Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.443
Filtrar
1.
Methods Mol Biol ; 2822: 353-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907928

RESUMO

Polymeric delivery systems could enable the fast- and low-side-effect transport of various RNA classes. Previously, we demonstrated that polyvinylamine (PVAm), a cationic polymer, transfects many kinds of RNAs with high efficiency and low toxicity both in vitro and in vivo. The modification of poly lactic-co-glycolic acid (PLGA) with cartilage-targeting peptide (CAP) enhances its stiffness and tissue-specific delivery of RNA to overcome the avascular nature of articular cartilage. Here we describe the protocol to use PVAm as an RNA carrier, and further, by modifying PVAm with PLGA and CAP, the corresponding co-polymer could be applied for functional RNA delivery for osteoarthritis treatment.


Assuntos
Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polivinil , Polivinil/química , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Ácido Láctico/química , Transfecção/métodos , Técnicas de Transferência de Genes , Ácido Poliglicólico/química , Portadores de Fármacos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Osteoartrite/tratamento farmacológico
2.
Environ Sci Pollut Res Int ; 31(27): 39663-39677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831146

RESUMO

The mixed wastewater generated by anodic oxidation coating facilities contains high levels of various contaminants, including iron, aluminum, conductivity, chemical oxygen demand (COD), and sulfate. In this study, the effectiveness of the membrane distillation (MD) process using polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes was investigated to treat mixed wastewater from an anodized coating factory. The results indicate that both hydrophobic membranes effectively removed targeted contaminants. However, the PTFE membrane achieved higher removal efficiencies, with over 99% removal of sulfate, conductivity, iron, and aluminum, 85.7% of COD, and 86% of total organic carbon (TOC). In contrast, the PVDF membrane exhibited a significant decline in removal efficiency as the temperature increased and performed well only at lower feed temperatures. The PTFE membranes outperformed the PVDF membranes in treating chemically intensive anodic oxidation wastewaters. This superiority can be attributed to the PTFE membrane's morphology and structure, which are less influenced by feed water temperature and chemicals. Additionally, its slippery surface imparts anti-adhesion properties, effectively preventing membrane fouling, and maintaining the treated water quality and flux for longer operation time.


Assuntos
Destilação , Membranas Artificiais , Oxirredução , Politetrafluoretileno , Polivinil , Águas Residuárias , Águas Residuárias/química , Politetrafluoretileno/química , Polivinil/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Poluentes Químicos da Água , Polímeros de Fluorcarboneto
3.
J Cell Mol Med ; 28(11): e18389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864691

RESUMO

Chemotherapy resistance remains a significant challenge in treating ovarian cancer effectively. This study addresses this issue by utilizing a dual drug-loaded nanomicelle system comprising albendazole (ABZ) and paclitaxel (PTX), encapsulated in a novel carrier matrix of D-tocopheryl polyethylene glycol 1000 succinate vitamin E (TPGS), soluplus and folic acid. Our objective was to develop and optimize this nanoparticulate delivery system using solvent evaporation techniques to enhance the therapeutic efficacy against ovarian cancer. The formulation process involved pre-formulation, formulation, optimization, and comprehensive characterization of the micelles. Optimization was conducted through a 32 factorial design, focusing on the effects of polymer ratios on particle size, zeta potential, polydispersity index (PDI) and entrapment efficiency (%EE). The optimal formulation demonstrated improved dilution stability, as indicated by a critical micelle concentration (CMC) of 0.0015 mg/mL for the TPGS-folic acid conjugate (TPGS-FOL). Extensive characterization included differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The release profile exhibited an initial burst followed by sustained release over 90 h. The cytotoxic potential of the formulated micelles was superior to that of the drugs alone, as assessed by MTT assays on SKOV3 ovarian cell lines. Additionally, in vivo studies confirmed the presence of both drugs in plasma and tumour tissues, suggesting effective targeting and penetration. In conclusion, the developed TPGS-Fol-based nanomicelles for co-delivering ABZ and PTX show promising results in overcoming drug resistance, enhancing solubility, sustaining drug release, and improving therapeutic outcomes in ovarian cancer treatment.


