Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.455
Filtrar
1.
Phytomedicine ; 130: 155655, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38838636

RESUMO

BACKGROUND: The study of cardiotoxicity of drugs has become an important part of clinical safety evaluation of drugs. It is commonly known that podophyllotoxin (PPT) and its many derivatives and congeners are broad-spectrum pharmacologically active substances. Clinical cardiotoxicity of PPT and its derivatives has been raised, basic research on the mechanism of cardiotoxicity remains insufficient. PURPOSE: In present study, our group's innovative concept of toxicological evidence chain (TEC) was applied to reveal the cardiac toxicity mechanism of PPT by targeted metabolomics, TMT-based quantitative proteomics and western blot. METHODS: The injury phenotype evidence (IPE) acquired from the toxicity manifestations, such as weight and behavior observation of Sprague-Dawley rat. The damage to rat hearts were assessed through histopathological examination and myocardial enzymes levels, which were defined as Adverse Outcomes Evidence (AOE). The damage to rat hearts was assessed through histopathological examination and myocardial enzyme levels, which were defined as evidence of adverse outcomes.Overall measurements of targeted metabolomics based on energy metabolism and TMT-based quantitative proteomics were obtained after exposure to PPT to acquire the Toxic Event Evidence (TEE). The mechanism of cardiac toxicity was speculated based on the integrated analysis of targeted metabolomics and TMT-based quantitative proteomics, which was verified by western blot. RESULTS: The results indicated that exposure to PPT could result in significant elevation of myocardial enzymes and pathological alterations in rat hearts. In addition, we found that PPT caused disorders in cardiac energy metabolism, characterized by a decrease in energy metabolism fuels. TMT-based quantitative proteomics revealed that the PPAR (Peroxisome proliferators-activated receptor) signaling pathway needs further study. It is worth noting that PPT may suppress the expression of SIRT1, subsequently inhibiting AMPK, decreasing the expression of PGC-1α, PPARα and PPARγ. This results in disorders of glucose oxidation, glycolysis and ketone body metabolism. Additionally, the increase in the expression of p-IKK and p-IκBα, leads to the nuclear translocation of NF-κB p65 from the cytosol, thus triggering inflammation. CONCLUSION: This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of cardiotoxicity,suggesting that PPT induced disorders of energy metabolism and inflammation via SIRT1/PPAR/NF-κB axis, potentially contributing to cardiac injury.


Assuntos
NF-kappa B , Podofilotoxina , Sirtuína 1 , Animais , Masculino , Ratos , Cardiotoxicidade , Coração/efeitos dos fármacos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/metabolismo , Metabolômica , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Proteômica , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892135

RESUMO

Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.


Assuntos
Células HaCaT , Queratinócitos , Simulação de Acoplamento Molecular , Podofilotoxina , Tubulina (Proteína) , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Corantes Fluorescentes/química , Sítios de Ligação , Estresse do Retículo Endoplasmático/efeitos dos fármacos
3.
Ecotoxicol Environ Saf ; 280: 116548, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850705

RESUMO

Podophyllotoxin (PPT) is a lignan derived from the roots and stems of the Podophyllum plant. However, its enterotoxicity restricts its clinical application. The underlying mechanisms by which PPT exerts its action remain largely elusive. This study aimed to evaluate the molecular mechanisms underlying PPT-induced enterotoxicity utilizing the concept of toxicological evidence chain. Changes in body weight, behavior, and histopathological and biochemical markers in rats were observed. Additionally, microbiome, metabolome, and transcriptome analyses were integrated to identify potential microorganisms, metabolic markers, and major pathways using a co-occurrence network. Our findings suggested that PPT induced pathological changes in rats, including weight loss, diarrhea, and inflammation accompanied by increased levels of IFN-γ, IL-5, IL-6, GRO/KC, and IL-12p70. The decrease in butyrate levels in the PPT group may be related to the enrichment of Firmicutes. The reduction of butyrate levels may impair the expression of PPARγ, subsequently promoting Escherichia-Shigella proliferation. Additionally, the suppression of PPARs pathway may result in the increased production of inflammatory factors, contributing to enterotoxicity. This study offers a novel understanding of the molecular mechanisms underlying PPT-induced enterotoxicity, making a significant contribution to developing strategies to mitigate PPT toxicity and prevent associated diseases.


