Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.371
Filtrar
1.
Int J Biol Macromol ; 277(Pt 4): 134530, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111490

RESUMO

Enhancing the thermostability of enzymes is crucial for industrial applications. Methods such as directed evolution are often limited by the huge sequence space and combinatorial explosion, making it difficult to obtain optimal mutants. In recent years, machine learning (ML)-guided protein engineering has become an attractive tool because of its ability to comprehensively explore the sequence space of enzymes and discover superior mutants. This study employed ML to perform combinatorial mutation design on the pectin lyase PMGL-Ba from Bacillus licheniformis, aiming to improve its thermostability. First, 18 single-point mutants with enhanced thermostability were identified through semi-rational design. Subsequently, the initial library containing a small number of low-order mutants was utilized to construct an ML model to explore the combinatorial sequence space (theoretically 196,608 mutants) of single-point mutants. The results showed that the ML-predicted second library was successfully enriched with highly thermostable combinatorial mutants. After one iteration of learning, the best-performing combinatorial mutant in the third library, P36, showed a 67-fold and 39-fold increase in half-life at 75 °C and 80 °C, respectively, as well as a 2.1-fold increase in activity. Structural analysis and molecular dynamics simulations provided insights into the improved performance of the engineered enzyme.


Assuntos
Estabilidade Enzimática , Aprendizado de Máquina , Polissacarídeo-Liases , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Engenharia de Proteínas/métodos , Simulação de Dinâmica Molecular , Mutagênese , Temperatura , Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Mutagênese Sítio-Dirigida/métodos , Mutação
2.
Carbohydr Polym ; 343: 122474, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174099

RESUMO

Alginate is one of the most important marine colloidal polysaccharides, and its oligosaccharides have been proven to possess diverse biological functions. Alginate lyases could specifically degrade alginate and therefore serve as desirable tools for the research and development of alginate. In this report, a novel catalytic domain, which demonstrated no significant sequence similarity with all previously defined functional domains, was verified to exhibit a random endo-acting lyase activity to alginate. The action pattern analysis revealed that the heterologously expressed protein, named Aly44A, preferred to degrade polyM. Its minimum substrates and the minimum products were identified as unsaturated alginate trisaccharides and disaccharides, respectively. Based on the sequence novelty of Aly44A and its homologs, a new polysaccharide lyase family (PL44) was proposed. The discovery of the novel enzyme and polysaccharide lyase family provided a new entrance for the gene-mining and acquiring of alginate lyases, and would facilitate to the utilization of alginate and its oligosaccharides.


Assuntos
Alginatos , Polissacarídeo-Liases , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Alginatos/química , Alginatos/metabolismo , Especificidade por Substrato , Domínio Catalítico , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo
3.
Carbohydr Polym ; 343: 122487, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174105

RESUMO

Oligosaccharides from uronic acid-containing polysaccharides can be produced either by chemical or enzymatic degradation. The benefit of using enzymes, called lyases, is their high specificity for various glycosidic linkages. Lyases cleave the polysaccharide chain by an ß-elimination reaction, yielding oligosaccharides with an unsaturated sugar (4-deoxy-l-erythro-hex-4-enepyranosyluronate) at the non-reducing end. In this work we have systematically studied acid degradation of unsaturated uronic acid oligosaccharides. Based on these findings, a method for preparing saturated oligosaccharides by enzymatic degradation of uronic acid-containing polysaccharides was developed. This results in oligosaccharides with a pre-defined distribution and proportion of sugar residues compared to the products of chemical degradation, while maintaining the chemical structure of the non-reducing end. The described method was demonstrated for generating saturated oligosaccharides of alginate, heparin and polygalacturonic acid. In the case of alginate, the ratio of hydrolysis rate of Δ-G and Δ-M linkages to that of G-G and M-M linkages, respectively, was found to be approximately 65 and 43, at pH* 3.4, 90 °C. Finally, this method has been demonstrated to be superior in the production of α-l-guluronate oligosaccharides with a lower content of ß-d-mannuronate residues compared to what can be achieved using chemical depolymerization alone.