Assuntos
Albendazol , Micelas , Neoplasias Ovarianas , Paclitaxel , Feminino , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Paclitaxel/química , Albendazol/química , Albendazol/farmacologia , Albendazol/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Polietilenoglicóis/química , Vitamina E/química , Ácido Fólico/química , Camundongos , Liberação Controlada de Fármacos , Tamanho da Partícula , Polivinil/química , Polímeros/química , Ensaios Antitumorais Modelo de Xenoenxerto
4.
ACS Sens ; 9(6): 2907-2914, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38759108

RESUMO

Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.


Assuntos
Biônica , Tato , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrodos , Fontes de Energia Elétrica , Impressão Tridimensional , Polivinil/química
5.
ACS Sens ; 9(6): 2989-2998, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771707

RESUMO

Flexible, air permeable and elastic self-powered sensors for human motion monitoring and assisted medical rehabilitation have recently become a hot research topic. However, most current piezoelectric sensors can not account for many characteristics. Addressing this challenge, an all-textile piezoelectric sensor (ATPS) based on 3D structured knitted fabric electrodes is reported. The ATPS consists of a piezoelectric element polyvinylidene fluoride nanofiber membrane, flexible knitted fabric electrodes, and an elastic self-adhesive bandage. Based on the flexible and efficient knitting technology, the sensor has the advantages of low cost, flexibility, simple structure, and convenient large-area manufacturing. Experimental and finite element simulation results show that the knitting pattern of fabric electrodes can enhance the piezoelectric output of ATPS. The optimal ATPS has a high voltage response sensitivity of up to 0.68 V/kPa. The proposed ATPS responds to a wide range of input forces from 0.098 to 724 N in self-powered mode, verifying its feasibility as a tactile sensor for human motion detection and recognition (throat swallowing, wrist bending, elbow bending, knee bending, walking slowly, running fast) and as a pressure sensor (Morse code, digit recognition) and demonstrating its potential for motion tracking, medical rehabilitation, and human-computer interaction.


Assuntos
Eletrodos , Dispositivos Eletrônicos Vestíveis , Humanos , Têxteis , Nanotecnologia/instrumentação , Polivinil/química , Fontes de Energia Elétrica , Polímeros de Fluorcarboneto
6.
ACS Sens ; 9(6): 3137-3149, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38812068

RESUMO

Tourmaline is known for its natural negative ion effect and far-infrared radiation function, which promote human blood circulation, relieve pain, regulate the endocrine system, and enhance immunity and other functions. These functions motivate the use of this material for enhanced sensitivity of wearable sensors. In this work, taking advantage of the unique multifunctions of tourmaline nanoparticles (Tur), highly boosted piezoelectricity was achieved by incorporating polydopamine (PDA)-modified Tur in PVDF. The PDA@Tur nanofillers not only effectively increased the ß-phase content of PVDF but also played a major role in significantly enhancing piezoelectricity, wettability, elasticity, air permeability, and stability of the piezoelectric sensors. Especially, the maximum output voltage of the fiber membrane with 0.5 wt % PDA@Tur reached 31.0 V, being 4 times that of the output voltage of the pure PVDF fiber membrane. Meanwhile, the sensitivity reached 0.7011 V/kPa at 1-10 N, which was 3.6 times that of pure PVDF film (0.196 V/kPa). The power intensity reached 8 µW/cm2, being 5.55 times that of the pristine PVDF PENG (1.44 µW/cm2), and the piezoelectric coefficient from d33 m/PFM is 5.5 pC/N, higher than that of pristine PVDF PENG (3.1 pC/N). Output signal graphs corresponding to flapping, finger, knee, and elbow movements were detected. The response/recovery time of the sensor device was 24/19 ms. The piezoelectric nanogenerator (PENG) was capable of charging multiple capacitors to 2 V within a short time and lighting up 15 light-emitting diodes bulbs (LEDs) simultaneously with a single beat. In addition, a 4 × 4 row-column multiplexed sensor array was made of PENGs, which showed distinct responses to different stress areas in different sensor modules. This study demonstrated high-performance PDA@Tur PVDF-based PENG being capable of energy harvesting and sensing, providing a guideline for the design and buildup of wearable self-powered devices in healthcare and human-computer interaction.


