Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 213: 112036, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588187

RESUMO

A hydroponic method was performed to explore the effects of sulfate supply on the growth, manganese (Mn) accumulation efficiency and Mn stress alleviation mechanisms of Polygonum lapathifolium Linn. Three Mn concentrations (1, 8 and 16 mmol L-1, representing low (Mn1), medium (Mn8) and high (Mn16) concentrations, respectively) were used. Three sulfate (S) levels (0, 200, and 400 µmol L-1, abbreviated as S0, S200 and S400, respectively) were applied for each Mn concentration. (1) The average biomass (g plant-1) of P. lapathifolium was ordered as Mn8 (6.36) > Mn1 (5.25) > Mn16 (4.16). Under Mn16 treatment, S addition increased (P < 0.05) biomass by 29.96% (S200) and 53.07% (S400) compared to that S0. The changes in the net photosynthetic rate and mean daily increase in biomass were generally consistent with the changes in biomass. (2) Mn accumulation efficiency (g plant-1) was ordered as Mn8 (99.66) > Mn16 (58.33) > Mn1 (27.38); and S addition increased (p < 0.05) plant Mn accumulation and Mn transport, especially under Mn16 treatment. (3) In general, antioxidant enzyme activities (AEAs) and malondialdehyde (MDA) in plant leaves were ordered in Mn16 > Mn8 > Mn1. Sulfate addition decreased (P < 0.05) AEAs and MDA under Mn16 treatment, while the changes were minor under Mn1 and Mn8 treatments. (4) Amino acid concentrations generally increased with increasing Mn concentration and S level. In summary, the medium Mn treatment promoted plant growth and Mn bioaccumulation; sulfate, especially at 400 µmol L-1 S, can effectively promote plant growth and Mn accumulation efficiency. The most suitable bioremediation strategy was Mn16 with 400 µmol L-1 S.


Assuntos
Biodegradação Ambiental , Manganês/toxicidade , Polygonum/fisiologia , Sulfatos/metabolismo , Antioxidantes/metabolismo , Biomassa , Hidroponia , Malondialdeído/metabolismo , Manganês/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Plantas/metabolismo , Polygonum/crescimento & desenvolvimento , Poluentes do Solo/análise , Sulfatos/análise
2.
Chemosphere ; 260: 127651, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688324

RESUMO

Phosphate (P) fertilization is a commonly used agronomic practice. However, research on bioremediation is very limited. This study's principal objective was to evaluate the role of P in the growth and heavy metals (HMs) accumulation of Polygonum pubescens Blume cultured in Mn-contaminated soil. To this end, the effects of sodium dihydrogen phosphate (SDP) and single superphosphate (SSP) on the growth, Mn bioremediation efficiency, organ HMs, and physiological parameters related to antioxidant stress of P. pubescens were examined. The results showed that both SDP and SSP increased soil pH and available P but decreased available HMs. Phosphate significantly (P < 0.05) promoted P. pubescens height and biomass. Average height increased by 36.1% and 32.6% with SDP and SSP, respectively, with corresponding biomass increases of 71.8% and 135%. Phosphate significantly (P < 0.05) reduced Mn concentrations, especially in leaves, where the values decreased by >50.0% for DSP and SSP. Total Mn significantly (P < 0.05) decreased with DSP amendment but significantly (P < 0.05) increased by 38.5% with SSP (200 mg kg-1) through an increase in biomass. Phosphate significantly (P < 0.05) decreased all organ HM concentrations and translocation, indicating that less HM stress occurred with P amendment. The changes in reactive oxygen species, antioxidants and non-antioxidant materials further supported these results. Pearson correlation analysis revealed negative relationships between soil available P and HMs, indicating a novel role of P in HM passivation. The uncommonly high Ca concentrations in leaves suggested that Ca plays a vital role in promoting growth and alleviating HM stress in P. pubescens, which warrants further study.


