Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Leukoc Biol ; 111(1): 283-289, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33847407

RESUMO

The potential protective or pathogenic role of the adaptive immune response to SARS-CoV-2 infection has been vigorously debated. While COVID-19 patients consistently generate a T lymphocyte response to SARS-CoV-2 antigens, evidence of significant immune dysregulation in these patients continues to accumulate. In this study, next generation sequencing of the T cell receptor beta chain (TRB) repertoire was conducted in hospitalized COVID-19 patients to determine if immunogenetic differences of the TRB repertoire contribute to disease course severity. Clustering of highly similar TRB CDR3 amino acid sequences across COVID-19 patients yielded 781 shared TRB sequences. The TRB sequences were then filtered for known associations with common diseases such as EBV and CMV. The remaining sequences were cross-referenced to a publicly accessible dataset that mapped COVID-19 specific TCRs to the SARS-CoV-2 genome. We identified 158 SARS-CoV-2 specific TRB sequences belonging to 134 clusters in our COVID-19 patients. Next, we investigated 113 SARS-CoV-2 specific clusters binding only one peptide target in relation to disease course. Distinct skewing of SARS-CoV-2 specific TRB sequences toward the nonstructural proteins (NSPs) encoded within ORF1a/b of the SARS-CoV-2 genome was observed in clusters associated with critical disease course when compared to COVID-19 clusters associated with a severe disease course. These data imply that T-lymphocyte reactivity towards peptides from NSPs of SARS-CoV-2 may not constitute an effective adaptive immune response and thus may negatively affect disease severity.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Hospitalização , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Índice de Gravidade de Doença , Proteínas Virais/imunologia , Idoso , Sequência de Aminoácidos , COVID-19/virologia , Regiões Determinantes de Complementaridade/imunologia , Genoma Viral , Humanos , Poliproteínas/química , Poliproteínas/imunologia , Poliproteínas/metabolismo , SARS-CoV-2/genética , Fatores de Tempo , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
Front Immunol ; 12: 726920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671347

RESUMO

Background: The lack of suitable diagnostic tools contributes to the high prevalence of tuberculosis (TB) worldwide. Serological tests, based on multiple target antigens, represent an attractive option for diagnosis of this disease due to their rapidity, convenience, and low cost. Methods: Measures to reduce non-specific reactions and thereby improve the specificity of serological tests were investigated, including blocking antibodies against common bacteria in serum samples and synthesizing polypeptides covering non-conserved dominant B-cell epitopes of antigens. In addition, a fusion polyprotein containing HspX and eight other antigen sequences was constructed and expressed to increase overall sensitivity of the tests. Results: Inclusion of Escherichia coli lysate partially increased the specificity of the serological tests, while synthesis and inclusion of peptides containing non-conserved sequences of TB antigens as well as dominant B-cell epitopes reduced non-specific reactions without a decrease in sensitivity of the tests. A polyprotein fusing HspX and eight other antigen sequences was constructed and displayed 60.2% sensitivity, which was higher than that of HspX and the other individual antigen segments. Moreover, the specificity of the polyprotein was 93.8%, which was not significantly decreased when compared with HspX and the other individual antigen segments. Conclusions: The roles of the fusion polyprotein in the humoral immune response against TB infection were demonstrated and provide a potential novel approach for the development of TB diagnostics.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Poliproteínas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Tuberculose/diagnóstico , Adsorção , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Bactérias/química , Bactérias/genética , Bactérias/imunologia , Proteínas de Bactérias/genética , Sequência de Bases , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Poliproteínas/genética , Testes Sorológicos , Tuberculose/imunologia
3.
Nat Commun ; 12(1): 2593, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972535

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 is a continuous challenge worldwide, and there is an urgent need to map the landscape of immunogenic and immunodominant epitopes recognized by CD8+ T cells. Here, we analyze samples from 31 patients with COVID-19 for CD8+ T cell recognition of 500 peptide-HLA class I complexes, restricted by 10 common HLA alleles. We identify 18 CD8+ T cell recognized SARS-CoV-2 epitopes, including an epitope with immunodominant features derived from ORF1ab and restricted by HLA-A*01:01. In-depth characterization of SARS-CoV-2-specific CD8+ T cell responses of patients with acute critical and severe disease reveals high expression of NKG2A, lack of cytokine production and a gene expression profile inhibiting T cell re-activation and migration while sustaining survival. SARS-CoV-2-specific CD8+ T cell responses are detectable up to 5 months after recovery from critical and severe disease, and these responses convert from dysfunctional effector to functional memory CD8+ T cells during convalescence.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Epitopos Imunodominantes/química , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Poliproteínas/imunologia , Proteínas Virais/imunologia
4.
Cell Rep ; 35(8): 109164, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33991511