Assuntos
Podofilotoxina , Animais , Podofilotoxina/toxicidade , Ratos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR gama/metabolismo , Microbiota/efeitos dos fármacos
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731850

RESUMO

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Assuntos
Ciclo Celular , Podofilotoxina , Proteômica , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteômica/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
5.
BMC Cancer ; 24(1): 504, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644473

RESUMO

BACKGROUND: Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration. METHODS: The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line. After subcutaneous inoculation of H128-Mut into nude mice, H128-LM and H128-BPM (brain parenchymal metastasis) cell lines were primarily cultured from LM and BPM tissues individually, and employed to in vitro drug testing. The SCLC-LM mouse model was established by inoculating H128-LM into nude mice via carotid artery and subjected to in vivo drug testing. RNA-seq and immunoblotting were conducted to uncover the molecular targets for LM. RESULTS: The SCLC-LM mouse model was successfully established, confirmed by in vivo live imaging and histological examination. The upregulated genes included EZH2, SLC44A4, VEGFA, etc. in both BPM and LM cells, while SLC44A4 was particularly upregulated in LM cells. When combined with PROTAC EZH2 degrader-1, the drug sensitivity of cisplatin, etoposide (VP16), and teniposide (VM26) for H128-LM was significantly increased in vitro. The in vivo drug trials with SCLC-LM mouse model demonstrated that PROTAC EZH2 degrader-1 plus VM26 or cisplatin/ VP16 inhibited H128-LM tumour significantly compared to VM26 or cisplatin/ VP16 alone (P < 0.01). CONCLUSION: The SCLC-LM model effectively simulates the pathophysiological process of SCLC metastasis to the leptomeninges. PROTAC EZH2 degrader-1 overcomes chemoresistance in SCLC, suggesting its potential therapeutic value for SCLC LM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Camundongos Nus , Podofilotoxina , Carcinoma de Pequenas Células do Pulmão , Animais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Camundongos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/uso terapêutico , Linhagem Celular Tumoral , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Proteólise/efeitos dos fármacos
6.
Chem Biodivers ; 21(7): e202400929, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661022

RESUMO

In order to explore novel natural product-based insecticidal agent, two important intermediates (2 and 3) and 4-acyloxy-2'-bromo-6'-chloropodophyllotoxin derivatives (4 a-f and 5 a-f) were designed and prepared, and their structures were confirmed by 1H-NMR, 13C NMR, HRMS, ESI-MS, optical rotation and melting point (mp). The stereochemical configuration of compound 4 b was unambiguously confirmed by single-crystal X-ray diffraction. Moreover, we evaluated the insecticidal activity of target compounds 4 a-f and 5 a-f against a serious agricultural pest of Mythimna separata by using the leaf-dipping method. Among all tested compounds, compounds 4 d, 5 d and 5 f exhibited stronger insecticidal activity with a final mortality rate exceeding 60 %. Especially compound 5 d exhibited the best insecticidal activity, with a final mortality rate of 74.1 %. It has been proven that introducing bromine or chlorine atoms at the C-2', C-2' and C-6' positions of the E ring of podophyllotoxin can produce more potent compounds. In addition, the configuration of the C-4 position is important for insecticidal activity, and 4ß-configuration is optimal. This will pave the way for further design, structural modification, and development of derivatives of podophyllotoxin as insecticidal agents.


Assuntos
Inseticidas , Mariposas , Podofilotoxina , Inseticidas/síntese química , Inseticidas/farmacologia , Inseticidas/química , Animais , Podofilotoxina/farmacologia , Podofilotoxina/química , Podofilotoxina/síntese química , Podofilotoxina/análogos & derivados , Mariposas/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Cristalografia por Raios X , Conformação Molecular
7.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611722

RESUMO

Podophyllotoxin, a cyclolignan natural product, has been the object of extensive chemomodulation to obtain better chemotherapeutic agents. Among the obtained podophyllotoxin derivatives, podophyllic aldehyde showed very interesting potency and selectivity against several tumoral cell lines, so it became our lead compound for further modifications, as described in this work, oriented toward the enlargement of the cyclolignan skeleton. Thus, modifications performed at the aldehyde function included nucleophilic addition reactions and the incorporation of the aldehyde carbon into several five-membered rings, such as thiazolidinones and benzo-fused azoles. The synthesized derivatives were evaluated against several types of cancer cells, and although some compounds were cytotoxic at the nanomolar range, most of them were less potent and less selective than the parent compound podophyllic aldehyde, with the most potent being those having the lactone ring of podophyllotoxin. In silico ADME evaluation predicted good druggability for most of them. The results indicate that the γ-lactone ring is important for potency, while the α,ß-unsaturated aldehyde is necessary to induce selectivity in these cyclolignans.


