Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.848
Filtrar
1.
Anal Biochem ; 692: 115580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38825159

RESUMO

Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.


Assuntos
Polarização de Fluorescência , Ribossomos , Ricina , Ricina/antagonistas & inibidores , Ricina/metabolismo , Ricina/química , Polarização de Fluorescência/métodos , Ribossomos/metabolismo , Ressonância de Plasmônio de Superfície , Toxina Shiga/antagonistas & inibidores , Toxina Shiga/metabolismo , Toxina Shiga/química , Ligação Competitiva , Ligação Proteica , Toxina Shiga II/antagonistas & inibidores , Toxina Shiga II/metabolismo , Toxina Shiga II/química
2.
Sensors (Basel) ; 24(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794084

RESUMO

Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Polarização de Fluorescência , Aflatoxina B1/análise , Aflatoxina B1/química , Aptâmeros de Nucleotídeos/química , Polarização de Fluorescência/métodos , Polieletrólitos/química , Técnicas Biossensoriais/métodos , Poliaminas/química , Limite de Detecção , Corantes Fluorescentes/química
3.
Biochemistry ; 63(10): 1297-1306, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729622

RESUMO

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Assuntos
Proteínas de Ligação a DNA , Polarização de Fluorescência , Peptídeos , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Polarização de Fluorescência/métodos , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
4.
SLAS Discov ; 29(4): 100161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788976

RESUMO

Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.


Assuntos
Ensaios Enzimáticos , Metiltransferases , Riboswitch , S-Adenosil-Homocisteína , S-Adenosilmetionina , S-Adenosil-Homocisteína/metabolismo , Riboswitch/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Ensaios Enzimáticos/métodos , S-Adenosilmetionina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Metilação , Humanos , Polarização de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética
5.
J Chromatogr A ; 1728: 464986, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38797137

RESUMO

In this study, a novel at-line nanofractionation platform was established for screening SARS-CoV-2 fusion inhibitors from natural products for the first time by combining HPLC-MS/MS with high-throughput fluorescence polarization (FP) bioassay. A time-course FP bioassay in 384 well-plates was conducted in parallel with MS/MS to simultaneously obtain chemical and biological information of potential fusion inhibitors in Lonicerae Japonicae Flos (LJF) and Lianhua Qingwen capsules (LHQW). Semi-preparative liquid chromatography and orthogonal HPLC separation were employed to enrich and better identify the co-eluted components. After comprehensive evaluation and validation, 28 potential SARS-CoV-2 fusion inhibitors were screened out and identified. Several compounds at low micromolar activity were validated by in vitro inhibitory assay, molecular docking, cytotoxicity test, and pseudovirus assay. Moreover, four potential dual-target inhibitors against influenza and COVID-19 were discovered from LJF using this method, offering novel insights for the development of future pharmaceuticals targeting epidemic respiratory diseases.


Assuntos
Antivirais , Polarização de Fluorescência , Simulação de Acoplamento Molecular , SARS-CoV-2 , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , SARS-CoV-2/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Antivirais/farmacologia , Antivirais/química , Antivirais/análise , Humanos , Polarização de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Lonicera/química , COVID-19/virologia , Espectrometria de Massa com Cromatografia Líquida
6.
Chem Commun (Camb) ; 60(37): 4942-4945, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38629242

RESUMO

We present a triple-mode nanosensor platform for nucleic acid detection utilizing fluorescence anisotropy and Förster resonance energy transfer (FRET) strategies. The self-assembled nanoprobes serve as mass amplifiers, nanoquenchers, or nanodonors, exhibiting high FRET efficiencies (64.4-86.5%) and demonstrating excellent detection capabilities in DNA and microRNA analysis.


Assuntos
DNA , Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Polímeros , DNA/química , Polímeros/química , MicroRNAs/análise , Corantes Fluorescentes/química , Polarização de Fluorescência , Fluorescência , Técnicas Biossensoriais/métodos
7.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675653

RESUMO

Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 µM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.


