Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.991
Filtrar
1.
Nat Commun ; 15(1): 5356, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918378

RESUMO

Type 1 polyketides are a major class of natural products used as antiviral, antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs. Analysis of public microbial genomes leads to the discovery of over sixty thousand type 1 polyketide gene clusters. However, the molecular products of only about a hundred of these clusters are characterized, leaving most metabolites unknown. Characterizing polyketides relies on bioactivity-guided purification, which is expensive and time-consuming. To address this, we present Seq2PKS, a machine learning algorithm that predicts chemical structures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous putative structures for each gene cluster to enhance accuracy. The correct structure is identified using a variable mass spectral database search. Benchmarks show that Seq2PKS outperforms existing methods. Applying Seq2PKS to Actinobacteria datasets, we discover biosynthetic gene clusters for monazomycin, oasomycin A, and 2-aminobenzamide-actiphenol.


Assuntos
Espectrometria de Massas , Família Multigênica , Policetídeo Sintases , Policetídeos , Policetídeos/metabolismo , Policetídeos/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Espectrometria de Massas/métodos , Mineração de Dados/métodos , Aprendizado de Máquina , Actinobacteria/genética , Actinobacteria/metabolismo , Genoma Bacteriano , Algoritmos , Produtos Biológicos/química , Produtos Biológicos/metabolismo
2.
Mar Drugs ; 22(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921570

RESUMO

A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6), B (7), and C (8), were isolated and characterised from a strain of Streptomyces sp. obtained from a sediment sample collected from the South China Sea. Their structures were determined by detailed spectroscopic analysis. Chrysomycin F contains two diastereomers, whose structures were further elucidated by a biomimetic [2 + 2] photodimerisation of chrysomycin A. Chrysomycins B and C showed potent anti-tuberculosis activity against both wild-type Mycobacterium tuberculosis and a number of clinically isolated MDR M. tuberculosis strains.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Policetídeos , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/isolamento & purificação , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , China , Estrutura Molecular , Antraquinonas/farmacologia , Antraquinonas/química , Antraquinonas/isolamento & purificação
3.
Mar Drugs ; 22(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38921577

RESUMO

Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (1-6) were isolated from the marine sponge Xestospongia sp., and their structures were elucidated using spectroscopic techniques and by comparing them to previously reported data. Among them, halenaquinol (2) was found to be the most potent SrtA inhibitor, with an IC50 of 13.94 µM (4.66 µg/mL). Semi-quantitative reverse transcription PCR data suggest that halenaquinol does not inhibit the transcription of srtA and spA, while Western blot analysis and immunofluorescence microscopy images suggest that it blocks the cell wall surface anchoring of SpA by inhibiting the activity of SrtA. The onset and magnitude of the inhibition of SpA anchoring on the cell wall surface in S. aureus that has been treated with halenaquinol at a value 8× that of the IC50 of SrtA are comparable to those for an srtA-deletion mutant. These findings contribute to the understanding of the mechanism by which marine-derived pentacyclic polyketides inhibit SrtA, highlighting their potential as anti-infective agents targeting S. aureus virulence.


Assuntos
Aminoaciltransferases , Antibacterianos , Proteínas de Bactérias , Parede Celular , Cisteína Endopeptidases , Poríferos , Staphylococcus aureus , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Animais , Poríferos/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Policetídeos/farmacologia , Policetídeos/química
4.
Mar Drugs ; 22(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921585

RESUMO

Talaromyces, a filamentous fungus widely distributed across terrestrial and marine environments, can produce a diverse array of natural products, including alkaloids, polyketones, and polyketide-terpenoids. Among these, chrodrimanins represented a typical class of natural products. In this study, we isolated three previously undescribed pentaketide-sesquiterpenes, 8,9-epi-chrodrimanins (1-3), along with eight known compounds (4-11). The structures of compounds 1-3 were elucidated using nuclear magnetic resonance (NMR) and mass spectrometry (MS), while their absolute configurations were determined through X-ray crystallography and electronic circular dichroism (ECD) computations. The biosynthetic pathways of compounds 1-3 initiate with 6-hydroxymellein and involve multiple stages of isoprenylation, cyclization, oxidation, and acetylation. We selected four strains of gastrointestinal cancer cells for activity evaluation. We found that compound 3 selectively inhibited MKN-45, whereas compounds 1 and 2 exhibited no significant inhibitory activity against the four cell lines. These findings suggested that 8,9-epi-chrodrimanins could serve as scaffold compounds for further structural modifications, potentially leading to the development of targeted therapies for gastric cancer.


Assuntos
Antineoplásicos , Talaromyces , Talaromyces/química , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cristalografia por Raios X , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Organismos Aquáticos , Espectroscopia de Ressonância Magnética , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Estrutura Molecular
5.
BMC Genomics ; 25(1): 555, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831295

RESUMO

BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.