Assuntos
Alginatos , Oligossacarídeos , Ácidos Urônicos , Alginatos/química , Oligossacarídeos/química , Ácidos Urônicos/química , Hidrólise , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Pectinas/química , Heparina/química
4.
Protein Expr Purif ; 224: 106564, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39111349

RESUMO

Pectin lyases are important in various industries, including tobacco leaves processing. In this paper, a novel pectin lyase Pel04 from Bacillus velezensis was characterized. Pel04 molecular weight (Mw) and isoelectric point (pI) of the protein sequence after removing the signal peptide are 43.0 kDa. The optimal temperature and pH of Pel04 is 50 °C and 9.0, respectively. Pel04 was stable in the range of 30-50 °C, and pH 9.5-11. Ca2+ can significantly stimulate the enzyme activity, while Cu2+, Co2+, Fe3+, and Mn2+ have inhibitory effects on Pel04. By Pel04 treatment, the overall content of acids, alcohols, esters and other aromas in tobacco leaves increased, while the contents of phenolic and heterocyclic substances decreased. Pel04 has important potential for industrial application particularly in improving quality of tobacco leaves.


Assuntos
Bacillus , Estabilidade Enzimática , Nicotiana , Polissacarídeo-Liases , Concentração de Íons de Hidrogênio , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura , Folhas de Planta/química , Folhas de Planta/enzimologia
5.
J Agric Food Chem ; 72(35): 19403-19412, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39180506

RESUMO

Alginate lyases (ALys) whose degrading products, alginate oligosaccharides, exhibit various outstanding biochemical activities have aroused increasing interest of researchers in the marine bioresource field. However, their predominant sourcing from marine bacteria, with limited yields and unclear genetic backgrounds, presents a challenge for industrial production. In this study, ALys (Aly01) from Vibrio natriegens SK 42.001 was expressed in Bacillus subtilis (B. subtilis), a nonpathogenic microorganism recognized as generally safe (GRAS). This accomplishment was realized through a comprehensive strategy involving vector and host selection, promoter and signal peptide screening, and engineering of the ribosome binding site (RBS) and the N-terminal coding sequence (NCS). The optimal combination was identified as the pP43NMK and B. subtilis WB600. Among the 19 reported strong promoters, PnprE exhibited the best performance, showing intracellular enzyme activities of 4.47 U/mL. Despite expectations, dual promoter construction did not yield a significant increase. Further, SPydhT demonstrated the highest extracellular activity (1.33 U/mL), which was further improved by RBS/NCS engineering, reaching 4.58 U/mL. Finally, after fed-batch fermentation, the extracellular activity reached 18.01 U/mL, which was the highest of ALys with a high molecular weight expressed in B. subtilis. These findings are expected to offer valuable insights into the heterologous expression of ALys in B. subtilis.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Polissacarídeo-Liases , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Sinais Direcionadores de Proteínas/genética , Vibrio/genética , Vibrio/enzimologia , Vetores Genéticos/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/química , Iniciação Traducional da Cadeia Peptídica
6.
Carbohydr Res ; 543: 109221, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067181

RESUMO

Hyaluronidases are a class of enzymes that can degrade hyaluronic acid and have a wide range of applications in the medical field. In this study, the marine bacterium Vibrio sp. ZG1, which can degrade HA, was isolated, leading to the discovery of two novel hyaluronan lyases, Vhylzx1 and Vhylzx2, through genome sequencing and bioinformatic analysis. These lyases belong to the polysaccharide lyase-8 family. Vhylzx1 and Vhylzx2 specifically degrade HA, with highest activity at 35 °C, pH 5.7 and 50 °C, pH 7.1. Vhylzx1 and Vhylzx2 are endo-type enzymes that can fully degrade HA into unsaturated disaccharides. Sequence homology assessment and site-directed mutagenesis revealed that the catalytic residues of Vhylzx1 are Asn231, His281, and Tyr290, and that the catalytic residues of Vhylzx2 are Asn227, His277, and Tyr286. Moreover, this study used consensus sequences to enhance the specific activity of Vhylzx2 mutants. Notably, the mutants V564I, N742D, L619F, and D658G increases the specific activity by 2.4, 2.2, 1.3, and 1.2-fold. These characteristics are useful for further basic research and applications, and have a promising application in the preparation of biologically active hyaluronic acid oligosaccharides.


Assuntos
Clonagem Molecular , Ácido Hialurônico , Polissacarídeo-Liases , Vibrio , Vibrio/enzimologia , Vibrio/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Ácido Hialurônico/química , Ácido Hialurônico/biossíntese , Ácido Hialurônico/metabolismo , Sequência de Aminoácidos , Especificidade por Substrato
7.
Enzyme Microb Technol ; 180: 110486, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038418

RESUMO

Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.


Assuntos
Alginatos , Estabilidade Enzimática , Fontes Hidrotermais , Polissacarídeo-Liases , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Alginatos/metabolismo , Fontes Hidrotermais/microbiologia , Biblioteca Gênica , Metagenômica , Especificidade por Substrato , Metagenoma , Temperatura , Sequência de Aminoácidos , Cinética , Concentração de Íons de Hidrogênio , Filogenia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Clonagem Molecular
8.
Int J Biol Macromol ; 277(Pt 1): 134093, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053825

RESUMO

Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, ß-agaroses, α-neoagarose hydrolases and ß-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, ß-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.