Assuntos
Ensaios de Triagem em Larga Escala , Leishmania donovani , Simulação de Acoplamento Molecular , Receptor 1 de Sinal de Orientação para Peroxissomos , Proteínas de Protozoários , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Polarização de Fluorescência/métodos , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Humanos
8.
ACS Chem Biol ; 19(5): 1093-1105, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646883

RESUMO

Viral macrodomains that can bind to or hydrolyze protein adenosine diphosphate ribosylation (ADP-ribosylation) have emerged as promising targets for antiviral drug development. Many inhibitor development efforts have been directed against the severe acute respiratory syndrome coronavirus 2 macrodomain 1 (SARS-CoV-2 Mac1). However, potent inhibitors for viral macrodomains are still lacking, with the best inhibitors still in the micromolar range. Based on GS-441524, a remdesivir precursor, and our previous studies, we have designed and synthesized potent binders of SARS-CoV-2 Mac1 and other viral macrodomains including those of Middle East respiratory syndrome coronavirus (MERS-CoV), Venezuelan equine encephalitis virus (VEEV), and Chikungunya virus (CHIKV). We show that the 1'-CN group of GS-441524 promotes binding to all four viral macrodomains tested while capping the 1″-OH of GS-441524-diphosphate-ribose with a simple phenyl ring further contributes to binding. Incorporating these two structural features, the best binders show 20- to 6000-fold increases in binding affinity over ADP-ribose for SARS-CoV-2, MERS-CoV, VEEV, and CHIKV macrodomains. Moreover, building on these potent binders, we have developed two highly sensitive fluorescence polarization tracers that only require nanomolar proteins and can effectively resolve the binding affinities of nanomolar inhibitors. Our findings and probes described here will facilitate future development of more potent viral macrodomain inhibitors.


Assuntos
Antivirais , Polarização de Fluorescência , SARS-CoV-2 , Humanos , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Vírus Chikungunya/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos
9.
SLAS Discov ; 29(3): 100153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518956

RESUMO

Cathepsin L (CTSL), a lysosomal cysteine proteinase, is primarily dedicated to the metabolic turnover of intracellular proteins. It is involved in various physiological processes and contributes to pathological conditions such as viral infection, tumor invasion and metastasis, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, and other ailments. The coronavirus disease 2019 (COVID-19), with its rapid global spread and significant mortality, has been a worldwide epidemic since the late 2019s. Notably, CTSL plays a role in the processing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, providing a potential avenue to block coronavirus host cell entry and thereby inhibit SARS-CoV-2 infection in humans. In this study, we have developed a novel method using fluorescence polarization (FP) for screening CTSL inhibitors in a high-throughput format. The optimized assay demonstrated its appropriateness for high-throughput screening (HTS) with a Z-factor of 0.9 in a 96-well format. Additionally, the IC50 of the known inhibitor, Z-Phe-Tyr-CHO, was determined to be 188.50 ± 46.88 nM. Upon screening over 2000 small molecules, we identified, for the first time, the anti-CTSL properties of a benzothiazoles derivative named IMB 8015. This work presents a novel high-throughput approach and its application in discovering and evaluating CTSL inhibitors.


Assuntos
Catepsina L , Polarização de Fluorescência , Ensaios de Triagem em Larga Escala , Ensaios de Triagem em Larga Escala/métodos , Humanos , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Polarização de Fluorescência/métodos , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Tratamento Farmacológico da COVID-19
10.
J Med Chem ; 67(5): 4194-4224, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442261