Assuntos
Antineoplásicos , Podofilotoxina , Humanos , Podofilotoxina/farmacologia , Esqueleto , Hipertrofia , Aldeídos , Lactonas , Compostos Radiofarmacêuticos
8.
Cytotherapy ; 26(5): 456-465, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385909

RESUMO

BACKGROUND AIMS: The combination therapy of autologous hematopoietic stem cell transplantation (ASCT) and chimeric antigen receptor T-cell (CART) therapy has been employed to improve outcomes for relapsed or refractory (R/R) B-cell non-Hodgkin-lymphoma (B-NHL). The widely used conditioning regimen before ASCT plus CART therapy reported in the literature was carmustine, etoposide, cytarabine and melphalan (BEAM). However, whether adding fludarabine to the BEAM regimen (BEAMF) can improve the survival of patients with R/R B-NHL remains unknown. METHODS: In total, 39 and 19 patients with R/R B-NHL were enrolled to compare clinical outcomes in the BEAM and BEAMF regimens before ASCT plus CD19/22 CART therapy, respectively. RESULTS: The objective response (OR) rates at 3 months to BEAM and BEAMF regimens before ASCT plus CD19/22 CART therapy were 71.8% and 94.7%, respectively (P = 0.093). The BEAMF regimen showed a trend towards a superior duration of response compared with the BEAM regimen (P = 0.09). After a median follow-up of 28 months (range: 0.93-51.9 months), the BEAMF regimen demonstrated superior 2-year progression-free survival (PFS) (89.5% versus 63.9%; P = 0.048) and 2-year overall survival (OS) (100% vs 77.3%; P = 0.035) compared with the BEAM regimen. In the multivariable Cox regression analysis, OR at month 3 (responders) was remarkably correlated with better OS (hazard ratio: 0.112, P = 0.005) compared with OR (non-responders). CONCLUSIONS: For patients with R/R B-NHL, the BEAMF regimen before ASCT plus CD19/22 CART therapy was correlated with superior PFS and OS than the BEAM regimen, and the BEAMF regimen is a promising alternative conditioning regimen for ASCT plus CAR-T therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carmustina , Citarabina , Etoposídeo , Transplante de Células-Tronco Hematopoéticas , Melfalan , Transplante Autólogo , Vidarabina , Vidarabina/análogos & derivados , Humanos , Masculino , Carmustina/uso terapêutico , Carmustina/administração & dosagem , Melfalan/uso terapêutico , Melfalan/administração & dosagem , Citarabina/uso terapêutico , Citarabina/administração & dosagem , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Pessoa de Meia-Idade , Adulto , Transplante Autólogo/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Etoposídeo/uso terapêutico , Etoposídeo/administração & dosagem , Vidarabina/administração & dosagem , Vidarabina/uso terapêutico , Prognóstico , Idoso , Linfoma de Células B/terapia , Linfoma de Células B/mortalidade , Podofilotoxina/uso terapêutico , Podofilotoxina/administração & dosagem , Imunoterapia Adotiva/métodos , Adulto Jovem , Terapia Combinada , Condicionamento Pré-Transplante/métodos , Receptores de Antígenos Quiméricos/uso terapêutico
9.
Chemistry ; 30(22): e202400019, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38323740

RESUMO

The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.


Assuntos
Medicamentos de Ervas Chinesas , Hidrogênio , Ferro , Podofilotoxina/análogos & derivados , Oxirredução , Ferro/química , Hidroxilação , Hidrogênio/química , Estresse Oxidativo
10.
Adv Mater ; 36(18): e2311500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299748

RESUMO

The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA22-b-pSSPPT9 (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.


