Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(7): 795-806, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38538052

RESUMO

3' end processing of most eukaryotic precursor-mRNAs (pre-mRNAs) is a crucial cotranscriptional process that generally involves the cleavage and polyadenylation of the precursor transcripts. Within the human 3' end processing machinery, the four-subunit mammalian polyadenylation specificity factor (mPSF) recognizes the polyadenylation signal (PAS) in the pre-mRNA and recruits the poly(A) polymerase α (PAPOA) to it. To shed light on the molecular mechanisms of PAPOA recruitment to mPSF, we used a combination of cryogenic-electron microscopy (cryo-EM) single-particle analysis, computational structure prediction, and in vitro biochemistry to reveal an intricate interaction network. A short linear motif in the mPSF subunit FIP1 interacts with the structured core of human PAPOA, with a binding mode that is evolutionarily conserved from yeast to human. In higher eukaryotes, however, PAPOA contains a conserved C-terminal motif that can interact intramolecularly with the same residues of the PAPOA structured core used to bind FIP1. Interestingly, using biochemical assay and cryo-EM structural analysis, we found that the PAPOA C-terminal motif can also directly interact with mPSF at the subunit CPSF160. These results show that PAPOA recruitment to mPSF is mediated by two distinct intermolecular connections and further suggest the presence of mutually exclusive interactions in the regulation of 3' end processing.


Assuntos
Microscopia Crioeletrônica , Polinucleotídeo Adenililtransferase , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética , Polinucleotídeo Adenililtransferase/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/química , Ligação Proteica , Poliadenilação , Modelos Moleculares , Precursores de RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/química
2.
Nucleic Acids Res ; 48(5): 2733-2748, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32009146

RESUMO

Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Nucleotidiltransferases/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Células Procarióticas/metabolismo , Animais , Biocatálise , Linhagem Celular , Sobrevivência Celular , Desenvolvimento Embrionário , Humanos , Modelos Moleculares , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Polinucleotídeo Adenililtransferase/química , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Especificidade por Substrato , Xenopus
3.
Protein Sci ; 26(7): 1363-1379, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28028853

RESUMO

RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling.


Assuntos
RNA Polimerases Dirigidas por DNA , Corantes Fluorescentes , Polinucleotídeo Adenililtransferase , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Coloração e Rotulagem/métodos , Proteínas Virais , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
RNA ; 22(8): 1139-45, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288313

RESUMO

Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2-GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2-RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Ligação a RNA/química , Ribonucleoproteínas/química , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Cristalografia por Raios X , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/fisiologia , Conformação Proteica , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas/fisiologia
5.
J Mol Biol ; 427(19): 3031-41, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26231283

RESUMO

We present an updated and integrated version of our widely used protein-protein docking and binding affinity benchmarks. The benchmarks consist of non-redundant, high-quality structures of protein-protein complexes along with the unbound structures of their components. Fifty-five new complexes were added to the docking benchmark, 35 of which have experimentally measured binding affinities. These updated docking and affinity benchmarks now contain 230 and 179 entries, respectively. In particular, the number of antibody-antigen complexes has increased significantly, by 67% and 74% in the docking and affinity benchmarks, respectively. We tested previously developed docking and affinity prediction algorithms on the new cases. Considering only the top 10 docking predictions per benchmark case, a prediction accuracy of 38% is achieved on all 55 cases and up to 50% for the 32 rigid-body cases only. Predicted affinity scores are found to correlate with experimental binding energies up to r=0.52 overall and r=0.72 for the rigid complexes.


Assuntos
Simulação de Acoplamento Molecular , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Algoritmos , Animais , Humanos , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química , Software , Termodinâmica , Vaccinia virus/química , Vaccinia virus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
6.
Nucleic Acids Res ; 43(14): 7005-20, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26138484

RESUMO

Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Processamento de Terminações 3' de RNA , RNA Mensageiro/metabolismo , Caseína Quinase I/metabolismo , Núcleo Celular/enzimologia , Células HEK293 , Células HeLa , Humanos , Nucleotidiltransferases , Estresse Oxidativo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Polinucleotídeo Adenililtransferase/química , Ligação Proteica , Serina/metabolismo , Transdução de Sinais , Dedos de Zinco
7.
Proc Natl Acad Sci U S A ; 112(28): 8614-9, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124149