RESUMO

Retinoic acid receptor-related orphan receptor γ (RORγ) acts as a crucial transcription factor in Th17 cells and is involved in diverse autoimmune disorders. RORγ allosteric inhibitors have gained significant research focus as a novel strategy to inhibit RORγ transcriptional activity. Leveraging the high affinity and selectivity of RORγ allosteric inhibitor MRL-871 (1), this study presents the design, synthesis, and characterization of 11 allosteric fluorescent probes. Utilizing the preferred probe 12h, we established an efficient and cost-effective fluorescence polarization-based affinity assay for screening RORγ allosteric binders. By employing virtual screening in conjunction with this assay, 10 novel RORγ allosteric inhibitors were identified. The initial SAR studies focusing on the hit compound G381-0087 are also presented. The encouraging outcomes indicate that probe 12h possesses the potential to function as a powerful tool in facilitating the exploration of RORγ allosteric inhibitors and furthering understanding of RORγ function.


Assuntos
Corantes Fluorescentes , Células Th17 , Corantes Fluorescentes/farmacologia , Fatores de Transcrição , Regulação da Expressão Gênica , Polarização de Fluorescência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
11.
Front Biosci (Elite Ed) ; 16(1): 4, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38538523

RESUMO

Elevated concentrations of toxic organic compounds observed in food products pose serious dangers to human health. Both natural and artificial pollutants can cause food contamination. The stages of food production, packaging, transportation, and storage can also largely cause the appearance of undesirable substances in food products. The health consequences of ingesting food containing toxic contaminants range from mild gastroenteritis to deaths resulting from dysfunctional internal organs and neurological syndromes. The World Health Organization (WHO) sets recommendations for the content of such chemicals in food, including a minimum allowable concentration considered safe for human consumption. However, the control of food products from chemical pollutants is necessary. Moreover, fast, sensitive, and inexpensive methods are needed to detect them at the point of need. Currently, immune analysis methods are most widely used to determine pollutants in food. The development of fluorescence polarization immunoassay (FPIA) methods in a competitive format is a powerful and modern tool for detecting organic molecules in various matrices, thereby making FPIA methods useful for food safety applications. Due to the availability of portable devices for measuring the fluorescence polarization signal, FPIA methods can be used at the point of need. The variety of fluorescent labels and recognizing elements (receptors, monoclonal and polyclonal antibodies, and nanobodies) permits fluorescence polarization (FP) assays to detect significantly lower limits of organic substances. The FP assay is a homogeneous, fast, and quantitative method. The development of various formats of FP assays makes them promising in determining food pollutants. This review summarizes publications on FP analyses for detecting organic contaminants (pesticides, hormones, toxins, antibiotics, and other pharmaceuticals) in food products during 2018-2023. Further, it demonstrates the prospects for using this method to determine pollutants at the point of need and for detecting high molecular weight substances, fungi, and bacterial infections during food safety inspections.


Assuntos
Poluentes Ambientais , Inocuidade dos Alimentos , Humanos , Imunoensaio de Fluorescência por Polarização/métodos , Polarização de Fluorescência , Anticorpos
12.
Nucleic Acids Res ; 52(6): 3164-3179, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375901

RESUMO

The capacity of riboswitches to undergo conformational changes in response to binding their native ligands is closely tied to their functional roles and is an attractive target for antimicrobial drug design. Here, we established a probe-based fluorescence anisotropy assay to monitor riboswitch conformational switching with high sensitivity and throughput. Using the Bacillus subtillis yitJ S-Box (SAM-I), Fusobacterium nucleatum impX RFN element of (FMN) and class-I cyclic-di-GMP from Vibrio cholerae riboswitches as model systems, we developed short fluorescent DNA probes that specifically recognize either ligand-free or -bound riboswitch conformational states. We showed that increasing concentrations of native ligands cause measurable and reproducible changes in fluorescence anisotropy that correlate with riboswitch conformational changes observed by native gel analysis. Furthermore, we applied our assay to several ligand analogues and confirmed that it can discriminate between ligands that bind, triggering the native conformational change, from those that bind without causing the conformational change. This new platform opens the possibility of high-throughput screening compound libraries to identify potential new antibiotics that specifically target functional conformational changes in riboswitches.