Assuntos
Glioblastoma , Mitocôndrias , Polímeros , Mitocôndrias/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Linhagem Celular Tumoral , Polímeros/química , Animais , Barreira Hematoencefálica/metabolismo , Podofilotoxina/química , Podofilotoxina/farmacologia , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , gama-Glutamiltransferase/metabolismo , Portadores de Fármacos/química
11.
Pharm Biol ; 62(1): 233-249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38393642

RESUMO

CONTEXT: Podophyllotoxin (PPT) derivatives, used in cancer therapy, require development toward enhanced efficacy and reduced toxicity. OBJECTIVE: This study synthesizes PPT derivatives to assess their anticancer activities. MATERIALS AND METHODS: Compounds E1-E16 antiproliferative activity was tested against four human cancer cell lines (H446, MCF-7, HeLa, A549) and two normal cell lines (L02, BEAS-2B) using the CCK-8 assay. The effects of compound E5 on A549 cell growth were evaluated through molecular docking, in vitro assays (flow cytometry, wound healing, Transwell, colony formation, Western blot), and in vivo tests in female BALB/c nude mice treated with E5 (2 and 4 mg/kg). E5 (4 mg/kg) significantly reduced xenograft tumor growth compared to the DMSO control group. RESULTS: Among the 16 PPT derivatives tested for cytotoxicity, E5 exhibited potent effects against A549 cells (IC50: 0.35 ± 0.13 µM) and exceeded the reference drugs PPT and etoposide to inhibit the growth of xenograft tumours. E5-induced cell cycle arrest in the S and G2/M phases accelerated tubulin depolymerization and triggered apoptosis and mitochondrial depolarization while regulating the expression of apoptosis-related proteins and effectively inhibited cell migration and invasion, suggesting a potential to limit metastasis. Molecular docking showed binding of E5 to tubulin at the colchicine site and to Akt, with a consequent down-regulation of PI3K/Akt pathway proteins. DISCUSSION AND CONCLUSIONS: This research lays the groundwork for advancing cancer treatment through developing and using PPT derivatives. The encouraging results associated with E5 call for extended research and clinical validation, leading to novel and more effective cancer therapies.


Assuntos
Antineoplásicos , Podofilotoxina , Camundongos , Animais , Humanos , Feminino , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Simulação de Acoplamento Molecular , Camundongos Nus , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química
12.
Iran J Med Sci ; 49(1): 30-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38322161

RESUMO

Background: Herbal medicines are the preferred anticancer agents due to their lower cytotoxic effects on healthy cells. Plant lignans play an important role in treating various diseases, especially cancer. The present study aimed to evaluate the effect of podophyllotoxin, pinoresinol, and lariciresinol on cellular toxicity and inducing apoptosis in fibroblasts, HEK-293, and SkBr3 cell lines. Methods: An in vitro study was conducted from 2017 to 2019 at the Faculty of Biological Sciences, Tarbiat Modares University (Tehran, Iran). The cell lines were treated for 24 and 48 hours with different concentrations of lignans. Cell viability and apoptosis were examined using MTT and flow cytometry, respectively. Expression levels of cell cycle and apoptosis regulator genes were determined using quantitative real-time polymerase chain reaction. Data were analyzed using a two-way analysis of variance followed by Tukey's HSD test. P<0.05 was considered statistically significant. Results: Podophyllotoxin significantly increased apoptosis in fibroblast cells compared to pinoresinol and lariciresinol (P<0.001). The percentage of cell viability of fibroblast cells treated for 48 hours with pinoresinol, lariciresinol, and podophyllotoxin was reduced by 49%, 47%, and 36%, respectively. Treatment with pinoresinol and lariciresinol significantly overexpressed pro-apoptotic genes and underexpressed anti-apoptotic genes in SkBr3 cells (P<0.001). SkBr3 cells treated with lariciresinol significantly reduced gene expression (P<0.001). Conclusion: Pinoresinol and lariciresinol can potentially be used as new therapeutic agents for the treatment of breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Furanos , Lignanas , Humanos , Feminino , Podofilotoxina/análise , Oxirredutases/genética , Oxirredutases/metabolismo , Células HEK293 , Irã (Geográfico) , Lignanas/análise , Lignanas/metabolismo
13.
Chemistry ; 30(4): e202302595, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37814110

RESUMO

Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.