Assuntos
Antraquinonas , Endófitos , Hypericum , Família Multigênica , Policetídeos , Hypericum/microbiologia , Hypericum/genética , Hypericum/metabolismo , Policetídeos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Antraquinonas/metabolismo , Fungos/genética , Genoma Fúngico , Simulação por Computador , Policetídeo Sintases/genética , Perileno/análogos & derivados , Perileno/metabolismo , Antracenos/metabolismo , Genômica , Filogenia
6.
World J Gastroenterol ; 30(21): 2817-2826, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38899326

RESUMO

BACKGROUND: The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent. The gut microbiota contributes to colorectal carcinogenesis (CRC), as demonstrated with colibactin-producing Escherichia coli (CoPEC). AIM: To evaluate the association between CoPEC prevalence and anxiety- and depressive-like behaviors with both preclinical and clinical approaches. METHODS: Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview. Results were compared according to the CoPEC colonization. In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain. Their behavior was assessed using the Elevated Plus Maze test, the Forced Swimming Test and the Behavior recognition system PhenoTyper®. RESULTS: In a limited cohort, all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis, whereas only one patient (17%) without CoPEC did. This result was confirmed in C57BL6/J wild-type mice and in a CRC susceptibility mouse model (adenomatous polyposis colimultiple intestinal neoplasia/+). Mice exhibited a significant increase in anxiety- and depressive-like behaviors after chronic infection with a CoPEC strain. CONCLUSION: This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.


Assuntos
Ansiedade , Depressão , Modelos Animais de Doenças , Infecções por Escherichia coli , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Peptídeos , Policetídeos , Animais , Humanos , Masculino , Policetídeos/metabolismo , Depressão/psicologia , Depressão/microbiologia , Ansiedade/psicologia , Ansiedade/microbiologia , Ansiedade/etiologia , Camundongos , Feminino , Idoso , Pessoa de Meia-Idade , Infecções por Escherichia coli/psicologia , Infecções por Escherichia coli/microbiologia , Peptídeos/metabolismo , Escherichia coli/isolamento & purificação , Neoplasias do Colo/psicologia , Neoplasias do Colo/microbiologia , Prevalência , Eixo Encéfalo-Intestino
7.
Genomics ; 116(4): 110880, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857812

RESUMO

The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.


Assuntos
Bactérias , Produtos Biológicos , Família Multigênica , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Produtos Biológicos/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Processamento de Proteína Pós-Traducional , Metagenoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Genoma Bacteriano , Microbiota , Policetídeos/metabolismo
8.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734756

RESUMO

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Assuntos
Chaetomium , Histona Desacetilases , Família Multigênica , Policetídeos , Metabolismo Secundário , Chaetomium/genética , Chaetomium/enzimologia , Chaetomium/metabolismo , Metabolismo Secundário/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Policetídeos/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Vias Biossintéticas/genética , Epigênese Genética
9.
Chem Pharm Bull (Tokyo) ; 72(5): 475-479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38749722

RESUMO

Heterologous expression of natural compound biosynthetic gene clusters (BGCs) is a robust approach for not only revealing the biosynthetic mechanisms leading to the compounds, but also for discovering new products from uncharacterized BGCs. We established a heterologous expression technique applicable to huge biosynthetic gene clusters for generating large molecular secondary metabolites such as type-I polyketides. As an example, we targeted concanamycin BGC from Streptomyces neyagawaensis IFO13477 (the cluster size of 99 kbp), and obtained a bacterial artificial chromosome (BAC) clone with an insert size of 211 kbp that contains the entire concanamycin BGC. Interestingly, heterologous expression for this BAC clone resulted in two additional aromatic polyketides, ent-gephyromycin, and a new compound designated as JBIR-157, together with the expected concanamycin. Bioinformatic and biochemical analyses revealed that a cryptic biosynthetic gene cluster in this BAC clone was responsible for the production of these type-II polyketide synthases (PKS) compounds. Here, we describe the production, isolation, and structure elucidation of JBIR-157, determined primarily by a series of NMR spectral analyses.


Assuntos
Família Multigênica , Policetídeos , Streptomyces , Policetídeos/química , Policetídeos/metabolismo , Policetídeos/isolamento & purificação , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Estrutura Molecular , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Conformação Molecular
10.
Org Biomol Chem ; 22(20): 4179-4189, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716654

RESUMO

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Assuntos
Aspergillus , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Policetídeos , alfa-Glucosidases , Aspergillus/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Células PC12 , Animais , Ratos , alfa-Glucosidases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
11.
mSphere ; 9(5): e0076423, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38722162

RESUMO

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Assuntos
Antibacterianos , Bacillus subtilis , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Streptomyces , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Policetídeos/farmacologia , Policetídeos/metabolismo , Glicosídeos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Girase/genética , DNA Girase/metabolismo
12.
Org Biomol Chem ; 22(19): 3979-3985, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691112

RESUMO

Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.