Assuntos
Ensaios de Triagem em Larga Escala , Riboswitch , Polarização de Fluorescência , Ligantes , Conformação de Ácido Nucleico , Sondas de DNA/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Bactérias/genética , Bactérias/metabolismo
13.
Bioconjug Chem ; 35(2): 147-153, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38266192

RESUMO

While dual-display DNA-encoded chemical libraries (DELs) are increasingly employed for ligand discovery, some of their fundamental properties have not yet been studied in-depth. Aided with fluorescence polarization experiments, we demonstrate that dual-display DELs are intrinsically asymmetrical entities, and we deduce practical guidelines to perform better-informed on-DNA hit validation from these libraries.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , DNA/química , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Ligantes , Polarização de Fluorescência
14.
Nanoscale ; 16(7): 3659-3667, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38287773

RESUMO

Quantitation of protein-nanoparticle interactions is essential for the investigation of the protein corona around NPs in vivo and when using synthetic polymer nanoparticles as affinity reagents for selective protein recognition in vitro. Here, a method based on steady-state fluorescence anisotropy measurement is presented as a novel, separation-free tool for the assessment of protein-nanoparticle interactions. For this purpose, a long-lifetime luminescent Ru-complex is used for protein labelling, which exhibits low anisotropy when conjugated to the protein but displays high anisotropy when the proteins are bound to the much larger polymer nanoparticles. As a proof of concept, the interaction of lysozyme with poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid) nanoparticles is studied, and fluorescence anisotropy measurements are used to establish the binding kinetics, binding isotherm and a competitive binding assay.


Assuntos
Nanopartículas , Polímeros , Ligação Proteica , Corantes Fluorescentes , Proteínas , Polarização de Fluorescência
15.
STAR Protoc ; 5(1): 102792, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133955

RESUMO

Anuran saxiphilins (Sxphs) are "toxin sponge" proteins thought to prevent the lethal effects of small-molecule neurotoxins through sequestration. Here, we present a protocol for the expression, purification, and characterization of Sxphs. We describe steps for using thermofluor, fluorescence polarization, and isothermal titration calorimetry assays that probe Sxph:saxitoxin interactions using a range of sample quantities. These assays are generalizable and can be used for other paralytic shellfish poisoning toxin-binding proteins. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.


Assuntos
Neurotoxinas , Saxitoxina , Saxitoxina/metabolismo , Calorimetria , Polarização de Fluorescência
16.
J Photochem Photobiol B ; 250: 112833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141326

RESUMO

The solvatochromic dye Laurdan is widely used in sensing the lipid packing of both model and biological membranes. The fluorescence emission maximum shifts from about 440 nm (blue channel) in condensed membranes (So) to about 490 nm (green channel) in the liquid-crystalline phase (Lα). Although the fluorescence intensity based generalized polarization (GP) is widely used to characterize lipid membranes, the fluorescence lifetime of Laurdan, in the blue and the green channel, is less used for that purpose. Here we explore the correlation between GP and fluorescence lifetimes by spectroscopic measurements on the So and Lα phases of large unilamellar vesicles of DMPC and DPPC. A positive correlation between GP and the lifetimes is observed in each of the optical channels for the two lipid phases. Microfluorimetric determinations on giant unilamellar vesicles of DPPC and DOPC at room temperature are performed under linearly polarized two-photon excitation to disentangle possible subpopulations of Laurdan at a scale below the optical resolution. Fluorescence intensities, GP and fluorescence lifetimes depend on the angle between the orientation of the linear polarization of the excitation light and the local normal to the membrane of the optical cross-section. This angular variation depends on the lipid phase and the emission channel. GP and fluorescence intensities in the blue and green channel in So and in the blue channel in Lα exhibit a minimum near 90o. Surprisingly, the intensity in the green channel in Lα reaches a maximum near 90o. The fluorescence lifetimes in the two optical channels also reach a pronounced minimum near 90o in So and Lα, apart from the lifetime in the blue channel in Lα where the lifetime is short with minimal angular variation. To our knowledge, these experimental observations are the first to demonstrate the existence of a bent conformation of Laurdan in lipid membranes, as previously suggested by molecular dynamics calculations.