Assuntos
Lignanas , Podofilotoxina , Relação Estrutura-Atividade , Lignanas/química , Lactonas , Biologia
14.
Plant Cell Physiol ; 64(12): 1436-1448, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37948767

RESUMO

Tetrahydrofuran ring formation from dibenzylbutyrolactone lignans is a key step in the biosynthesis of aryltetralin lignans including deoxypodophyllotoxin and podophyllotoxin. Previously, Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2-ODD) from Podophyllum hexandrum (Himalayan mayapple, Berberidaceae) was found to catalyze the cyclization of a dibenzylbutyrolactone lignan, yatein, to give deoxypodophyllotoxin and designated as deoxypodophyllotoxin synthase (DPS). Recently, we reported that the biosynthesis of deoxypodophyllotoxin and podophyllotoxin evolved in a lineage-specific manner in phylogenetically unrelated plant species such as P. hexandrum and Anthriscus sylvestris (cow parsley, Apiaceae). Therefore, a comprehensive understanding of the characteristics of DPSs that catalyze the cyclization of yatein to deoxypodophyllotoxin in various plant species is important. However, for plant species other than P. hexandrum, the isolation of the DPS enzyme gene and the type of the enzyme, e.g. whether it is 2-ODD or another type of enzyme such as cytochrome P-450, have not been reported. In this study, we report the identification and characterization of A. sylvestris DPS (AsDPS). Phylogenetic analysis showed that AsDPS belonged to the 2-ODD superfamily and shared moderate amino acid sequence identity (40.8%) with P. hexandrum deoxypodophyllotoxin synthase (PhDPS). Recombinant protein assay indicated that AsDPS and PhDPS differ in terms of the selectivity of substrate enantiomers. Protein modeling using AlphaFold2 and site-directed mutagenesis indicated that the Tyr305 residue of AsDPS probably contributes to substrate recognition. This study advances our understanding of the podophyllotoxin biosynthetic pathway in A. sylvestris and provides new insight into 2-ODD involved in plant secondary (specialized) metabolism.


Assuntos
Apiaceae , Lignanas , Podofilotoxina/química , Filogenia , Lignanas/metabolismo , Apiaceae/química , Apiaceae/metabolismo
15.
J Chromatogr A ; 1711: 464452, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37857153

RESUMO

A novel hydroxylpropyl cellulose (HPC) modified graphene oxide (GO)-based molecularly imprinted polymers (HPC-GO-MIP) have been developed as a solid phase extraction (SPE) material for the selective separation and extraction of podophyllotoxin. In this strategy, the cellulose with rich hydroxyl groups was introduced to form bi-functional monomers with methacrylic acid to provide more recognition sites for the improving of extraction efficiency, then GO was added as a two-dimensional substrate for MIP to improve the material morphology and surface area. The extraction performances of obtained HPC-GO-MIP material were tested, and the results prove its high efficiency and selectivity for podophyllotoxin extraction. The saturated adsorption capacity reached 23.1 µg/mg, and high enrichment efiiciency of 463.8 folds was realized under the premise of ensuring the recovery rate. The selective imprinting factor was much higher than those of kaempferol and quercetin, which were the main compounds in podophyllum fruit. Under the optimized SPE conditions, the HPC-GO-MIP based SPE-HPLC method showed the detection limit of 14.2 ng/mL for podophyllotoxin assay. When applied to podophyllum fruit samples, the material showed excellent ability of selective separation and enrichment of podophyllotoxin, and the relative standard deviations (RSD) of intra and inter batches were less than 8.1 % and 5.7 % in real samples detection. The HPC-GO-MIP SPE method broadened the application for high multiple extraction in trace analyte samples and provided a valuable solution to improve the selective separation and detection.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Polímeros/química , Podofilotoxina , Celulose , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Extração em Fase Sólida/métodos , Adsorção
16.
Eur J Med Chem ; 260: 115780, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666045

RESUMO

E-selectin, which is highly expressed in vascular endothelial cells near tumor and get involved in the all tumor growth steps: occurrence, proliferation and metastasis, is considered as a promise targeted protein for antitumor drug discovery. Herein, we would like to report the design, preparation and the anticancer evaluation of the peptide-PEG-podophyllotoxin conjugate(PEG-Pep-PODO), in which the short peptide (CIELLQAR) was used as the E-selectin ligand for the targeting purpose and the PEG portion the molecule got the conjugate self-assembled to form a water soluble nanoparticle. In vitro release study showed that the conjugated and entrapped PODO could be released simultaneously in the presence of GSH (highly expressed in tumor environmental conditions) and the GSH would catalyze the break of the disufur bond which linked of the PODO and the peptide-PEG portion of the conjugate. Cell adhesion test of the PEG-Pep-PODO indicated that E-selectin ligand peptide CIELLQAR could get specifically and efficiently binding to the E-selectin expressing human umbilical vein endothelial cells (HUVEC). In vitro cytotoxicity assay further revealed that PEG-Pep-PODO significantly improved the selectivity of PEG-Pep-PODO for killing the tumor cells and normal cells compared with PODO solution formulation. More importantly, the in vivo experiment demonstrated that the conjugate would accumulate of the PODO payload in tumor through targeting endothelial cells in the tumor microenvironment, which resulted in the much improved in vivo inhibition of tumor growth, intratumoral microvessel density, and decreased systemic toxicity of this nanoparticle over the free PODO. Furthermore, this water soluble conjugate greatly improved the pharmacokinetic properties of the mother molecule.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Podofilotoxina/farmacologia , Selectina E , Ligantes , Peptídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Polietilenoglicóis , Microambiente Tumoral
17.
Int J Mol Med ; 52(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37711052

