optimizing and harmonizing plastic additive analytical methods.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Plásticos , Poluentes Químicos da Água , Plásticos/análise , Poluentes Químicos da Água/análise , Retardadores de Chama/análise , Monitoramento Ambiental/métodos , Oceanos e Mares , Água do Mar/química , Plastificantes/análise , Sedimentos Geológicos/química
17.
Chemosphere ; 356: 141922, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593956

RESUMO

The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.


Assuntos
Dietilexilftalato , Estresse do Retículo Endoplasmático , Plastificantes , Dietilexilftalato/toxicidade , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Plastificantes/toxicidade , Animais , Poluentes Ambientais/toxicidade , Estresse Oxidativo/efeitos dos fármacos
18.
Int J Hyg Environ Health ; 259: 114378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631089

RESUMO

Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.


Assuntos
Monitoramento Biológico , Poluentes Ambientais , Ácidos Ftálicos , Plastificantes , Humanos , Ácidos Ftálicos/urina , Plastificantes/análise , Europa (Continente) , Poluentes Ambientais/urina , Adolescente , Criança , Exposição Ambiental/análise , Masculino , Medição de Risco , Feminino , Adulto , Monitoramento Ambiental/métodos
19.
Environ Sci Technol ; 58(18): 7986-7997, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657129

RESUMO

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Retardadores de Chama , Compostos Organofosforados , Plastificantes , Retardadores de Chama/análise , Plastificantes/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , China , Compostos Organofosforados/análise , Monitoramento Ambiental , Humanos , Poluentes Atmosféricos/análise
20.
Environ Toxicol Pharmacol ; 108: 104456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657882

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.


Assuntos
Apoptose , Dietilexilftalato , Homeostase , Plastificantes , Poluentes Químicos da Água , Dietilexilftalato/toxicidade , Apoptose/efeitos dos fármacos , Animais , Plastificantes/toxicidade , Poluentes Químicos da Água/toxicidade , Homeostase/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...