Assuntos
Anti-Infecciosos , Chaetomium , Policetídeos , Sesquiterpenos , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Organismos Aquáticos/química , Chaetomium/química , Bactérias/efeitos dos fármacos , Cristalografia por Raios X
13.
Mar Drugs ; 22(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786582

RESUMO

Marine-derived Penicillium fungi are productive sources of structurally unique and diverse bioactive secondary metabolites, representing a hot topic in natural product research. This review describes structural diversity, bioactivities and statistical research of 452 new natural products from marine-derived Penicillium fungi covering 2021 to 2023. Sediments are the main sources of marine-derived Penicillium fungi for producing nearly 56% new natural products. Polyketides, alkaloids, and terpenoids displayed diverse biological activities and are the major contributors to antibacterial activity, cytotoxicity, anti-inflammatory and enzyme inhibitory capacities. Polyketides had higher proportions of new bioactive compounds in new compounds than other chemical classes. The characteristics of studies in recent years are presented.


Assuntos
Organismos Aquáticos , Produtos Biológicos , Penicillium , Penicillium/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Humanos , Animais , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação
14.
Mar Drugs ; 22(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38786595

RESUMO

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Assuntos
Antibacterianos , Policetídeos , Talaromyces , Talaromyces/química , Talaromyces/metabolismo , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular
15.
Microb Cell Fact ; 23(1): 149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790014

RESUMO

BACKGROUND: Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS: We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION: Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.


Assuntos
Produtos Biológicos , Engenharia Metabólica , Família Multigênica , Policetídeos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Produtos Biológicos/metabolismo , Policetídeos/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Vias Biossintéticas/genética
16.
Org Lett ; 26(18): 3889-3895, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668739

RESUMO

Two novel meroterpenoids, alliisativins A and B (1, 2) were discovered through a genome-based exploration of the biosynthetic gene clusters of the deep-sea-derived fungus Penicillium allii-sativi MCCC entry 3A00580. Extensive spectroscopic analysis, quantum calculations, chemical derivatization, and biogenetic considerations were utilized to establish their structures. Alliisativins A and B (1, 2) possess a unique carbon skeleton featuring a drimane sesquiterpene with a highly oxidized polyketide. Noteworthily, alliisativin A (1) showed dual activity in promoting osteogenesis and inhibiting osteoclast, indicating an antiosteoporosis potential.


Assuntos
Penicillium , Policetídeos , Penicillium/química , Policetídeos/química , Policetídeos/farmacologia , Estrutura Molecular , Terpenos/química , Terpenos/farmacologia , Animais , Osteoclastos/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Família Multigênica
17.
Hum Vaccin Immunother ; 20(1): 2337987, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38658133

RESUMO

There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.


Assuntos
Adjuvantes Imunológicos , Escherichia coli , Imunidade nas Mucosas , Imunização Secundária , Camundongos Endogâmicos BALB C , Policetídeos , Probióticos , Animais , Camundongos , Probióticos/administração & dosagem , Escherichia coli/imunologia , Imunização Secundária/métodos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina A , Peptídeos/imunologia , Administração Intranasal , Imunoglobulina G/sangue , Imunoglobulina M , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem
18.
Mar Drugs ; 22(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667782

RESUMO

(-)-Doliculide, a marine cyclodepsipeptide derived from the Japanese sea hare, Dolabella auricularia, exhibits potent cytotoxic properties, sparking interest in the field of synthetic chemistry. It is comprised of a peptide segment and a polyketide moiety, rendering it amenable to Matteson's homologation methodology. This technique facilitates the diversification of the distinctive polyketide side chain, thereby permitting the introduction of functional groups in late stages for modifications of the derived compounds and studies on structure-activity relationships.


Assuntos
Depsipeptídeos , Depsipeptídeos/química , Depsipeptídeos/síntese química , Depsipeptídeos/farmacologia , Relação Estrutura-Atividade , Animais , Policetídeos/química , Policetídeos/farmacologia , Humanos , Estrutura Molecular
19.
J Agric Food Chem ; 72(17): 9555-9566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648511

RESUMO

The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like ß-xylosidases, ß-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.


Assuntos
Penicillium , Metabolismo Secundário , Penicillium/metabolismo , Humanos , Animais , Policetídeos/metabolismo , Policetídeos/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
20.
Nat Metab ; 6(5): 933-946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609677

RESUMO

Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.


Assuntos
Produtos Biológicos , Família Multigênica , Streptomyces , Produtos Biológicos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Policetídeos/metabolismo , Evolução Molecular , Vias Biossintéticas/genética , Filogenia , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...