Assuntos
Biodegradação Ambiental , Manganês/metabolismo , Poluentes do Solo/metabolismo , Biomassa , Manganês/análise , Metais Pesados/análise , Fosfatos/análise , Folhas de Planta/química , Polygonum/crescimento & desenvolvimento , Solo , Poluentes do Solo/análise
3.
PLoS One ; 15(1): e0227099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923204

RESUMO

Polygonum is the largest genus of Polygonaceae and 5 species are reported in Tunisia. In order to characterized flower, seed, and fruit development in Polygonum, flower and fruit of Polygonium equisetiforme (var. graecum and peyerinhoffi), P. aviculare and P. maritimum, collected from Tunisia, were examined. Flowers are composed of five oblong tepals. P. equisetiforme and P. aviculare have whitish-pink distylous flowers with dimorphism of style, filament and anther height, pollen diameter and stigma size. In contrast, P. maritimum shows white homostylous flowers. The floral vasculature showed that the tepals are inserted in one whorl and their traces arise independently in 3+2 manner. The eight stamens are arranged in a 5+3 manner and the staminal bundles arise independently in the two whorls. The epidermis and endothecium cells width were higher in P. maritimum and the lowest endothecium width was observed in P. aviculare. Polygonum aviculare and P. equisetiforme showed circular pollen with shallow colpi and trilobite pollen shape with deep colpi, while P. maritimum rarely showed shallow colpi. The ovule is anatropous with basal placentation in P. equisetiforme and P. aviculare and apical placentation in P. maritimum. The young seed coat was formed by an endotesta with thick-walled cells, a mesotesta and exotesta with thin-walled cells and a tegmen composed of radially elongated cells. The fruits of the studied species are trigonous with ovate-lanceolate shape. In P. aviculare, the exocarp is thicker compared to the two other species, in P. equisetiforme, the mature exocarp consists of smaller rectangular cells with narrow cavities, and in P. maritimum showed a thinner exocarpIn conclusion, P. equisetiforme and P. aviculare are a typically distylous species from the morphological point of view and we discussed the significance of heterostyly in Polygonaceae. From this first morpho-anatomical study of Polygonum species in North Africa, we can conclude mainly that there is no significant difference between P. equisetiforme var. graecum and var. peyerinhoffi supporting a taxonomic grouping of these two varieties.


Assuntos
Evolução Biológica , Classificação , Polygonum/classificação , Polygonum/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Polygonum/anatomia & histologia , Polygonum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Especificidade da Espécie , Tunísia
4.
J Exp Bot ; 70(18): 4793-4806, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31278409

RESUMO

Emergence at an appropriate time and place is critical for maximizing plant fitness and hence sophisticated mechanisms such as seed dormancy have evolved. Although maternal influence on different aspects of dormancy behavior has been identified, its impact under field conditions and its relation to plant fitness has not been fully determined. This study examined maternal effects in Polygonum aviculare on release of seed primary dormancy, responses to alternating temperatures, induction into secondary dormancy, and field emergence patterns as influenced by changes in the sowing date and photoperiod experienced by the mother plant. Maternal effects were quantified using population threshold models that allowed us to simulate and interpret the experimental results. We found that regulation of dormancy in P. aviculare seeds by the maternal environment is instrumental for maximizing plant fitness in the field. This regulation operates by changing the dormancy level of seeds dispersed at different times (as a consequence of differences in the sowing dates of mother plants) in order to synchronize most emergence to the seasonal period that ultimately guarantees the highest reproductive output of the new generation. Our results also showed that maternal photoperiod, which represents a clear seasonal cue, is involved in this regulation.