RESUMO

A major goal of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efforts is to elicit antibody responses that confer protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for vaccine design, diagnostics, and development of therapeutics. Here, we develop a pan-coronavirus phage display library to map antibody binding sites at high resolution within the complete viral proteomes of all known human-infecting coronaviruses in patients with mild or moderate/severe coronavirus disease 2019 (COVID-19). We find that the majority of immune responses to SARS-CoV-2 are targeted to the spike protein, nucleocapsid, and ORF1ab and include sites of mutation in current variants of concern. Some epitopes are identified in the majority of samples, while others are rare, and we find variation in the number of epitopes targeted between individuals. We find low levels of SARS-CoV-2 cross-reactivity in individuals with no exposure to the virus and significant cross-reactivity with endemic human coronaviruses (CoVs) in convalescent sera from patients with COVID-19.


Assuntos
COVID-19/imunologia , Epitopos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas Virais/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Sítios de Ligação de Anticorpos , COVID-19/virologia , Técnicas de Visualização da Superfície Celular , Coronavirus/imunologia , Reações Cruzadas , Feminino , Células HEK293 , Humanos , Imunidade , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Poliproteínas/imunologia , Sorologia , Adulto Jovem
5.
BMC Immunol ; 22(1): 22, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33765919

RESUMO

BACKGROUND: The spread of a novel coronavirus termed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in China and other countries is of great concern worldwide with no effective vaccine. This study aimed to design a novel vaccine construct against SARS-CoV-2 from the spike S protein and orf1ab polyprotein using immunoinformatics tools. The vaccine was designed from conserved epitopes interacted against B and T lymphocytes by the combination of highly immunogenic epitopes with suitable adjuvant and linkers. RESULTS: The proposed vaccine composed of 526 amino acids and was shown to be antigenic in Vaxigen server (0.6194) and nonallergenic in Allertop server. The physiochemical properties of the vaccine showed isoelectric point of 10.19. The instability index (II) was 31.25 classifying the vaccine as stable. Aliphatic index was 84.39 and the grand average of hydropathicity (GRAVY) was - 0.049 classifying the vaccine as hydrophilic. Vaccine tertiary structure was predicted, refined and validated to assess the stability of the vaccine via Ramachandran plot and ProSA-web servers. Moreover, solubility of the vaccine construct was greater than the average solubility provided by protein sol and SOLpro servers indicating the solubility of the vaccine construct. Disulfide engineering was performed to reduce the high mobile regions in the vaccine to enhance stability. Docking of the vaccine construct with TLR4 demonstrated efficient binding energy with attractive binding energy of - 338.68 kcal/mol and - 346.89 kcal/mol for TLR4 chain A and chain B respectively. Immune simulation significantly provided high levels of immunoglobulins, T-helper cells, T-cytotoxic cells and INF-γ. Upon cloning, the vaccine protein was reverse transcribed into DNA sequence and cloned into pET28a(+) vector to ensure translational potency and microbial expression. CONCLUSION: A unique vaccine construct from spike S protein and orf1ab polyprotein against B and T lymphocytes was generated with potential protection against the pandemic. The present study might assist in developing a suitable therapeutics protocol to combat SARSCoV-2 infection.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , Epitopos de Linfócito B , Epitopos de Linfócito T , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas Virais , Linfócitos B/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
6.
Parasite Immunol ; 42(11): e12729, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415855

RESUMO

Visceral leishmaniasis (VL) represents one of the most challenging infectious diseases worldwide. The reason that once infected, patient develops immunity against Leishmania parasite has paved way to develop prophylactic vaccines against disease, but only some of these have moved ahead for clinical trials. Herein, the study to explore novel and potential vaccine candidates was extended to pathogenic form of parasite, that is, amastigote form which is less explored due to complexity of its purification process. Methods and results. Classical protocol of purification of splenic amastigotes was modified to obtain highly pure amastigotes which was confirmed by Western blotting in support with proteomics studies. Fractionation and sub-fractionation of purified splenic amastigotes revealed four sub-fractions, belonging to 97 to 68 kDa and 68 to 43 kDa ranges, which showed long-lasting protection with remarkable Th1-type cellular responses in hamsters vaccinated with these sub-fractions (LTT, NO, QRT-PCR). Further proteomics analysis, to identify and understand the precise nature and function of these protective protein sub-fractions, identified a total of 47 proteins including twenty-five hypothetical proteins/unknowns. Amastigote stage has potential Th1-stimulatory vaccine candidates, notably, among identified proteins, major were uncharacterized proteins/hypothetical proteins, which once characterized may serve as novel and potential vaccine candidates/drug targets.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Poliproteínas/imunologia , Vacinas Protozoárias/imunologia , Vacinação , Animais , Cricetinae , Humanos , Leishmaniose Visceral/parasitologia , Masculino , Mesocricetus , Poliproteínas/metabolismo , Proteômica , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Baço/parasitologia , Células Th1/imunologia
7.
Infect Genet Evol ; 73: 390-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173935