Assuntos
Indóis , Nanopartículas , Polímeros , Dispositivos Eletrônicos Vestíveis , Indóis/química , Polímeros/química , Nanopartículas/química , Polivinil/química , Humanos , Polímeros de Fluorcarboneto
7.
ACS Appl Mater Interfaces ; 16(22): 28029-28040, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775012

RESUMO

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.


Assuntos
Adesão Celular , Diferenciação Celular , Polpa Dentária , Estimulação Elétrica , Odontogênese , Polivinil , Células-Tronco , Polpa Dentária/citologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Humanos , Adesão Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Polivinil/química , Animais , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Propriedades de Superfície
8.
J Colloid Interface Sci ; 671: 336-343, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815370

RESUMO

Against the backdrop of advancements in modern multifunctional wearable electronics, there is a growing demand for simple, sustainable, and portable electronic skin (e-skin), posing significant challenges. This study aims to delineate the development of a straightforward, transparent, highly sensitive, and high power-density electronic skin based on a triboelectric nanogenerator(S-TENG), designed for harvesting human body energy and real-time monitoring of the physiological motion status. Our e-skin incorporates thermally treated polyvinylidene fluoride (PVDF) fiber membranes as the contact layer and a film of silver nanowires as the conductive electrodes. The resulting contact-separation type e-skin exhibits an impressive transparency of 80 %, along with a nice sensitivity value, capable of detecting a light touch from a 0.13 g sponge and demonstrating good working stability and breathability. Leveraging the triboelectric effect, our e-skin generates an open-circuit voltage of 301 V and a short-circuit current of 2.7 µA under an extrinsic force of 8 N over an interaction area of 4 × 4 cm2, achieving a power density up to 306 mW/m2. With its signal processing circuitry, the integrated S-TENG showcases nice energy harvesting and signal transmission capabilities. Accordingly, we contend that S-TENG has potential applications in energy capture and real-time human motion state monitoring. This research is anticipated to blaze a novel and practical trail for self-powered wearable devices and personalized health rehabilitation training regimens.


Assuntos
Fontes de Energia Elétrica , Dispositivos Eletrônicos Vestíveis , Humanos , Nanotecnologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Nanofios/química , Prata/química , Polivinil/química , Eletrodos , Propriedades de Superfície , Testes Respiratórios/instrumentação , Polímeros de Fluorcarboneto
9.
Talanta ; 276: 126289, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776779

RESUMO

Aggregation-induced emission (AIE) has been widely used in research on electrochemiluminescence (ECL) due to its excellent luminescence intensity. In this work, copper superparticles (Cu SPs) were used to construct ECL biosensor to detect the microRNA-103a (miRNA-103a) in triple-negative breast cancer (TNBC) tumor tissues. Firstly, GSH-capped copper clusters were used as precursors to prepare Cu SPs by the AIE effect. Compared with clusters, Cu SPs possessed higher luminescence performance and energy stability, making them an ideal choice for ECL nanoprobe. The film of PVDF-HFP/CeVO4 NPs was constructed and modified with CPBA and GSH as the sensing interface (PCCG). The PCCG film displayed good conductivity and hydrophilicity, and desirable mechanical stability. Moreover, the PCCG film can induce high carrier mobility rates and dissociate large amounts of the co-reactant K2S2O8 to enhance the ECL intensity of Cu SPs. As a result, the prepared ECL sensor with the catalyzed hairpin assembly (CHA) strategy was employed to quantify miRNA-103a in the range of 100 fM to 100 nM. The biosensor provided a novel analytical approach for the clinical diagnosis of TNBC.


Assuntos
Técnicas Biossensoriais , Cobre , MicroRNAs , MicroRNAs/análise , Cobre/química , Humanos , Técnicas Biossensoriais/métodos , Polivinil/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Neoplasias de Mama Triplo Negativas/genética
10.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732199

RESUMO

Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.