Assuntos
Dormência de Plantas , Polygonum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Aptidão Genética , Germinação , Temperatura
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1768): 20180182, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30966959

RESUMO

Plant and animal parents may respond to environmental conditions such as resource stress by altering traits of their offspring via heritable non-genetic effects. While such transgenerational plasticity can result in progeny phenotypes that are functionally pre-adapted to the inducing environment, it is unclear whether such parental effects measurably enhance the adult competitive success and lifetime reproductive output of progeny, and whether they may also adversely affect fitness if offspring encounter contrasting conditions. In glasshouse experiments with inbred genotypes of the annual plant Polygonum persicaria, we tested the effects of parental shade versus sun on (a) competitive performance of progeny in shade, and (b) lifetime reproductive fitness of progeny in three contrasting treatments. Shaded parents produced offspring with increased fitness in shade despite competition, as well as greater competitive impact on plant neighbours. Inherited effects of parental light conditions also significantly altered lifetime fitness: parental shade increased reproductive output for progeny in neighbour and understorey shade, but decreased fitness for progeny in sunny, dry conditions. Along with these substantial adaptive and maladaptive transgenerational effects, results show complex interactions between genotypes, parent environment and progeny conditions that underscore the role of environmental variability and change in shaping future adaptive potential. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.


Assuntos
Epigênese Genética , Aptidão Genética , Polygonum/fisiologia , Adaptação Fisiológica , Polygonum/genética , Polygonum/crescimento & desenvolvimento , Polygonum/efeitos da radiação , Reprodução/genética , Luz Solar
6.
Ecotoxicol Environ Saf ; 173: 235-242, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30772713

RESUMO

The effects of water-extractable Mn concentration, bioaccumulation factor (BAF), translocation factor (TF), and Mn uptake by Polygonum pubescens Blume cultured in the unexplored soil, mining soil and tailing soil from the Pingle Mn mine in China were quantified in a pot experiment to determine the effects of EDTA exposure on the success of phytoremediation. The results showed that EDTA significantly (P < 0.05) increased the water-extractable Mn concentration, and soils with different amounts of artificial disturbances had different responses to EDTA exposure. Low and medium EDTA concentrations might have positive effect on plant growth of P. pubescens cultured in the unexplored soil, as indicated by comparable increases in biomass, plant height and photosynthetic pigment content, but opposite results were found with high EDTA concentrations exposure. EDTA exposure had a negative effect on the growth of P. pubescens cultured in the mining soil and tailing soil. In general, the concentration of Mn in different tissues significantly (P < 0.05) increased as the EDTA concentration increased in each soil. The efficacy of Mn remediation by P. pubescens was enhanced in all three soils, with all EDTA treatments.


Assuntos
Quelantes/farmacologia , Ácido Edético/farmacologia , Manganês/metabolismo , Polygonum/efeitos dos fármacos , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , China , Mineração , Polygonum/crescimento & desenvolvimento , Polygonum/metabolismo
7.
Mycorrhiza ; 28(8): 717-726, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30141076

RESUMO

Fungal root endophytes play an important role in plant nutrition, helping plants acquire nutrients in exchange for photosynthates. We sought to characterize the progression of root colonization by arbuscular mycorrhizal fungi (AMF), dark septate endophytes (DSE), and fine root endophytes (FRE) over an alpine growing season, and to understand the role of the host plant and environment in driving colonization levels. We sampled four forbs on a regular schedule from June 26th-September 11th from a moist meadow (3535 m a.s.l) on Niwot Ridge, Rocky Mountain Front Range, CO, USA. We quantified the degree of root colonization by storage structures, exchange structures, and hyphae of all three groups of fungi. AMF and FRE percent colonization fluctuated significantly over time, while DSE did not. All AMF structures changed over time, and the degree of change in vesicles differed by plant species. FRE hyphae, AMF arbuscules and AMF vesicles peaked late in the season as plants produced seeds. AMF hyphae levels started high, decreased, and then increased within 20 days, highlighting the dynamic nature of plant-fungal interactions. Overall, our results show that AMF and FRE, not DSE, root colonization rapidly changes over the course of a growing season and these changes are driven by plant phenology and seasonal changes in the environment.