RESUMO

The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain typical of the canonical nuclear poly(A)-polymerase Pap1. The activity of C. elegans GLD-2 in vivo and in vitro depends on its association with the multi-K homology (KH) domain-containing protein, GLD-3, a homolog of Bicaudal-C. We have identified a minimal polyadenylation complex that includes the conserved nucleotidyl-transferase core of GLD-2 and the N-terminal domain of GLD-3, and determined its structure at 2.3-Å resolution. The structure shows that the N-terminal domain of GLD-3 does not fold into the predicted KH domain but wraps around the catalytic domain of GLD-2. The picture that emerges from the structural and biochemical data are that GLD-3 activates GLD-2 both indirectly by stabilizing the enzyme and directly by contributing positively charged residues near the RNA-binding cleft. The RNA-binding cleft of GLD-2 has distinct structural features compared with the poly(A)-polymerases Pap1 and Trf4. Consistently, GLD-2 has distinct biochemical properties: It displays unusual specificity in vitro for single-stranded RNAs with at least one adenosine at the 3' end. GLD-2 thus appears to have evolved specialized nucleotidyl-transferase properties that match the 3' end features of dormant cytoplasmic mRNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Citoplasma/enzimologia , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Cristalografia por Raios X , Modelos Moleculares , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/química , Conformação Proteica , Proteínas de Ligação a RNA/química
8.
J Mol Biol ; 426(1): 43-50, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24076191

RESUMO

In eukaryotes, the poly(A) tail added at the 3' end of an mRNA precursor is essential for the regulation of mRNA stability and the initiation of translation. Poly(A) polymerase (PAP) is the enzyme that catalyzes the poly(A) addition reaction. Multiple isoforms of PAP have been identified in vertebrates, which originate from gene duplication, alternative splicing or post-translational modifications. The complexity of PAP isoforms suggests that they might play different roles in the cell. Phylogenetic studies indicate that vertebrate PAPs are grouped into three clades termed α, ß and γ, which originated from two gene duplication events. To date, all the available PAP structures are from the PAPα clade. Here, we present the crystal structure of the first representative of the PAPγ clade, human PAPγ bound to cordycepin triphosphate (3'dATP) and Ca(2+). The structure revealed that PAPγ closely resembles its PAPα ortholog. An analysis of residue conservation reveals a conserved catalytic binding pocket, whereas residues at the surface of the polymerase are more divergent.


Assuntos
Domínio Catalítico , Polinucleotídeo Adenililtransferase/química , Cálcio/química , Cálcio/metabolismo , Sequência Conservada , Cristalografia por Raios X , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Filogenia , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Ligação Proteica
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 4): 617-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519670

RESUMO

Vaccinia virus poly(A) polymerase (VP55) is the only known polymerase that can translocate independently with respect to single-stranded nucleic acid (ssNA). Previously, its structure has only been solved in the context of the VP39 processivity factor. Here, a crystal structure of unliganded monomeric VP55 has been solved to 2.86 Å resolution, showing the first backbone structural isoforms among either VP55 or its processivity factor (VP39). Backbone differences between the two molecules of VP55 in the asymmetric unit indicated that unliganded monomeric VP55 can undergo a `rocking' motion of the N-terminal domain with respect to the other two domains, which may be `rigidified' upon VP39 docking. This observation is consistent with previously demonstrated experimental molecular dynamics of the monomer during translocation with respect to nucleic acid and with different mechanisms of translocation in the presence and absence of processivity factor VP39. Side-chain conformational changes in the absence of ligand were observed at a key primer contact site and at the catalytic center of VP55. The current structure completes the trio of possible structural forms for VP55 and VP39, namely the VP39 monomer, the VP39-VP55 heterodimer and the VP55 monomer.


Assuntos
Domínio Catalítico , DNA de Cadeia Simples/química , Movimento (Física) , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/genética , Translocação Genética , Vaccinia virus/enzimologia , Proteínas Virais/química , Domínio Catalítico/genética , Cristalografia por Raios X , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Polinucleotídeo Adenililtransferase/metabolismo , Multimerização Proteica/genética , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-23295487

RESUMO

Megavirus chilensis, a close relative of the Mimivirus giant virus, is also the most complex virus sequenced to date, with a 1.26 Mb double-stranded DNA genome encoding 1120 genes. The two viruses share common regulatory elements such as a peculiar palindrome governing the termination/polyadenylation of viral transcripts. They also share a predicted polyadenylate synthase that presents a higher than average percentage of residue conservation. The Megavirus enzyme Mg561 was overexpressed in Escherichia coli, purified and crystallized. A 2.24 Šresolution MAD data set was recorded from a single crystal on the ID29 beamline at the ESRF.


Assuntos
Mimiviridae/enzimologia , Polinucleotídeo Adenililtransferase/química , Proteínas Virais/química , Sequência de Bases , Cristalização/métodos , Cristalografia por Raios X , Dados de Sequência Molecular , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/isolamento & purificação , Conformação Proteica , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
11.
Mol Cell ; 49(1): 7-17, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23219533

RESUMO

The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.