Assuntos
Nanofibras , Polivinil , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Polivinil/química , Humanos , Alicerces Teciduais/química , Nanofibras/química , Materiais Biocompatíveis/química , Células Cultivadas , Espectroscopia de Infravermelho com Transformada de Fourier , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/metabolismo , Peso Molecular , Polímeros de Fluorcarboneto
11.
Sensors (Basel) ; 24(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38733034

RESUMO

INTRODUCTION: The choice of materials for covering plantar orthoses or wearable insoles is often based on their hardness, breathability, and moisture absorption capacity, although more due to professional preference than clear scientific criteria. An analysis of the thermal response to the use of these materials would provide information about their behavior; hence, the objective of this study was to assess the temperature of three lining materials with different characteristics. MATERIALS AND METHODS: The temperature of three materials for covering plantar orthoses was analyzed in a sample of 36 subjects (15 men and 21 women, aged 24.6 ± 8.2 years, mass 67.1 ± 13.6 kg, and height 1.7 ± 0.09 m). Temperature was measured before and after 3 h of use in clinical activities, using a polyethylene foam copolymer (PE), ethylene vinyl acetate (EVA), and PE-EVA copolymer foam insole with the use of a FLIR E60BX thermal camera. RESULTS: In the PE copolymer (material 1), temperature increases between 1.07 and 1.85 °C were found after activity, with these differences being statistically significant in all regions of interest (p < 0.001), except for the first toe (0.36 °C, p = 0.170). In the EVA foam (material 2) and the expansive foam of the PE-EVA copolymer (material 3), the temperatures were also significantly higher in all analyzed areas (p < 0.001), ranging between 1.49 and 2.73 °C for EVA and 0.58 and 2.16 °C for PE-EVA. The PE copolymer experienced lower overall overheating, and the area of the fifth metatarsal head underwent the greatest temperature increase, regardless of the material analyzed. CONCLUSIONS: PE foam lining materials, with lower density or an open-cell structure, would be preferred for controlling temperature rise in the lining/footbed interface and providing better thermal comfort for users. The area of the first toe was found to be the least overheated, while the fifth metatarsal head increased the most in temperature. This should be considered in the design of new wearables to avoid excessive temperatures due to the lining materials.


Assuntos
Órtoses do Pé , Temperatura , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Polivinil/química , Polietileno/química , Polímeros/química , Teste de Materiais
12.
Poult Sci ; 103(7): 103768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703758

RESUMO

Baicalein (BAI) is a natural flavonoid with antioxidant, antitumor and antibacterial properties. However, the bioavailability of BAI was limited due to low solubility. This study aims to improve the solubility of BAI through the amorphous solid dispersion (ASD) and evaluate changes in its pharmacokinetics and pharmacodynamics in Taihang chickens. Polyethylene caprolactam-polyvinyl acetate-polyethylene glycol grafted copolymer (Soluplus) was chosen as the carrier, and ASD was prepared by rotary evaporation and was characterized by powder X-ray diffractions (PXRD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FT-IR). In vitro dissolution assays were used to screen the optimal ratio of drug to carrier, in vivo pharmacokinetic assays were conducted to investigate the promoting effect on the absorption. In addition, the effects of ASD on the growth performance, meat quality, antioxidant capacity and intestinal flora were investigated. ASD (1:9 and 2:8) did not exhibit crystal diffraction peaks of BAI in PXRD or endothermic peaks in DSC, indicating the successful preparation of ASD. The results of in vitro dissolution assay showed that the cumulative dissolution rate of ASD (2:8) within 600 min was 52.67%, which was 7.84-fold higher than BAI. The pharmacokinetic results showed that the peak concentration (Cmax) and the area under the drug-time curve (AUC0∼24) of ASD (2:8) was (5.20 ± 0.82) µg/mL and (17.03 ± 0.67) µg·h/mL, which was 1.91 and 2.64-fold higher than BAI, respectively. Dietary supplementation of BAI and ASD could increase average daily gain (ADG), while decrease feed conversion ratio (FCR), but there was no significant difference (P > 0.05). The drip loss of BAIASD group was lower than BAI group (P < 0.05). In addition, the antioxidant capacity of Taihang chickens were enhanced, the diversity and the abundance of beneficial bacteria was improved. Results of BAI upon the dietary supplementation tested in Taihang chickens, after preparation of ASD, indicating a superior enhancement effect in growth performance, meat quality, antioxidant capacity and intestinal flora due to an improved solubility and optimized bioavailability.