Assuntos
Endófitos/fisiologia , Fungos/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Artemisia/crescimento & desenvolvimento , Artemisia/microbiologia , Colorado , Gentiana/crescimento & desenvolvimento , Gentiana/microbiologia , Geum/crescimento & desenvolvimento , Geum/microbiologia , Pradaria , Raízes de Plantas/crescimento & desenvolvimento , Polygonum/crescimento & desenvolvimento , Polygonum/microbiologia , Estações do Ano , Microbiologia do Solo
8.
Sensors (Basel) ; 18(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772666

RESUMO

This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516 images, which also varied in term of crop, soil type, image resolution and light conditions. The overall performance of this approach achieved a maximum accuracy of 78% for identifying Polygonum spp. and a minimum accuracy of 46% for blackgrass. In addition, it achieved an average 70% accuracy rate in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species.


Assuntos
Redes Neurais de Computação , Poaceae/crescimento & desenvolvimento , Polygonum/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Poaceae/anatomia & histologia , Poaceae/fisiologia , Polygonum/anatomia & histologia , Polygonum/fisiologia
9.
Chemosphere ; 194: 570-578, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29241131

RESUMO

Polygonum hydropiper is a dominant plant species in Shifang phosphorus (P) mine area and is a promising P-accumulator used for P-phytoextraction. To date, little information is available on the physiological response involved in alleviating P toxicity of P. hydropiper under high P. A pot experiment was carried out to investigate growth, P subcellular distribution, chemical forms in two ecotypes of P. hydropiper under high levels (1, 4, and 8 mmol P L-1) of inorganic P (Pi) and organic P (Po), supplied as KH2PO4 and myo-inositol hexaphosphoric acid dodecasodium salt, respectively. The mining ecotype (ME) showed a greater ability to tolerate high P than the non-mining ecotype (NME), as shown by its superior growth with undamaged leaf anatomical structure. The ME showed 1.3-2.2 times greater shoot P accumulation than the NME. More than 93% of P accumulated in tissue cell wall and soluble fraction. The increasing P treatments increased all tissue P forms, especially Pi form. The ME showed significantly higher ester P, nucleic P and insoluble P in tissues than the NME at 8 mmol L-1; however, it demonstrated lower Pi, expect for roots at 5 weeks. The percentages of Pi and nucleic P in roots of the ME were higher than other P forms, and the percentages of nucleic P dominated in the leaves. Probably, the combination of preferential distribution of P in cell wall and soluble fraction in tissues and storage of P in low activity as nucleic P in leaves allows the ME to adapt high P.


Assuntos
Polygonum/metabolismo , Mineração , Fósforo/química , Fósforo/farmacocinética , Fósforo/toxicidade , Folhas de Planta/química , Raízes de Plantas/química , Polygonum/crescimento & desenvolvimento
10.
Arch Pharm Res ; 40(10): 1129-1134, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26048035

RESUMO

This study was aimed at investigating the anti-inflammatory and anticholinesterase activity of six naturally occurring flavonoids: (-) pinostrobin (1), 2',4'-dihydroxy-3',6'-dimethoxychalcone (2), 6-8-diprenyleriodictyol (3), isobavachalcone (4), 4-hydroxylonchocarpin (5) and 6-prenylapigenin (6). These compounds were isolated from Dorstenia and Polygonum species used traditionally to treat pain. The anti-inflammatory activity was determined by using the Griess assay and the 15-lipoxygenase inhibitory activity was determined with the ferrous oxidation-xylenol orange assay. Acetylcholinesterase inhibition was determined by the Ellman's method. At the lowest concentration tested (3.12 µg/ml), compounds 2, 3 and 4 had significant NO inhibitory activity with 90.71, 84.65 and 79.57 % inhibition respectively compared to the positive control quercetin (67.93 %). At this concentration there was no significant cytotoxicity against macrophages with 91.67, 72.86 and 70.86 % cell viability respectively, compared to 73.1 % for quercetin. Compound 4 had the most potent lipoxygenase inhibitory activity (IC50 of 25.92 µg/ml). With the exception of (-) pinostrobin (1), all the flavonoids had selective anticholinesterase activity with IC50 values ranging between 5.93 and 8.76 µg/ml compared to the IC50 4.94 µg/ml of eserine the positive control. These results indicate that the studied flavonoids especially isobavachalcone are potential anti-inflammatory natural products that may have the potential to be developed as therapeutic agents against inflammatory conditions and even Alzheimer's disease.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Flavonoides/farmacologia , Moraceae/química , Polygonum/química , Animais , Anti-Inflamatórios/isolamento & purificação , Camarões , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/isolamento & purificação , Relação Dose-Resposta a Droga , Flavonoides/isolamento & purificação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Medicinas Tradicionais Africanas , Camundongos , Estrutura Molecular , Moraceae/crescimento & desenvolvimento , Óxido Nítrico/biossíntese , Polygonum/crescimento & desenvolvimento
11.
Am J Bot ; 103(2): 348-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26823377