RESUMO

The Mayaro virus (MAYV) belongs to genus "Alphavirus" and family "Togaviridae". MAYV has distribution in the Amazonia, Central and Northeastern regions of Brazil. The abundance of mosquito vector Haemagogus janthinomys has major role in the outbreaks of arthralgia disease in Brazil. Vaccination or immunization is an alternative approach for the protection against this disease. To search the effective candidate for vaccine against Mayaro virus, various immunoinformatics tools were used to predict both the B and T cell epitopes from five structural polyproteins (capsid, E2, 6K, E3and E1). A multi subunit vaccine was designed and the final sequence was modeled for docking with TLR-3. Human b defensin based on previous studies was used as linker. The docked complexes of vaccine-TLR-3 were then subjected to dynamics stability and RMSD and RMSF results suggested that the complexes are stable. Further, to validate our final vaccine construct, in silico cloning was carried out using E. coli as host. The CAI value of 0.96 suggests that the vaccine construct properly expresses in the host. The current findings will be useful for the future experimental validations to ratify the immunogenicity and safety of the supposed structure of vaccine, and ultimately to treat the Mayaro virus, associated infections.


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/imunologia , Formação de Anticorpos/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Brasil , Biologia Computacional , Simulação por Computador , Escherichia coli/imunologia , Humanos , Modelos Moleculares , Poliproteínas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinologia/métodos
8.
Virology ; 532: 88-96, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31048107

RESUMO

The aim of the study was to identify peptides within the polyprotein (Pp) 1 ab that are differentially recognised by cats with either enteric or systemic disease following infection with feline coronavirus. Overlapping 12-mer peptides (n = 28,426) across the entire Pp1ab were arrayed on peptide chips and reacted with pooled sera from coronavirus seropositive cats and from one seronegative cat. Eleven peptides were further tested in ELISA with individual serum samples, and three were selected for further screening. Two peptides (16433 and 4934) in the nsp3 region encoding the papain 1 and 2 proteases were identified for final testing. Peptide 4934 reacted equally with positive sera from healthy cats and cats with feline infectious peritonitis (FIP), while peptide 16433 was recognized predominantly by FIP-affected cats. The value of antibody tests based on these peptides in differentiating between the enteric and FIP forms of feline coronavirus infection remains to be determined.


Assuntos
Coronavirus Felino/imunologia , Epitopos/química , Peritonite Infecciosa Felina/imunologia , Peptídeos/química , Poliproteínas/química , Proteínas Virais/química , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Especificidade de Anticorpos , Gatos , Coronavirus Felino/química , Coronavirus Felino/isolamento & purificação , Epitopos/genética , Epitopos/imunologia , Peritonite Infecciosa Felina/virologia , Feminino , Expressão Gênica , Soros Imunes/química , Masculino , Mapeamento de Peptídeos , Peptídeos/genética , Peptídeos/imunologia , Poliproteínas/genética , Poliproteínas/imunologia , Ligação Proteica , Proteínas Virais/genética , Proteínas Virais/imunologia
9.
J Immunol Res ; 2018: 6718083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402510

RESUMO

Oropouche virus (OROV) is an emerging pathogen which causes Oropouche fever and meningitis in humans. Several outbreaks of OROV in South America, especially in Brazil, have changed its status as an emerging disease, but no vaccine or specific drug target is available yet. Our approach was to identify the epitope-based vaccine candidates as well as the ligand-binding pockets through the use of immunoinformatics. In this report, we identified both T-cell and B-cell epitopes of the most antigenic OROV polyprotein with the potential to induce both humoral and cell-mediated immunity. Eighteen highly antigenic and immunogenic CD8+ T-cell epitopes were identified, including three 100% conserved epitopes (TSSWGCEEY, CSMCGLIHY, and LAIDTGCLY) as the potential vaccine candidates. The selected epitopes showed 95.77% coverage for the mixed Brazilian population. The docking simulation ensured the binding interaction with high affinity. A total of five highly conserved and nontoxic linear B-cell epitopes "NQKIDLSQL," "HPLSTSQIGDRC," "SHCNLEFTAITADKIMSL," "PEKIPAKEGWLTFSKEHTSSW," and "HHYKPTKNLPHVVPRYH" were selected as potential vaccine candidates. The predicted eight conformational B-cell epitopes represent the accessibility for the entered virus. In the posttherapeutic strategy, ten ligand-binding pockets were identified for effective inhibitor design against emerging OROV infection. Collectively, this research provides novel candidates for epitope-based peptide vaccine design against OROV.


Assuntos
Infecções por Bunyaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Mapeamento de Epitopos/métodos , Informática/métodos , Orthobunyavirus/fisiologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/imunologia , Sítios de Ligação , Brasil , Doenças Transmissíveis Emergentes , Simulação por Computador , Sequência Conservada/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Simulação de Acoplamento Molecular , Poliproteínas/imunologia , Proteínas Virais/imunologia
10.
Nat Commun ; 9(1): 3067, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076287

RESUMO

Current efforts to develop Zika virus (ZIKV) subunit vaccines have been focused on pre-membrane (prM) and envelope (E) proteins, but the role of NS1 in ZIKV-specific immune response and protection is poorly understood. Here, we develop an attenuated recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing ZIKV prM-E-NS1 as a polyprotein. This vectored vaccine candidate is attenuated in mice, where a single immunization induces ZIKV-specific antibody and T cell immune responses that provide protection against ZIKV challenge. Co-expression of prM, E, and NS1 induces significantly higher levels of Th2 and Th17 cytokine responses than prM-E. In addition, NS1 alone is capable of conferring partial protection against ZIKV infection in mice even though it does not induce neutralizing antibodies. These results demonstrate that attenuated rVSV co-expressing prM, E, and NS1 is a promising vaccine candidate for protection against ZIKV infection and highlights an important role for NS1 in ZIKV-specific cellular immune responses.


Assuntos
Poliproteínas/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vetores Genéticos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poliproteínas/genética , Células Th17/metabolismo , Células Th2/metabolismo , Vacinação , Vacinas Atenuadas , Vacinas de DNA/imunologia , Vacinas Sintéticas , Vesiculovirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas não Estruturais Virais/genética , Vacinas Virais/genética , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/imunologia
11.
Virus Res ; 243: 36-43, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29037477

RESUMO

Inactivated purified whole virus vaccines are used for control of foot and mouth disease (FMD). ELISAs detecting antibodies to the nonstructural proteins (NSP), a marker of infection, are primarily used to differentiate FMD virus (FMDV) infected from vaccinated animals (DIVA). However, such DIVA assays have a limitation to their specificity since residual NSPs present in the relatively impure vaccines are suspected to induce an NSP-antibody response in the repeatedly vaccinated animals. Epitope-deleted negative marker vaccine strategy seems to have an advantage over the conventional vaccines in identifying the infected animals with accuracy. NSP 3AB contains an abundance of immunodominant B-cell epitopes of diagnostic importance. This study addresses the feasibility of producing 3AB-truncated FMDV mutant as a potential negative marker vaccine candidate. An infectious cDNA clone of FMDV serotype Asia 1 strain was used to engineer an array of deletion mutations in the established antigenic domain of 3AB. The maximum length of deletion tolerated by the virus was found to be restricted to amino acid residues 87-144 in the C-terminal half of 3A protein along with deletion of the first two copies of 3B peptide. The 3AB-truncated marker virus (Asia 1 IND 491/1997Δ3A87-1443B1,2+FLAG) demonstrated infectivity titres comparable to that of the parental virus in BHK-21 (log10 7.42 TCID50/ml) and LFBK-αVß6 (log10 8.30 TCID50/ml) cell monolayer culture. The protein fragment corresponding to the viable deletion in the 3AB region was expressed in a prokaryotic system to standardize a companion assay (3A87-1533B1,2 I-ELISA) for the negative marker virus which showed reasonably high diagnostic sensitivity (96.9%) and specificity (100% for naïve and 97.1% for uninfected vaccinated samples). The marker virus and its companion ELISA designed in this study provide a basis to devise a marker vaccine strategy for FMD control.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Poliproteínas/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Análise Mutacional de DNA , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/imunologia , Poliproteínas/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
12.
J Gen Virol ; 97(9): 2243-2254, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339177

RESUMO

Mosquito-transmitted Sindbis virus (SINV) causes fever, skin lesions and musculoskeletal symptoms if transmitted to man. SINV is the prototype virus of genus Alphavirus, which includes other arthritogenic viruses such as chikungunya virus (CHIKV) and Ross River virus (RRV) that cause large epidemics with a considerable public health burden. Until now the human B-cell epitopes have been studied for CHIKV and RRV, but not for SINV. To identify the B-cell epitopes in SINV-infection, we synthetised a library of linear 18-mer peptides covering the structural polyprotein of SINV, and probed it with SINV IgG-positive and IgG-negative serum pools. By comparing the binding profiles of the pools, we identified 15 peptides that were strongly reactive only with the SINV IgG-positive pools. We then utilized alanine scanning and individual (n=22) patient sera to further narrow the number of common B-cell epitopes to six. These epitopes locate to the capsid, E2, E1 and to a region in PE2 (uncleaved E3-E2), which may only be present in immature virions. By sequence comparison, we observed that one of the capsid protein epitopes shares six identical amino acids with macrophage migration inhibitory factor (MIF) receptor, which is linked to inflammatory diseases and to molecular pathology of alphaviral arthritides. Our results add to the current understanding on SINV disease and raise questions of a potential role of uncleaved PE2 and the MIF receptor (CD74) mimotope in human SINV infection.


Assuntos
Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Poliproteínas/imunologia , Sindbis virus/imunologia , Proteínas Virais/imunologia , Análise Mutacional de DNA , Epitopos de Linfócito B/genética , Humanos , Mutagênese Sítio-Dirigida , Poliproteínas/genética , Proteínas Virais/genética
13.
Arch Virol ; 161(7): 1849-58, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27072852

RESUMO

The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus.


Assuntos
Nicotiana/imunologia , Doenças das Plantas/imunologia , Poliproteínas/química , Poliproteínas/imunologia , Vírus de RNA/imunologia , RNA Viral/genética , Proteínas Virais/química , Proteínas Virais/imunologia , Motivos de Aminoácidos , Doenças das Plantas/virologia , Poliproteínas/genética , Conformação Proteica em alfa-Hélice , Vírus de RNA/química , Vírus de RNA/genética , RNA Viral/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
14.
PLoS One ; 10(3): e0122560, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822536

RESUMO

Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis--Rv1813, Rv2660c, Ag85B, Rv2623, and HspX--were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6'-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+ IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+ TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants preclinical evaluation in animal models of latent infection and may boost BCG vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Mycobacterium tuberculosis/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/sangue , Antígenos de Bactérias/imunologia , Carga Bacteriana/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Imunização , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Poliproteínas/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Adulto Jovem
15.
Viruses ; 7(1): 252-67, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25606973

RESUMO

Vaccination is an important strategy for the control and prevention of infectious pancreatic necrosis (IPN) in farmed Atlantic salmon (Salmo salar) in the post-smolt stage in sea-water. In this study, a heterologous gene expression system, based on a replicon construct of salmonid alphavirus (SAV), was used for in vitro and in vivo expression of IPN virus proteins. The large open reading frame of segment A, encoding the polyprotein NH2-pVP2-VP4-VP3-COOH, as well as pVP2, were cloned and expressed by the SAV replicon in Chinook salmon embryo cells (CHSE-214) and epithelioma papulosum cyprini (EPC) cells. The replicon constructs pSAV/polyprotein (pSAV/PP) and pSAV/pVP2 were used to immunize Atlantic salmon (Salmo salar) by a single intramuscular injection and tested in a subsequent IPN virus (IPNV) challenge trial. A low to moderate protection against IPN was observed in fish immunized with the replicon vaccine that encoded the pSAV/PP, while the pSAV/pVP2 construct was not found to induce protection.