Assuntos
Ração Animal , Antioxidantes , Disponibilidade Biológica , Galinhas , Dieta , Flavanonas , Microbioma Gastrointestinal , Carne , Solubilidade , Animais , Galinhas/crescimento & desenvolvimento , Antioxidantes/metabolismo , Flavanonas/administração & dosagem , Flavanonas/química , Flavanonas/farmacologia , Carne/análise , Ração Animal/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta/veterinária , Polivinil/química , Polivinil/administração & dosagem , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Suplementos Nutricionais/análise
13.
J Dent ; 146: 105037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703808

RESUMO

OBJECTIVES: To evaluate the positional accuracy of implant analogs in biobased model resin by comparing them to that of implant analogs in model resin casts and conventional analogs in dental stone casts. METHODS: Polyvinylsiloxane impressions of a partially edentulous mandibular model with a single implant were made and poured in type IV dental stone. The same model was also digitized with an intraoral scanner and additively manufactured implant casts were fabricated in biobased model resin (FotoDent biobased model) and model resin (FotoDent model 2 beige-opaque) (n = 8). All casts and the model were digitized with a laboratory scanner, and the scan files were imported into a 3-dimensional analysis software (Geomagic Control X). The linear deviations of 2 standardized points on the scan body used during digitization were automatically calculated on x-, y-, and z-axes. Average deviations were used to define precision, and 1-way analysis of variance and Tukey HSD tests were used for statistical analyses (α = 0.05). RESULTS: Biobased model resin led to higher deviations than dental stone (all axes, P ≤ 0.031) and model resin (y-axis, P = 0.015). Biobased model resin resulted in the lowest precision of implant analog position (P ≤ 0.049). The difference in the positional accuracy of implant analogs of model resin and stone casts was nonsignificant (P ≥ 0.196). CONCLUSIONS: Implant analogs in biobased model resin casts mostly had lower positional accuracy, whereas those in model resin and stone casts had similar positional accuracy. Regardless of the material, analogs deviated more towards mesial, while buccal deviations in additively manufactured casts and lingual deviations in stone casts were more prominent.


Assuntos
Desenho Assistido por Computador , Materiais para Moldagem Odontológica , Técnica de Moldagem Odontológica , Modelos Dentários , Polivinil , Siloxanas , Humanos , Polivinil/química , Siloxanas/química , Materiais para Moldagem Odontológica/química , Planejamento de Prótese Dentária , Imageamento Tridimensional/métodos , Sulfato de Cálcio/química , Resinas Sintéticas/química , Implantes Dentários , Mandíbula , Técnica de Fundição Odontológica , Teste de Materiais
14.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714634

RESUMO

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Assuntos
Cristalização , Griseofulvina , Polímeros , Temperatura de Transição , Griseofulvina/química , Cristalização/métodos , Polímeros/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Polivinil/química , Polietilenoglicóis/química , Povidona/química , Vidro/química
15.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762747

RESUMO

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Assuntos
Materiais para Moldagem Odontológica , Glutaral , Teste de Materiais , Polivinil , Siloxanas , Materiais para Moldagem Odontológica/química , Polivinil/química , Siloxanas/química , Fatores de Tempo , Glutaral/química , Desinfetantes de Equipamento Odontológico/química , Hipoclorito de Sódio/química , Desinfetantes/química , Clorexidina/química , Propriedades de Superfície , Humanos
16.
AAPS PharmSciTech ; 25(5): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750336