Assuntos
Resposta ao Choque Térmico , Poli(ADP-Ribose) Polimerases/fisiologia , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , Linhagem Celular , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Polinucleotídeo Adenililtransferase/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
12.
Nucleic Acids Res ; 40(18): 9356-68, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22833610

RESUMO

Nuclear factors NF90 and NF45 form a complex involved in a variety of cellular processes and are thought to affect gene expression both at the transcriptional and translational level. In addition, this complex affects the replication of several viruses through direct interactions with viral RNA. NF90 and NF45 dimerize through their common 'DZF' domain (domain associated with zinc fingers). NF90 has additional double-stranded RNA-binding domains that likely mediate its association with target RNAs. We present the crystal structure of the NF90/NF45 dimerization complex at 1.9-Å resolution. The DZF domain shows structural similarity to the template-free nucleotidyltransferase family of RNA modifying enzymes. However, both NF90 and NF45 have lost critical catalytic residues during evolution and are therefore not functional enzymes. Residues on NF90 that make up its interface with NF45 are conserved in two related proteins, spermatid perinuclear RNA-binding protein (SPNR) and zinc-finger RNA-binding protein (Zfr). Using a co-immunoprecipitation assay and site-specific mutants, we demonstrate that NF45 is also able to recognize SPNR and Zfr through the same binding interface, revealing that NF45 is able to form a variety of cellular complexes with other DZF-domain proteins.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/química , Proteínas do Fator Nuclear 90/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Dimerização , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Nucleotídeos/metabolismo , Nucleotidiltransferases/química , Polinucleotídeo Adenililtransferase/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
FEBS Lett ; 586(8): 1173-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22575652

RESUMO

Addition of poly(A) to the 3' ends of cleaved pre-mRNA is essential for mRNA maturation and is catalyzed by Pap1 in yeast. We have previously shown that a non-viable Pap1 mutant lacking the first 18 amino acids is fully active for polyadenylation of oligoA, but defective for pre-mRNA polyadenylation, suggesting that interactions at the N-terminus are important for enzyme function in the processing complex. We have now identified proteins that interact specifically with this region. Cft1 and Pta1 are subunits of the cleavage/polyadenylation factor, in which Pap1 resides, and Nab6 and Sub1 are nucleic-acid binding proteins with known links to 3' end processing. Our results suggest a novel mechanism for controlling Pap1 activity, and possible models invoking these newly-discovered interactions are discussed.


Assuntos
Poli A/metabolismo , Polinucleotídeo Adenililtransferase/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Proteínas Associadas a Pancreatite , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
15.
Wiley Interdiscip Rev RNA ; 2(3): 321-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957020

RESUMO

The 3'-ends of almost all eukaryotic mRNAs are formed in a two-step process, an endonucleolytic cleavage followed by polyadenylation (the addition of a poly-adenosine or poly(A) tail). These reactions take place in the pre-mRNA 3' processing complex, a macromolecular machinery that consists of more than 20 proteins. A general framework for how the pre-mRNA 3' processing complex assembles and functions has emerged from extensive studies over the past several decades using biochemical, genetic, computational, and structural approaches. In this article, we review what we have learned about this important cellular machine and discuss the remaining questions and future challenges.


Assuntos
Processamento de Terminações 3' de RNA/fisiologia , Precursores de RNA/metabolismo , Animais , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Plantas/genética , Plantas/metabolismo , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/metabolismo , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sinais de Poliadenilação na Ponta 3' do RNA , Precursores de RNA/química , Precursores de RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
16.
RNA ; 17(9): 1737-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21788334

RESUMO

PAPD5 is one of the seven members of the family of noncanonical poly(A) polymerases in human cells. PAPD5 was shown to polyadenylate aberrant pre-ribosomal RNAs in vivo, similar to degradation-mediating polyadenylation by the noncanonical poly(A) polymerase Trf4p in yeast. PAPD5 has been reported to be also involved in the uridylation-dependent degradation of histone mRNAs. To test whether PAPD5 indeed catalyzes adenylation as well as uridylation of RNA substrates, we analyzed the in vitro properties of recombinant PAPD5 expressed in mammalian cells as well as in bacteria. Our results show that PAPD5 catalyzes the polyadenylation of different types of RNA substrates in vitro. Interestingly, PAPD5 is active without a protein cofactor, whereas its yeast homolog Trf4p is the catalytic subunit of a bipartite poly(A) polymerase in which a separate RNA-binding subunit is needed for activity. In contrast to the yeast protein, the C terminus of PAPD5 contains a stretch of basic amino acids that is involved in binding the RNA substrate.