RESUMO

PREMISE OF STUDY: The presence of genetic variation for traits that contribute to ecological range expansion can provide the potential for introduced taxa to evolve greater invasiveness. Genotypes that contribute to the spread of introduced range populations must have the ability to maintain fitness under changing environmental stress and competitive intensity. Previously, we identified a subset of genotypes in populations of the invasive annual Polygonum cespitosum that express consistently high reproductive fitness in diverse (shaded, dry, and resource-rich) conditions. Here, we investigated whether these broadly adaptive (High-Performance) genotypes also show a competitive advantage over conspecifics in full sun and/or shade. METHODS: We grew a population-balanced sample of 13 High-Performance and 13 'Control' genotypes in intraspecific competitive arrays, comprising all four possible combinations of High-Performance vs. Control target plants and competitive backgrounds, in both full sun and shaded glasshouse environments. KEY RESULTS: In full sun, High-Performance genotypes (1) better maintained growth and reproductive output despite competition and (2) more strongly suppressed growth and reproduction of target plants. However, genotypes did not differ significantly in shade. CONCLUSIONS: Competitive superiority in open conditions may contribute to increasing predominance of these broadly adapted genotypes in introduced-range Polygonum cespitosum populations, and hence to the evolution of greater invasiveness. This study provides insight into the role of genotypic variation for ecological traits in the range expansion of a contemporary plant invader. It also highlights how such variation can be differently expressed in alternative environments (gene by environment interaction).


Assuntos
Evolução Biológica , Aptidão Genética , Polygonum/fisiologia , Luz Solar , Espécies Introduzidas , Polygonum/genética , Polygonum/crescimento & desenvolvimento , Reprodução
12.
Int J Phytoremediation ; 18(4): 348-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26514228

RESUMO

In the present work, both field investigation and laboratory experiment were carried out to testify whether Polygonum lapathifolium L. is a potential manganese (Mn) hyperaccumulator. Results from field investigation showed that P. lapathifolium had great tolerance and accumulation to Mn. Mn concentrations in leaves were the highest, varied from 6889.2 mg kg-1 dry weight (DW) to 18841.7 mg kg(-1) DW with the average of 12180.6 mg kg(-1). The values of translocation factor (the concentrations of Mn in leaf to that in root) ranged from 5.72 to 9.53. Results from laboratory experiment illuminated that P. lapathifolium could grow well and show no toxic symptoms even under high Mn stress (16 mmol L(-1)). Although the changes of antioxidant enzymes activities were triggered under Mn stress, the alterations of pigments were not significant (P > 0.05) as compared with control. Total plant biomass and plant height increased with increasing Mn supply. Mn concentrations in leaves and stems were constantly greater than those in roots, the ratio of concentrations in leaves to that in roots were 2.58-6.72 and the corresponding values in stems to that in roots were 1.45-3.18. The results showed that P. lapathifolium is a Mn-hyperaccumulator.