RESUMO

Transport of oral nanocarriers across the GI epithelium necessitates transport across hydrophilic mucus layer and the hydrophobic epithelium. Based on hydrophobic-hydrophilic balance, Curcumin-Lipomer (lipid-polymer hybrid nanoparticles) comprising hydrophobic stearic acid and hydrophilic Gantrez™ AN 119 (Gantrez) were developed, by a radical in-situ approach, to successfully traverse both barriers. A monophasic preconcentrate (Cur-Pre) comprising Cur (Curcumin), stearic acid, Gantrez and stabilizers, prepared by simple solution, was added to an aqueous phase to instantaneously generate Curcumin-Lipomer (Cur-Lipo) of nanosize and high entrapment efficiency (EE). Cur-Lipo size and EE was optimized by Box-Behnken Design. Cur-Lipomers of varying hydrophobic-hydrophilic property obtained by varying the stearic acid: Gantrez ratio exhibited size in the range 200-400 nm, EE > 95% and spherical morphology as seen in the TEM. A decrease in contact angle and in mucus interaction, evident with increase in Gantrez concentration, indicated an inverse corelation with hydrophilicity, while a linear corelation was observed for mucopenetration and hydrophilicity. Cur-SLN (solid lipid nanoparticles) which served as the hydrophobic reference revealed contact angle > 90°, maximum interaction with mucus and minimal mucopenetration. The ex-vivo permeation study through chicken ileum, revealed maximum permeation with Cur-Lipo1 and comparable and significantly lower permeation of Cur-Lipo1-D and Cur-SLN proposing the importance of balancing the hydrophobic-hydrophilic property of the nanoparticles. A 1.78-fold enhancement in flux of hydrophobic Cur-SLN, with no significant change in permeation of the hydrophilic Cur-Lipomers (p > 0.05) following stripping off the mucosal layer was observed. This reiterated the significance of hydrophobic-hydrophilic balance as a promising strategy to design nanoformulations with superior permeation across the GI barrier.


Assuntos
Curcumina , Portadores de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Mucosa Intestinal , Nanopartículas , Ácidos Esteáricos , Nanopartículas/química , Administração Oral , Animais , Ácidos Esteáricos/química , Curcumina/administração & dosagem , Curcumina/farmacocinética , Curcumina/química , Mucosa Intestinal/metabolismo , Portadores de Fármacos/química , Tamanho da Partícula , Lipídeos/química , Polímeros/química , Transporte Biológico/fisiologia , Polivinil/química
17.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792087

RESUMO

In this work, we present the modification of a medical-grade silicone catheter with the N-vinylimidazole monomer using the grafting-from method at room temperature and induced by gamma rays. The catheters were modified by varying the monomer concentration (20-100 vol%) and the irradiation dose (20-100 kGy). Unlike the pristine material, the grafted poly(N-vinylimidazole) chains provided the catheter with hydrophilicity and pH response. This change allowed for the functionalization of the catheters to endow it with antimicrobial features. Thus, the quaternization of amines with iodomethane and bromoethane was performed, as well as the immobilization of silver and ampicillin. The inhibitory capacity of these materials, functionalized with antimicrobial agents, was challenged against Escherichia coli and Staphylococcus aureus strains, showing variable results, where loaded ampicillin was amply better at eliminating bacteria.


Assuntos
Escherichia coli , Imidazóis , Silicones , Staphylococcus aureus , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Silicones/química , Imidazóis/química , Imidazóis/farmacologia , Catéteres/microbiologia , Testes de Sensibilidade Microbiana , Polivinil/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ampicilina/química , Ampicilina/farmacologia , Raios gama
18.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792194