RESUMO

Podophyllotoxin (PPT), which is derived from the podophyllum plant, exhibits marked cytotoxic effects against cancer cells; however, the precise molecular mechanism underlying its activity against human oral squamous cell carcinoma (OSCC) has not been elucidated. In the present study, the mechanism by which PPT induced cytotoxicity in two OSCC cell lines, HSC3 and HSC4, was determined. The effects of PPT on cytotoxicity in HSC3 and HSC4 cells were analyzed using Annexin V/PI double staining, Sub­G1 analysis, soft agar assays, western blotting, and quantitative PCR. The changes in the mitochondrial membrane potential were assessed using a JC­1 assay and cytosolic and mitochondrial fractionation. A myeloid cell leukemia­1 (Mcl­1) overexpression cell lines were also established to study the role of Mcl­1 on apoptosis. The results showed that PPT inhibited the growth of the two human OSCC cell lines and induced apoptosis, which was accompanied by mitochondrial membrane depolarization. Compared with the control, PPT reduced the expression of Mcl­1 in both cell lines through a proteasome­dependent protein degradation process. Overall, these results suggested that targeting of Mcl­1 protein by PPT induced apoptosis, providing a foundation for further pre­clinical and clinical study of its value in the management of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Leucemia , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Podofilotoxina/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias Bucais/tratamento farmacológico , Células Mieloides
18.
Chembiochem ; 24(23): e202300582, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728423

RESUMO

(R)-ß-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Šfrom substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-ß-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.


Assuntos
Oxigenases , Podofilotoxina , Oxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Especificidade por Substrato
19.
Ecotoxicol Environ Saf ; 264: 115392, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651795

RESUMO

Adverse reactions to traditional Chinese medicine have hindered the healthy development and internationalization process of the traditional Chinese medicine industry. The critical issue that needs to be solved urgently is to evaluate the safety of traditional Chinese medicine systematically and effectively. Podophyllotoxin (PPT) is a highly active compound extracted from plants of the genus Podophyllum such as Dysosma versipellis (DV). However, its high toxicity and toxicity to multiple target organs affect the clinical application, such as the liver and kidney. Based on the concurrent effects of PPT's medicinal activity and toxicity, it would be a good example to conduct a systematic review of its safety. Therefore, this study revolves around the Toxicological Evidence Chain (TEC) concept. Based on PPT as the main toxic constituent in DV, observe the objective toxicity impairment phenotype of animals. Evaluate the serum biochemical indicators and pathological tissue sections for substantial toxic damage results. Using metabolomics, lipidomics, and network toxicology to evaluate the nephrotoxicity of PPT from multiple perspectives systematically. The results showed that PPT-induced nephrotoxicity manifested as renal tubular damage, mainly affecting metabolic pathways such as glycerophospholipid metabolism and sphingolipid metabolism. PPT inhibits the autophagy process of kidney cells through the PI3K/Akt/mTOR and Nrf2/HO1 pathways and induces the activation of oxidative stress in the body, thereby causing nephrotoxic injury. This study fully verified the feasibility of the TEC concept for the safety and toxicity evaluation of traditional Chinese medicine. Provide a research template for systematically evaluating the safety of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Fator 2 Relacionado a NF-E2 , Podofilotoxina , Podophyllum , Animais , Ratos , Rim , Fosfatidilinositol 3-Quinases , Podofilotoxina/toxicidade , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Podophyllum/toxicidade , Medicamentos de Ervas Chinesas/toxicidade
20.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2818-2838, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37584134

RESUMO

Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical 'seahorse' shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41 ℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.


Assuntos
Fenilalanina Amônia-Liase , Podofilotoxina , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Clonagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...