Assuntos
Lauratos , Lipossomas Unilamelares , Membrana Celular , Lauratos/análise , Lauratos/química , 2-Naftilamina/química , Corantes Fluorescentes/química , Polarização de Fluorescência
18.
J Agric Food Chem ; 71(49): 19749-19759, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029390

RESUMO

A recognition motif is vital in determining the specificity and sensitivity of the fluorescence polarization assay (FPA) for detecting chemical contaminants in food. Four candidates (Gyrase, GyrBA, TopIV, and QepA) were prepared for this study. The applicability of QepA was confirmed through DNA cleavage assay, inhibition effects, and mechanism investigations using molecular docking, compared to other counterparts. Finally, a novel FPA based on QepA and a CIP-FITC tracer for the detection of fluoroquinolones (FQs) in eggs was developed. The limits of detection (LODs) for eight fluoroquinolones ranged from 2.2 to 5.1 ng g-1, with enrofloxacin, danofloxacin, and difloxacin meeting the maximum residue limits (MRLs). The spiked recoveries ranged from 65.8 to 103.6% with coefficients of variation (CVs) of 5.4-12.8%. Therefore, a new recognition motif for FQs that did not belong to conventional antibodies was identified, and QepA-based FPA could be a potential tool for rapid, homogeneous, and sensitive monitoring of the residue of FQs in eggs.


Assuntos
Ovos , Fluoroquinolonas , Simulação de Acoplamento Molecular , Ovos/análise , Limite de Detecção , Polarização de Fluorescência
19.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894874

RESUMO

In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer is a characteristic feature of the nucleosomal surface. The acidic patch is a common site in the attachment of various chromatin proteins, including viral ones. Acidic patch-binding peptides present perspective compounds that can be used to modulate chromatin functioning by disrupting interactions of nucleosomes with natural proteins or alternatively targeting artificial moieties to the nucleosomes, which may be beneficial for the development of new therapeutics. In this work, we used several computational and experimental techniques to improve our understanding of how peptides may bind to the acidic patch and what are the consequences of their binding. Through extensive analysis of the PDB database, histone sequence analysis, and molecular dynamic simulations, we elucidated common binding patterns and key interactions that stabilize peptide-nucleosome complexes. Through MD simulations and FRET measurements, we characterized changes in nucleosome dynamics conferred by peptide binding. Using fluorescence polarization and gel electrophoresis, we evaluated the affinity and specificity of the LANA1-22 peptide to DNA and nucleosomes. Taken together, our study provides new insights into the different patterns of intermolecular interactions that can be employed by natural and designed peptides to bind to nucleosomes, and the effects of peptide binding on nucleosome dynamics and stability.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cromatina , DNA/química , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Polarização de Fluorescência
20.
Methods Mol Biol ; 2705: 93-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668971

RESUMO

Fluorescence anisotropy (or polarization) is a powerful technique to study biomolecular association processes, by following the rotational motions of one of the two partners in the interaction, labeled with a fluorophore. It can be used to determine dissociation constants in solution, down to nM values, and unlabeled ligands can be characterized, too, by using competition experiments. In this chapter, we introduce the basic principles of the technique, compare it with other experimental approaches, and discuss the experimental details with specific examples regarding SH2 domain/phosphopeptide association processes. The experimental protocols to be used in binding experiments and displacement studies are described, as well as the caveats to be considered in performing accurate measurements.


Assuntos
Corantes Fluorescentes , Domínios de Homologia de src , Ionóforos , Movimento (Física) , Polarização de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...