RESUMO

The theoretical interpretation of the vaginal permeability phenomenon, the evaluation of the suitability of five artificial membranes, and the prediction of the behaviors of vaginal drugs were the main objectives of this study. Franz vertical diffusion cells and different validated HPLC methods were used to measure the permeability of six vaginally administered drugs (econazole, miconazole, metronidazole, clindamycin, lidocaine, and nonoxynol-9). This study was performed (in vitro) on different membranes of polyvinylidene fluoride (PVDF), plain cellulose or cellulose impregnated with isopropyl myristate (IPM), and cellulose combined with PVDF or IPM. The results were compared with those obtained from cow vaginal tissue (ex vivo), where cellulose was proven to be the best simulant. According to the permeability profiles (Papp), the water solubility of the drugs was considered a necessary criterion for their transport in the membranes or in the tissue, while the size was important for their penetration. Furthermore, it was found that polar compounds show clear superiority when penetrating cellulose or tissue, while non-polar ones show superiority when penetrating the lipophilic PVDF membrane. Finally, a successful attempt was made to predict the Papp values (|Papp-predPapp| < 0.005) of the six drugs under study based on a PLS (Partial Least Squares) in silico simulation model.


Assuntos
Membranas Artificiais , Permeabilidade , Vagina , Feminino , Vagina/metabolismo , Administração Intravaginal , Animais , Polivinil/química , Celulose/química , Celulose/análogos & derivados , Bovinos , Humanos , Solubilidade , Polímeros de Fluorcarboneto
19.
ACS Appl Mater Interfaces ; 16(21): 27705-27713, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748054

RESUMO

Vascular stenting is a common procedure used to treat diseased blood vessels by opening the narrowed vessel lumen and restoring blood flow to ischemic tissues in the heart and other organs. In this work, we report a novel piezoelectric stent featuring a zigzag shape fabricated by fused deposition modeling three-dimensional (3D) printing with a built-in electric field. The piezoelectric composite was made of potassium sodium niobite microparticles and poly(vinylidene fluoride-co-hexafluoropropylene), complementing each other with good piezoelectric performance and mechanical resilience. The in situ poling yielded an appreciable piezoelectricity (d33 ∼ 4.2 pC N-1) of the as-printed stents. In vitro testing revealed that materials are nontoxic to vascular cells and have low thrombotic potential. Under stimulated blood pressure fluctuation, the as-printed piezoelectric stent was able to generate peak-to-peak voltage from 0.07 to 0.15 V corresponding to pressure changes from 20 to 120 Psi, giving a sensitivity of 7.02 × 10-4 V Psi-1. Biocompatible piezoelectric stents bring potential opportunities for the real-time monitoring of blood vessels or enabling therapeutic functions.


Assuntos
Impressão Tridimensional , Stents , Humanos , Eletricidade , Pressão , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polivinil/química
20.
Bioresour Technol ; 402: 130842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750828

RESUMO

Hydrophilic porous membranes, exemplified by polyvinylidene fluoride (PVDF) membranes, have demonstrated significant potential for replacing ion exchange membranes in microbial electrolysis cells (MECs). Membrane fouling remains a major challenge in MECs, impeding proton transport and consequently limiting hydrogen production. This study aims to investigate a synergistic antifouling strategy for PVDF membrane through the incorporation of a coating composed of polydopamine (PDA), polyethyleneimine (PEI), and silver nanoparticles (AgNPs). The PDA-PEI-Ag@PVDF membrane not only effectively mitigates fouling through steric and electrostatic repulsion forces, but also amplifies ion transport by facilitating water diffusion and electromigration. The PDA-PEI-Ag@PVDF membrane exhibited a reduced membrane resistance of 1.01 mΩ m2 and PDA-PEI-Ag modifying PVDF membrane was found to be effective in enhancing the proton transportation of PVDF membrane. Therefore, the enhanced hydrogen production rate of 2.65 ± 0.02 m3/m3/d was achieved in PDA-PEI-Ag@PVDF-MECs.


Assuntos
Fontes de Energia Bioelétrica , Incrustação Biológica , Eletrólise , Hidrogênio , Indóis , Membranas Artificiais , Polivinil , Prótons , Prata , Polivinil/química , Hidrogênio/metabolismo , Incrustação Biológica/prevenção & controle , Prata/química , Prata/farmacologia , Indóis/metabolismo , Indóis/química , Polímeros/química , Nanopartículas Metálicas/química , Polietilenoimina/química , Polímeros de Fluorcarboneto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...