Assuntos
Glicosídeo Hidrolases , Oligossacarídeos , Polissacarídeos , Alga Marinha , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Alga Marinha/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Carragenina/química , Alginatos/química , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química
9.
Protein Expr Purif ; 223: 106551, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38997076

RESUMO

Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.


Assuntos
Clonagem Molecular , Polissacarídeo-Liases , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/isolamento & purificação , Polissacarídeo-Liases/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Escherichia/genética , Escherichia/enzimologia , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Estabilidade Enzimática , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato
10.
Int J Biol Macromol ; 277(Pt 1): 133972, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029836

RESUMO

A novel alginate lyase Aly7Aq was cloned and heterologous expressed by a combination of bioinformatics and molecular biology. Aly7Aq was an M-specific alginate lyase, exhibiting optimum reaction conditions at 50 °C and pH 10.0. Aly7Aq was determined to degrade polysaccharides in a random endo-acting manner. The minimum reaction substrate was tetrasaccharide, and Aly7Aq mainly attacked the third glycosidic linkage from the reducing end of oligosaccharide substrates. The disaccharide product of Aly7Aq was ΔM and the trisaccharide products were ΔMM and ΔMG, which differed from all previously characterized M-specific alginate lyases. The degradation products demonstrated that the ±2 subsites of Aly7Aq strictly recognized M units, while the -1 subsite accommodated both M and G units. Therefore, the substrate specificity of Aly7Aq was derived from the specificity of ±2 subsites. This is the first report on the specificity at subsite ±2 of M-specific alginate lyase. The novel M-specific Aly7Aq could serve as a potential tool in the specific degradation of alginate and targeted preparation of oligosaccharide.


Assuntos
Alginatos , Polissacarídeo-Liases , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Especificidade por Substrato , Alginatos/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Sequência de Aminoácidos
11.
Int J Biol Macromol ; 277(Pt 3): 134221, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069041

RESUMO

Alginate is a commercially important polysaccharide widely distributed in brown algae. Carbohydrate-binding modules (CBMs), a class of commonly used polysaccharide-binding proteins, have greatly facilitated the investigations of polysaccharides. Few alginate-binding CBMs have been hitherto reported and structurally characterized. Herein, an unknown domain from a potential PL6 family alginate lyase in the marine bacterium Vibrio breoganii was discovered and recombinantly expressed. The obtained protein, designated VbCBM106, displayed the favorable specificity to alginate. The unique sequence and well-defined function of VbCBM106 reveal a new CBM family (CBM106). Moreover, the structure of VbCBM106 was determined at a 1.5 Å resolution by the X-ray crystallography, which shows a typical ß-sandwich fold comprised of two antiparallel ß-sheets. Site-directed mutagenesis assays confirmed that positively charged polar residues are crucial for the ligand binding of VbCBM106. The discovery of VbCBM106 enriches the toolbox of alginate-binding proteins, and the elucidation of critical residues would guide the future practical applications of VbCBM106.


Assuntos
Alginatos , Alginatos/química , Alginatos/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Vibrio/enzimologia , Vibrio/genética , Ligação Proteica , Cristalografia por Raios X , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Especificidade por Substrato
12.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 142-147, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935515

RESUMO

Pseudoalteromonas fuliginea sp. PS47 is a recently identified marine bacterium that has extensive enzymatic machinery to metabolize polysaccharides, including a locus that targets pectin-like substrates. This locus contains a gene (locus tag EU509_03255) that encodes a pectin-degrading lyase, called PfPL1, that belongs to polysaccharide lyase family 1 (PL1). The 2.2 Šresolution X-ray crystal structure of PfPL1 reveals the compact parallel ß-helix fold of the PL1 family. The back side of the core parallel ß-helix opposite to the active site is a meandering set of five α-helices joined by lengthy loops. A comparison of the active site with those of other PL1 enzymes suggests a catalytic mechanism that is independent of metal ions, such as Ca2+, but that substrate recognition may require metal ions. Overall, this work provides the first structural insight into a pectinase of marine origin and the first structure of a PL1 enzyme in subfamily 2.


Assuntos
Domínio Catalítico , Modelos Moleculares , Polissacarídeo-Liases , Pseudoalteromonas , Pseudoalteromonas/enzimologia , Pseudoalteromonas/genética , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Cristalografia por Raios X , Sequência de Aminoácidos , Pectinas/metabolismo , Pectinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Especificidade por Substrato , Conformação Proteica
13.
Int J Biol Macromol ; 273(Pt 2): 132685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823749

RESUMO

To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.