Assuntos
Recuperação e Remediação Ambiental/métodos , Manganês/metabolismo , Polygonum/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Manganês/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polygonum/química , Polygonum/crescimento & desenvolvimento , Poluentes do Solo/análise
13.
Ann N Y Acad Sci ; 1360: 101-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26457473

RESUMO

The introduced Asian plant Polygonum cespitosum has only recently become invasive in northeastern North America, spreading into sunny as well as shaded habitats. We present findings from a multiyear case study of this ongoing species invasion, drawing on field environmental measurements, glasshouse plasticity and resurrection experiments, and molecular genetic (microsatellite) data. We focus in particular on patterns of individual phenotypic plasticity (norms of reaction), their diversity within and among populations in the species' introduced range, and their contribution to its potential to evolve even greater invasiveness. Genotypes from introduced-range P. cespitosum populations have recently evolved to express greater adaptive plasticity to full sun and/or dry conditions without any loss of fitness in shade. Evidently, this species may evolve the sort of "general-purpose genotypes" hypothesized by Herbert Baker to characterize an "ideal weed." Indeed, we identified certain genotypes capable of extremely high reproductive output across contrasting conditions, including sunny, shaded, moist, and dry. Populations containing these high-performance genotypes had consistently higher fitness in all glasshouse habitats; there was no evidence for local adaptive differentiation among populations from sunny, shaded, moist, or dry sites. Norm of reaction data may provide valuable insights to invasion biology: the presence of broadly adaptive, high-performance genotypes can promote a species' ecological spread while providing the fuel for increased invasiveness to evolve.


Assuntos
Ecossistema , Espécies Introduzidas , Plantas Daninhas/crescimento & desenvolvimento , Polygonum/crescimento & desenvolvimento , Variação Genética/genética , Espécies Introduzidas/tendências , Plantas Daninhas/genética , Polygonum/genética
14.
PLoS One ; 10(3): e0121270, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822734

RESUMO

Both competition and burial are important factors that influence plant growth and structuring plant communities. Competition intensity may decline with increased burial stress. However, experimental evidence is scarce. The aim of this study was to elucidate the role of burial stress in influencing plant competition by investigating biomass accumulation, biomass allocation, and clonal growth performance of Carex brevicuspis, one of the dominant species in the Dongting Lake wetland in China. The experiment was conducted with two typical wetland species, C. brevicuspis (target plant) and Polygonum hydropiper (neighbor plant), in a target-neighbor design containing three densities (0, 199, and 398 neighbor plants m-2) and two burial depths (0 and 12 cm). The biomass accumulation of C. brevicuspis decreased with increment of P. hydropiper density in the 0 cm burial treatment. However, in the 12 cm burial treatment, biomass accumulation of C. brevicuspis did not change under medium and high P. hydropiper densities. The relative neighbor effect index (RNE) increased with enhancement of P. hydropiper density but decreased with increasing burial depth. The shoot mass fraction decreased with P. hydropiper density in the 12 cm burial treatments, but the root mass fraction was only affected by burial depth. However, the rhizome mass fraction increased with both P. hydropiper density and burial depth. The number of ramets decreased with increasing P. hydropiper density. With increasing burial depth and density, the proportion of spreading ramets increased from 34.23% to 80.44%, whereas that of clumping ramets decreased from 65.77% to 19.56%. Moreover, increased P. hydropiper density and burial depth led to greater spacer length. These data indicate that the competitive effect of P. hydropiper on C. brevicuspis was reduced by sand burial, which was reflected by different patterns of biomass accumulation and RNE at the two burial depth treatments. A change from a phalanx to a guerrilla growth form and spacer elongation induced by sand burial helped C. brevicuspis to acclimate to competition.


Assuntos
Aclimatação/fisiologia , Carex (Planta)/crescimento & desenvolvimento , Ecossistema , Solo , Áreas Alagadas , Análise de Variância , China , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Polygonum/crescimento & desenvolvimento , Especificidade da Espécie
15.
Environ Monit Assess ; 186(12): 8667-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25208519

RESUMO

Removing phenol from wastewater has become a major challenge of international concern. Phytoremediation is a novel and eco-friendly method and is attracting an increasing amount of attention for treating phenol in wastewater. We studied the ability of Polygonum orientale, which is frequently present around water bodies and in wetlands in China, to phytoremediate phenol. We determined the inhibition concentration for phenol on P. orientale using emergency toxicology experiments and morphological observations. Isothermal and kinetic models were created to assess the adsorption process involved in phenol removal. Comparison tests in sterile conditions demonstrated that metabolic removal was the main way in which the phenol concentrations were decreased, and removal by adsorption played a smaller role. An orthogonal test was performed to determine the optimum conditions under which P. orientale will remove phenol, and these were found to be an initial phenol concentration of 5 mg L(-1), 100 % natural light, and a 13-day treatment time. These results provide a theoretical basis for increasing our understanding of the mechanisms involved in the removal of phenol by P. orientale and will help in developing its application in the greening of urban areas to provide both phytoremediation and esthetic landscaping.


Assuntos
Fenol/análise , Polygonum/metabolismo , Poluentes Químicos da Água/análise , Adsorção , Biodegradação Ambiental , China , Monitoramento Ambiental , Cinética , Fenol/metabolismo , Polygonum/crescimento & desenvolvimento , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Áreas Alagadas
16.
PLoS One ; 9(7): e102802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25058669

RESUMO

Distyly, a special polymorph, has evolved in many groups of angiosperms and has attracted attention since Darwin's time. Development studies on distylous taxa have helped us to understand the evolutionary process of this polymorph, but most of these studies focus on species with narrowly tubular corolla. Here, we studied the floral development of Polygonum jucundum, a distylous species with broadly open flowers, at multiple spatial scales. Results showed that the difference in stigma height between flowers of the two morphs was caused by differences in style growth throughout the entire floral development process. The observed difference in anther heights between the two morphs was because the filaments grew faster in short-styled (SS) than in long-styled (LS) flowers in the later stages of floral development. In addition, the longer styles in LS flowers than in SS flowers was because of faster cell division in the early stages of floral development. However, SS flowers had longer filaments than LS flowers primarily because of greater cell elongation. These results indicate that floral development in P. jucundum differs from that of distylous taxa with floral tubes shown in previous studies. Further, we conclude that the presence of distyly in species with open flowers is a result of convergent evolution.


Assuntos
Flores/anatomia & histologia , Polygonum/anatomia & histologia , Evolução Biológica , Flores/classificação , Flores/crescimento & desenvolvimento , Filogenia , Pólen/fisiologia , Polygonum/classificação , Polygonum/crescimento & desenvolvimento , Reprodução/fisiologia , Seleção Genética , Especificidade da Espécie
17.
Sci Rep ; 4: 5612, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25002329

RESUMO

Many studies have investigated the individual effects of sedimentation or inundation on the performance of wetland plants, but few have examined the combined influence of these processes. Wetland plants might show greater morphological plasticity in response to inundation than to sedimentation when these processes occur simultaneously since inundation can negate the negative effects of burial on plant growth. Here, we evaluate this hypothesis by assessing growth of the emergent macrophyte Polygonum hydropiper under flooding (0 and 40 cm) and sedimentation (0, 5, and 10 cm), separately and in combination. Deep burial and high water level each led to low oxidation-reduction potential, biomass (except for 5-cm burial), and growth of thick, short roots. These characteristics were generally more significant under high water level than under deep burial conditions. More biomass was allocated to stems in the deep burial treatments, but more to leaves in the high water level treatments. Additionally, biomass accumulation was lower and leaf mass ratio was higher in the 40-cm water level + 10-cm burial depth treatment than both separate effects. Our data indicate that inundation plays a more important role than sedimentation in determining plant morphology, suggesting hierarchical effects of environmental stressors on plant growth.


Assuntos
Adaptação Fisiológica/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Polygonum/crescimento & desenvolvimento , Água/metabolismo , Áreas Alagadas , Biomassa , Imersão , Polygonum/anatomia & histologia
18.
Chemosphere ; 105: 139-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24485813

RESUMO

Excessive application of animal manure to the farmland results in enrichment of P in the soil. Phytoremediation is a promising strategy for extracting excess P from manure impacted soil. P uptake characteristics of a mining ecotype (ME) and a non-mining ecotype (NME) of Polygonum hydropiper were investigated in this study by adopting soil culture containing various concentrations of swine manure (0-200 g swine manure kg(-1) soil). A peak value in the biomass of P. hydropiper was determined in 100 g kg(-1) soil. Significant increase of P content in tissues of two ecotypes was noticed with an increase in swine manure concentration. Maximum P accumulation in shoots and roots was observed at the concentration of 100 g kg(-1) soil, however, the ME accumulated more P as compared to the NME. The ME showed a lower plant effective number and a higher P extraction ratio compared to the NME. Both acid phosphatase and phytase activities of P. hydropiper were obviously enhanced under swine manure impacted soil compared with control, while those of ME higher than the NMEs. Therefore, the two ecotypes of P. hydropiper can accumulate P from soil amended with swine manure and establishes the foundation for phytoremediation.


Assuntos
Esterco , Fósforo/metabolismo , Polygonum/metabolismo , Poluentes do Solo/metabolismo , 6-Fitase/metabolismo , Fosfatase Ácida/metabolismo , Animais , Biodegradação Ambiental , Biomassa , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Polygonum/crescimento & desenvolvimento , Suínos
19.
Environ Manage ; 52(6): 1453-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24065383

RESUMO

Asian knotweeds (Fallopia spp.) are considered one of the world's most invasive species. Restoring habitats dominated by these exotic species requires a better understanding of the importance of abiotic factors controlling the invasive knotweeds performance. We used observational data obtained on the embankment of the Isère River (France) to study the performance of Fallopia spp. under different soil, light, and disturbance conditions. On the Isère riverbanks, light intensity assessed by light quantity transmitted through canopy was the most important factor explaining the variability observed on knotweed performance expressed as above-ground biomass per square meter. Asian knotweeds were more productive under intensive light conditions. Alternatively other factors such as mowing (twice a year), soil fertility, soil texture, position on the bank or exposure to the sun had no significant effect on knotweed biomass production. We conclude that decreasing light resources, for example, by increasing competitive pressure on sites dominated by Asian knotweeds could be included in management plans to control the populations of this invasive taxon.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Espécies Introduzidas , Luz , Polygonum/crescimento & desenvolvimento , Solo/química , Biomassa , França , Rios
20.
Zhongguo Zhong Yao Za Zhi ; 38(10): 1467-70, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23947118

RESUMO

OBJECTIVE: To establish and optimize the rapid propagation system of Polygonum multiflorum, as well as explore method for induction and identification of autotetraploid. METHOD: Propagation medium was optimized by orthogonal test. The buds were immersed in colchicine solution with different concentrations for different time to select induction conditions for autotetraploid of P. multiflorum. RESULT: The most appropriate propagation medium was MS medium supplemented with 1.0 mg x L(-1) 6-BA, 0.3 mg x L(-1) NAA, and 0.4 mg x L(-1) PP333. That the buds were soaked in 0.2% colchicine solution for 30 h, or soaked in 0.3% colchicine solution for 18 h, was optimal condition to induce autopolyploid of P. multiflorum with induction rate as high as 16.7%. CONCLUSION: Rapid propagation of P. multiflorum could be achieved by tissue culture. Furthermore, colchicine was an effective inducer of polyploidy, and 25 tetraploid lines were obtained through chromosome identification. The experiment laid a foundation for the wild resource conservation, superior varieties breeding of P. multiflorum.


Assuntos
Polygonum/crescimento & desenvolvimento , Polygonum/genética , Tetraploidia , Técnicas de Cultura de Tecidos/métodos , Cromossomos de Plantas/genética , Meios de Cultura/metabolismo , Polygonum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...