Assuntos
Motivos de Aminoácidos/genética , Polinucleotídeo Adenililtransferase/química , RNA de Transferência/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Domínio Catalítico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Fúngicos , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Poliadenilação , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
17.
Methods ; 54(2): 251-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21354310

RESUMO

Advances in RNA nanotechnology will depend on the ability to manipulate, probe the structure and engineer the function of RNA with high precision. This article reviews current abilities to incorporate site-specific labels or to conjugate other useful molecules to RNA either directly or indirectly through post-synthetic labeling methodologies that have enabled a broader understanding of RNA structure and function. Readily applicable modifications to RNA can range from isotopic labels and fluorescent or other molecular probes to protein, lipid, glycoside or nucleic acid conjugates that can be introduced using combinations of synthetic chemistry, enzymatic incorporation and various conjugation chemistries. These labels, conjugations and ligations to RNA are quintessential for further investigation and applications of RNA as they enable the visualization, structural elucidation, localization, and biodistribution of modified RNA.


Assuntos
Sondas RNA/biossíntese , Sondas RNA/síntese química , RNA/química , RNA Polimerases Dirigidas por DNA/química , Indicadores e Reagentes/química , Polinucleotídeo 5'-Hidroxiquinase/química , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Ligases/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-21301096

RESUMO

Poly(A) polymerase (PAP) synthesizes the polyadenine tail at the 3'-end of messenger RNA. A disulfide cross-linking strategy was implemented to obtain a complex between bovine PAP (bPAP) and a 15-mer oligo(A). All seven endogenous cysteines were mutated to eliminate nonspecific cross-linked complexes. A cysteine residue was introduced at several different positions and A152C was found to achieve maximum specific cross-linking efficiency. The resulting bPAP construct was active and, when mixed with a chemically modified RNA, yielded crystals of a bPAP-RNA complex. The crystals, which belonged to space group P2 and harbored two protein-RNA complexes per asymmetric unit, diffracted X-rays to 2.25 Šresolution.


Assuntos
Nucleotídeos de Adenina/química , Dissulfetos/química , Oligorribonucleotídeos/química , Polinucleotídeo Adenililtransferase/química , RNA/química , Animais , Soluções Tampão , Bovinos , Reagentes de Ligações Cruzadas , Cristalização , Temperatura Alta , Concentração de Íons de Hidrogênio , RNA Mensageiro/metabolismo , Fatores de Tempo , Difração de Raios X
19.
Infect Disord Drug Targets ; 10(4): 258-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20429864

RESUMO

The messenger RNA precursors (pre-mRNA) 3'-end processing occurs in a two-step co-transcriptional coupled reaction, denoted as cleavage and polyadenylation. Both processes depend on trans-acting factors interacting in a coordinated manner with cis-sequence motifs located at the 3' untranslated region of transcripts. In this paper, we reviewed mechanisms involved in pre-mRNA processing in eukaryotic organisms, including our own findings about sequences and proteins potentially involved in mRNA 3'-end formation in the protozoan parasite Entamoeba histolytica. Interestingly, protein sequence comparisons among E. histolytica, yeast, and human pre-mRNA processing machineries showed that amoeba pre-mRNA 3'-end processing machinery appears to be in an intermediate evolutionary position between mammals and yeast. In addition, the presence of non canonical poly(A) polymerases family recently identified in E. histolytica, adds more complexity to the mRNA 3'-end formation process in this ancient eukaryote.


Assuntos
Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Regiões 3' não Traduzidas , Entamoeba histolytica/patogenicidade , Entamebíase/parasitologia , Genoma de Protozoário , Humanos , Modelos Biológicos , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
20.
RNA ; 16(6): 1124-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20403971

RESUMO

The fission yeast Cid14 protein belongs to a family of noncanonical poly(A) polymerases which have been implicated in a broad range of biological functions. Here we describe an extensive Cid14 protein-protein interaction network and its biochemical dissection. Cid14 most stably interacts with the zinc-knuckle protein Air1 to form the Cid14-Air1 complex (CAC). Providing a link to ribosomal RNA processing, Cid14 sediments with 60S ribosomal subunits and copurifies with 60S assembly factors. In contrast, no physical link to chromatin has been identified, although gene expression profiling revealed that efficient silencing of a few heterochromatic genes depends on Cid14 and/or Air1.


Assuntos
Polinucleotídeo Adenililtransferase/química , Proteínas de Schizosaccharomyces pombe/química , Cromatina/genética , Cromatina/metabolismo , Cicloeximida/metabolismo , Regulação Fúngica da Expressão Gênica , Cinética , Peso Molecular , Polinucleotídeo Adenililtransferase/metabolismo , Polirribossomos/metabolismo , Puromicina/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...