Assuntos
Estabilidade Enzimática , Simulação de Dinâmica Molecular , Polissacarídeo-Liases , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Cinética , Temperatura , Engenharia de Proteínas/métodos , Mutação , Substituição de Aminoácidos , Mutagênese Sítio-Dirigida
14.
J Biol Chem ; 300(7): 107466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876302

RESUMO

Glycosaminoglycan (GAG) lyases are often strictly substrate specific, and it is especially difficult to simultaneously degrade GAGs with different types of glycosidic bonds. Herein, we found a new class of GAG lyases (GAGases) from different bacteria. These GAGases belong to polysaccharide lyase 35 family and share quite low homology with the identified GAG lyases. The most surprising thing is that GAGases can not only degrade three types of GAGs: hyaluronan, chondroitin sulfate, and heparan sulfate but also even one of them can also degrade alginate. Further investigation of structural preferences revealed that GAGases selectively act on GAG domains composed of non/6-O-/N-sulfated hexosamines and d-glucoronic acids as well as on alginate domains composed of d-mannuronic acids. In addition, GAG lyases were once speculated to have evolved from alginate lyases, but no transitional enzymes have been found. The discovery of GAGases not only broadens the category of GAG lyases, provides new enzymatic tools for the structural and functional studies of GAGs with specific structures, but also provides candidates for the evolution of GAG lyases.


Assuntos
Glicosaminoglicanos , Polissacarídeo-Liases , Especificidade por Substrato , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química
15.
Animal ; 18(6): 101189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850575

RESUMO

Laminaria digitata is a brown seaweed rich in prebiotic polysaccharides, mainly laminarin, but its alginate-rich cell wall could compromise nutrient access. Carbohydrase supplementation, such as individual alginate lyase and carbohydrases mixture (Rovabio® Excel AP), could enhance nutrient digestibility and prebiotic potential. This study aimed to evaluate the effect of these enzymes on nutrient digestibility and gut health of weaned piglets fed with 10% L. digitata. Diets did not affect growth performance (P > 0.05). The majority of the feed fractions had similar digestibility across all diets, but the supplementation of alginate lyase increased hemicellulose digestibility by 3.3% compared to the control group (P = 0.047). Additionally, we observed that algal zinc was more readily available compared to the control group, even without enzymatic supplementation (P < 0.001). However, the increased digestibility of some minerals, such as potassium, raises concerns about potential mineral imbalance. Seaweed groups had a higher abundance of beneficial bacteria in colon contents, such as Prevotella, Oscillospira and Catenisphaera. Furthermore, the addition of alginate lyase led to a lower pH in the colon (P < 0.001) and caecum (P < 0.001) of piglets, which is possibly a result of released fermentable laminarin, and is consistent with the higher proportion of butyric acid found in these intestinal compartments. L. digitata is a putative supplement to enhance piglet gut health due to its prebiotic polysaccharides. Alginate lyase supplementation further improves nutrient digestibility and prebiotic potential. These results suggest the potential use of L. digitata and these enzymatic supplements in commercial piglet-feeding practices.


Assuntos
Ração Animal , Suplementos Nutricionais , Digestão , Glicosídeo Hidrolases , Polissacarídeo-Liases , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Algas Comestíveis , Microbioma Gastrointestinal/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Laminaria/química , Nutrientes/metabolismo , Polissacarídeo-Liases/metabolismo , Prebióticos , Suínos , Desmame
16.
Food Chem ; 456: 140030, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38909459

RESUMO

Microbial pectinolytic enzymes are important in various industries, particularly food processing. This study focuses on uncovering insights into a novel pectin lyase, BvPelB, from Bacillus velezensis 16B, with the aim of enhancing fruit juice processing. The study examines the structural and functional characteristics of pectinolytic enzyme, underscoring the critical nature of substrate specificity and enzymatic reaction mechanisms. BvPelB was successfully expressed and purified, exhibiting robust activity under alkaline conditions and thermal stability. Structural analysis revealed similarities with other pectin lyases, despite limited sequence identity. Biochemical characterization showed BvPelB's preference for highly methylated pectins and its endo-acting mode of cleavage. Treatment with BvPelB significantly increased juice yield and clarity without generating excessive methanol, making it a promising candidate for fruit juice processing. Overall, this study provides valuable insights into the enzymatic properties of BvPelB and its potential industrial applications in improving fruit juice processing efficiency and quality.