Assuntos
Alphavirus/genética , Antígenos Virais/imunologia , Infecções por Birnaviridae/veterinária , Portadores de Fármacos , Doenças dos Peixes/prevenção & controle , Vírus da Necrose Pancreática Infecciosa/imunologia , Poliproteínas/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/genética , Infecções por Birnaviridae/prevenção & controle , Doenças dos Peixes/imunologia , Vírus da Necrose Pancreática Infecciosa/genética , Injeções Intramusculares , Poliproteínas/genética , Salmo salar , Análise de Sobrevida , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
16.
J Virol Methods ; 211: 36-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445883

RESUMO

DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Poliproteínas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Galinhas , Portadores de Fármacos/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunidade Humoral , Vírus da Doença Infecciosa da Bursa/genética , Influenza Aviária/prevenção & controle , Testes de Neutralização , Plasmídeos/administração & dosagem , Poliproteínas/genética , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
17.
Hum Vaccin Immunother ; 10(8): 2220-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25424925

RESUMO

Human enterovirus 71 (EV71) plays an important role in hand, foot, and mouth disease (HFMD), which recently caused the death of hundreds of children in the Asia-Pacific region. However, there are no specific treatments available for EV71 infections; thus, a safe and effective vaccine is needed urgently. In this study, we developed an effective and economical method for producing EV71 polyprotein (P1 protein) in Pichia pastoris. Furthermore, we evaluated the potential of P1 protein as a candidate vaccine against EV71 virus. The data revealed that P1 protein induced persistent high cross-neutralization antibodies for different EV71 subtypes, and elicited significant splenocyte proliferation. The high levels of interleukin-10(IL-10) and interferon-gamma (IFN-γ) showed that P1 protein induced Th1 and Th2 immune responses. Interestingly, vaccinating female mice with the P1 protein conferred cross-protection against different EV71 subtypes to their neonatal offspring.Compared with heat-inactivated EV71, the P1 protein elicited improved humoral and cellular immune responses and showed good cross-protection with different EV71 subtypes. Therefore, the EV71-P1 protein produced by P. pastoris is a promising candidate vaccine against EV71.


Assuntos
Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Poliproteínas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Proliferação de Células , Reações Cruzadas , Enterovirus Humano A/genética , Feminino , Expressão Gênica , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos BALB C , Pichia/genética , Pichia/crescimento & desenvolvimento , Poliproteínas/administração & dosagem , Poliproteínas/genética , Poliproteínas/isolamento & purificação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
19.
BMC Infect Dis ; 14: 336, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24939009

RESUMO

BACKGROUND: The present study was aimed to evaluate whether IgG, IgM and IgA antibodies levels detected against a novel Mycobacterium tuberculosis polyprotein 38 F-64 F (with 38 F being the abbreviation for 38kD-ESAT6-CFP10 and 64 F for Mtb8.4-MPT64-TB16.3-Mtb8) are suitable for diagnosing active tuberculosis, and for monitoring the efficacy of chemotherapy on TB patients. METHODS: In this study, a total of 371 active TB patients without treatment were selected and categorized into S+/C+group (n=143), S-/C+group (n=106) or S-/C- group (n=122). A series of serum samples were collected from 82 active TB patients who had undergone anti-TB chemotherapy for 0-6 months at one month interval. Humoral responses (IgG, IgM and IgA) were determined for the novel Mycobacterium tuberculosis polyprotein using indirect ELISA methods in all of serum samples. RESULTS: For S+/C+, S-/C+and S-/C- active tuberculosis patients before anti-TB chemotherapy, the sensitivities of tests based on IgG were 65.7%, 46.2% and 52.5% respectively; the sensitivities based on IgM were 21.7%, 24.5% and 18.9%; and the sensitivities based on IgA were 25.2%, 17.9% and 23.8%. By combination of three isotypes, for all active tuberculosis patients, the test sensitivity increased to 70.4% with the specificity being 91.5%. After anti-TB chemotherapy, there were no significant differences between groups with different courses of anti-TB chemotherapy. CONCLUSIONS: The novel Mycobacterium tuberculosis polyprotein 38 F-64 F represents potential antigen suitable for measuring IgG, IgM and IgA antibodies. However, the serodiagnostic test based on the 38 F-64 F polyprotein appears unsuitable for monitoring the efficacy of chemotherapy.


Assuntos
Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Mycobacterium tuberculosis/imunologia , Poliproteínas/imunologia , Tuberculose/sangue , Adulto , Idoso , Anticorpos Antibacterianos/imunologia , Antituberculosos/uso terapêutico , Monitoramento de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 110(22): E2046-53, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23580623

RESUMO

The role of CD8(+) T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8(+) responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFNγ responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8(+) T cells is associated with protection from dengue virus disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Dengue/imunologia , Dengue/epidemiologia , Dengue/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Memória Imunológica/imunologia , Adulto , Primers do DNA/genética , Vírus da Dengue/genética , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Monócitos/metabolismo , Poliproteínas/imunologia , Poliproteínas/metabolismo , Estudos Soroepidemiológicos , Sri Lanka/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...