Assuntos
Bacillus , Proteínas de Bactérias , Manipulação de Alimentos , Sucos de Frutas e Vegetais , Polissacarídeo-Liases , Bacillus/enzimologia , Bacillus/química , Sucos de Frutas e Vegetais/análise , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Especificidade por Substrato , Estabilidade Enzimática , Pectinas/metabolismo , Pectinas/química , Frutas/química , Frutas/enzimologia , Frutas/microbiologia
17.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891987

RESUMO

Alginate lyases cleave the 1,4-glycosidic bond of alginate by eliminating sugar molecules from its bond. While earlier reported alginate lyases were primarily single catalytic domains, research on multi-module alginate lyases has been lfiguimited. This study identified VsAly7A, a multi-module alginate lyase present in Vibrio sp. QY108, comprising a "Pro-Asp-Thr(PDT)" fragment and two PL-7 catalytic domains (CD I and CD II). The "PDT" fragment enhances the soluble expression level and increases the thermostability and binding affinity to the substrate. Moreover, CD I exhibited greater catalytic efficiency than CD II. The incorporation of PDT-CD I resulted in an increase in the optimal temperature of VsAly7A, whereas CD II displayed a preference for polyG degradation. The multi-domain structure of VsAly7A provides a new idea for the rational design of alginate lyase, whilst the "PDT" fragment may serve as a fusion tag in the soluble expression of recombinant proteins.


Assuntos
Alginatos , Estabilidade Enzimática , Polissacarídeo-Liases , Vibrio , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Vibrio/enzimologia , Vibrio/genética , Alginatos/metabolismo , Alginatos/química , Ligação Proteica , Domínio Catalítico , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Solubilidade , Sequência de Aminoácidos , Temperatura , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
Int J Biol Macromol ; 269(Pt 1): 132084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719003

RESUMO

Pseudomonas aeruginosa biofilm enhances tolerance to antimicrobials and immune system defenses. Alginate is an important component of biofilm and a virulence factor of P. aeruginosa. The degradation of alginate by alginate lyases has come to serve as an adjunctive therapeutic strategy against P. aeruginosa biofilm, but poor stability of the enzyme limited this application. Thus, PspAlgL, an alginate lyase, can degrade acetylated alginate but has poor thermostability. The 3D structure of PspAlgL was predicted, and the thermostability of PspAlgL was rationally designed by GRAPE strategy, resulting in two variants with better stability. These variants, PspAlgLS270F/E311P and PspAlgLG291S/E311P, effectively degraded the alginate in biofilm. In addition, compared with PspAlgL, these variants were more efficient in inhibiting biofilm formation and degrading the established biofilm of P. aeruginosa PAO1, and they were also able to destroy the biofilm attached to catheters and to increase the sensitivity of P. aeruginosa to the antibiotic amikacin. This study provides one potential anti-biofilm agent for P. aeruginosa infection.


Assuntos
Alginatos , Antibacterianos , Biofilmes , Polissacarídeo-Liases , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Estabilidade Enzimática , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Modelos Moleculares
19.
Food Chem ; 453: 139695, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788651

RESUMO

Alginate lyases with high activity and good thermostability are lacking for the preparation of alginate oligosaccharides (AOS) with various biological activities. We constructed a fusion alginate lyase with both endo-and exo-activities. AlyRm6A-Zu7 was successfully constructed by connecting the highly thermostable AlyRm6A to a new exotype lyase, AlyZu7. The fusion enzyme exhibited high catalytic activity and thermostability. It transformed sodium alginate into oligosaccharides with degrees of polymerization (DP) of 2-4 while producing 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). The maximum reducing sugar, AOS, and DP1 + DEH yields were 75 %, 45 %, and 40 %, respectively. Molecular docking confirmed the formation of a stable complex between the substrate and AlyRm6A-Zu7. Protein interactions increased the thermostability of AlyZu7. This work provides new insights into the industrial formation of AOS and monosaccharide DEH using thermally stable fusion enzymes, which has a positive effect in the fields of functional oligosaccharide production and biofuel formation.


Assuntos
Alginatos , Estabilidade Enzimática , Simulação de Acoplamento Molecular , Oligossacarídeos , Polissacarídeo-Liases , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Alginatos/química , Alginatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Biocatálise
20.
Braz J Microbiol ; 55(2): 1189-1203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705960

RESUMO

Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.


Assuntos
Antibacterianos , Biofilmes , Paenibacillus , Polissacarídeo-Liases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Antibacterianos/farmacologia , Paenibacillus/genética , Paenibacillus/enzimologia , Paenibacillus/efeitos dos fármacos , Gentamicinas/farmacologia , Amicacina/farmacologia , Fermentação , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Alginatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA