Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 289: 114920, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35032580

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver diseases is a public health issue in sub-saharan Africa and has been reported to be the major cause of many hospital admissions. Oxidative stress, mitochondrial dysfunction and inflammation play important roles in several diseases including liver injury. Cajanus cajan is an indigenous medicinal plant useful in the traditional treatment of jaundice, inflammation and liver injury. AIM OF STUDY: This study assessed the effects of methanol extract Cajanus cajan (MECC) on mitochondrial permeability transition (mPT) pore opening, biomarkers of oxidative stress and inflammation in CCl4-induced liver injury in rats. METHODS: Wistar albino rats (200-210g) were completely randomized into five (5) groups of six animals each. Group I (control) was given distilled water orally once daily. Animals in group II were administered CCl4 in parafin (1:1) at a dose of 0.5 mL/kg i.p on the seventh day. Animals in groups III, IV and V were administered methanol extract of Cajanus cajan (MECC) at doses of 100, 200 mg/kg and silymarin (100 mg/kg) respectively for 7 days prior to a single intraperitoneal dose of CCl4. After 24 h of CCl4 treatment, serum and liver tissues were collected. Mitochondrial permeability transition (mPT) pore opening, mitochondrial ATPase activities and biomarkers of oxidative stress were determined spectrophotometrically. Tumor necrosis factor (TNFα), NF-κB and COX-2 were determined by immunohistochemistry and the phytochemicals present in the extract were determined by GC-MS. RESULTS: Liver enzyme (AST, ALP, ALT and γGT) activities and MDA levels were significantly decreased in rats pretreated with MECC at the dose of 100, 200 and silymarin (100 mg/kg) when compared to the rats administered CCl4 alone (p < 0.05). GSH, GST, CAT and SOD increased and the expressions of TNFα, NF-κB and COX- 2 were also reduced when compared to the CCl4- treated animals. In addition, the liver histopathological analyses revealed that MECC markedly alleviated inflammatory cell infiltration, hepatic fibrosis, hepatocyte ballooning, necrosis and severe apoptosis of hepatocytes induced by CCl4. GC-MS analysis yielded 23 compounds including flavonoids, terpenoids and fatty acids. CONCLUSION: Cajanus cajan leaf extract elicited hepatoprotective action on CCl4-induced liver injury via inhibition of mPT pore opening, prevention of CCl4-induced hepatic oxidative stress and suppression of inflammatory response thus it may become useful for chemoprevention of liver injury. This supports its traditional use.


Assuntos
Anti-Inflamatórios/farmacologia , Hepatopatias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Cajanus , Tetracloreto de Carbono , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/patologia , Hepatopatias/patologia , Masculino , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Silimarina/farmacologia
2.
J Am Heart Assoc ; 10(12): e019521, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34056918

RESUMO

Background The opening of mitochondrial permeability transition pore and inflammation cooperatively progress myocardial ischemia-reperfusion (IR) injury, which hampers therapeutic effects of primary reperfusion therapy for acute myocardial infarction. We examined the therapeutic effects of nanoparticle-mediated medicine that simultaneously targets mitochondrial permeability transition pore and inflammation during IR injury. Methods and Results We used mice lacking cyclophilin D (CypD, a key molecule for mitochondrial permeability transition pore opening) and C-C chemokine receptor 2 and found that CypD contributes to the progression of myocardial IR injury at early time point (30-45 minutes) after reperfusion, whereas C-C chemokine receptor 2 contributes to IR injury at later time point (45-60 minutes) after reperfusion. Double deficiency of CypD and C-C chemokine receptor 2 enhanced cardioprotection compared with single deficiency regardless of the durations of ischemia. Deletion of C-C chemokine receptor 2, but not deletion of CypD, decreased the recruitment of Ly-6Chigh monocytes after myocardial IR injury. In CypD-knockout mice, administration of interleukin-1ß blocking antibody reduced the recruitment of these monocytes. Combined administration of polymeric nanoparticles composed of poly-lactic/glycolic acid and encapsulating nanoparticles containing cyclosporine A or pitavastatin, which inhibit mitochondrial permeability transition pore opening and monocyte-mediated inflammation, respectively, augmented the cardioprotection as compared with single administration of nanoparticles containing cyclosporine A or pitavastatin after myocardial IR injury. Conclusions Nanoparticle-mediated simultaneous targeting of mitochondrial injury and inflammation could be a novel therapeutic strategy for the treatment of myocardial IR injury.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclosporina/farmacologia , Portadores de Fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Quinolinas/farmacologia , Animais , Anti-Inflamatórios/química , Peptidil-Prolil Isomerase F/genética , Peptidil-Prolil Isomerase F/metabolismo , Ciclosporina/química , Modelos Animais de Doenças , Combinação de Medicamentos , Composição de Medicamentos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quinolinas/química , Receptores CCR2/genética , Receptores CCR2/metabolismo , Fatores de Tempo
3.
J Ethnopharmacol ; 270: 113765, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33418031

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aconite is a processed product of seminal root of perennial herbaceous plant Aconitum Carmichaclii Debx. of Ranunculaceae. It has the effects of warming and tonifying heart yang and restoring yang to save from collapse. Aconitine is the main effective constituent of aconite and used to prevent and treat heart disease. However, how aconitine exerts myocardial protection is still poorly understood. AIM OF THE STUDY: The present study aimed to investigate the effects of aconitine on mitochondrial dysfunction and explore its mechanism of action. MATERIALS AND METHODS: The model of myocardial injury was induced by Angiotensin II (Ang II) (1 × 10-6 mol L-1), and H9c2 cells were incubated with different concentrations of aconitine. The effect of aconitine on mitochondrial was determined by flow cytometry, transmission electron microscopy, luciferase, Seahorse technique and Western blot. The effects of aconitine on sirtuin-3 (Sirt3) activity and Cyclophilin D (CypD) acetylation were detected by immunofluorescence, RT-PCR and co-immunoprecipitation. RESULTS: We demonstrate that aconitine alleviates the energy metabolic dysfunction of H9c2 cells by activating Sirt3 to deacetylate CypD and inhibiting mitochondrial permeability transition pore (mPTP) opening. In cardiomyocytes, aconitine significantly reduced mitochondrial fragmentation, inhibited acetylation of CypD, suppressed the mPTP opening, mitigated mitochondrial OXPHOS disorders, and improved the synthesis ability of ATP. In contrast, Sirt3 deficiency abolished the effects of aconitine on mPTP and OXPHOS, indicating that aconitine improves mitochondrial function by activating Sirt3. CONCLUSIONS: These results showed that aconitine attenuated the energy metabolism disorder by promoting Sirt3 expression and reducing CypD-mediated mPTP excess openness, rescuing mitochondrial function. Improve mitochondrial function may be a therapeutic approach for treating heart disease, which will generate fresh insight into the cardioprotective of aconitine.


Assuntos
Aconitina/farmacologia , Cardiotônicos/farmacologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Sirtuínas/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Sirtuínas/genética
4.
Pharmacol Res ; 165: 105421, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33429034

RESUMO

High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.


Assuntos
Proteínas de Membrana/deficiência , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Musculares/deficiência , Triazóis/farmacologia , Proteínas de Peixe-Zebra/deficiência , Animais , Animais Geneticamente Modificados , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Humanos , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Proteínas de Membrana/genética , Proteínas Musculares/genética , Rodaminas/farmacologia , Triazóis/química , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
Eur J Pharmacol ; 893: 173807, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359222

RESUMO

Despite all previous studies relating to the mechanism of cirrhotic cardiomyopathy (CCM), the role of cirrhosis on Ischemic Preconditioning (IPC) has not yet been explored. The present study strives to assess the cardioprotective role of IPC in bile duct ligated (BDL) rats as well as the cardioprotective role of Cyclosporin-A (CsA) and Metformin (Met) in CCM. Cirrhosis was induced by bile duct ligation (BDL). Rats' hearts were isolated and attached to a Langendorff Apparatus. The pharmacological preconditioning with Met and CsA was done before the main ischemia. Myocardial infarct size, hemodynamic and electrophysiological parameters, biochemical markers, and apoptotic indices were determined at the end of the experiment. Infarct size, apoptotic indices, arrhythmia score, and incidence of VF decreased significantly in the IPC group in comparison with the I/R group. These significant decreases were abolished in the IPC (BDL) group. Met significantly decreased the infarct size and apoptotic indices compared with I/R (BDL) and normal groups, while CsA led to similar decreases except in the level of caspase-3 and -8. Met and CsA decreased and increased the arrhythmia score and incidence of VF in the BDL groups, respectively. Functional recovery indices decreased in the I/R (BDL) and IPC (BDL) groups. Met improved these parameters. Therefore, the current study depicted that the cardioprotective effect of Met and CsA on BDL rats is mediated through the balance between pAMPK and apoptosis in the mitochondria.


Assuntos
Apoptose/efeitos dos fármacos , Cardiomiopatias/prevenção & controle , Ciclosporina/farmacologia , Precondicionamento Isquêmico Miocárdico , Metformina/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Ductos Biliares/cirurgia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Citoproteção , Ativação Enzimática , Hemodinâmica/efeitos dos fármacos , Preparação de Coração Isolado , Ligadura , Cirrose Hepática Experimental/complicações , Masculino , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Transdução de Sinais
6.
J Pharmacol Exp Ther ; 376(3): 348-357, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33303698

RESUMO

Mitochondrial permeability transition pore (mPTP) opening is a key event in cell death during myocardial ischemia reperfusion. Inhibition of its modulator cyclophilin D (CypD) by cyclosporine A (CsA) reduces ischemia-reperfusion injury. The use of cyclosporine A in this indication is debated; however, targeting mPTP remains a major goal to achieve. We investigated the protective effects of a new original small-molecule cyclophilin inhibitor C31, which was specifically designed to target CypD. CypD peptidylprolyl cis-trans isomerase (PPIase) activity was assessed by the standard chemotrypsin-coupled assay. The effects of C31 on mPTP opening were investigated in isolated mouse cardiac mitochondria by measuring mitochondrial swelling and calcium retention capacity (CRC) in rat H9C2 cardiomyoblasts and in adult mouse cardiomyocytes by fluorescence microscopy in isolated perfused mouse hearts and ex vivo after drug infusion in mice. C31 potently inhibited CypD PPIase activity and mitochondrial swelling. C31 was more effective at increasing mitochondrial CRC than CsA and was still able to increase CRC in Ppif -/- (CypD-inactivated) cardiac mitochondria. C31 delayed both mPTP opening and cell death in cardiomyocytes subjected to hypoxia reoxygenation. However, high concentrations of both drugs were necessary to reduce mPTP opening in isolated perfused hearts, and neither CsA nor C31 inhibited mPTP opening in heart after in vivo infusion, underlying the importance of myocardial drug distribution for cardioprotection. C31 is an original inhibitor of mPTP opening involving both CypD-dependent and -independent mechanisms. It constitutes a promising new cytoprotective agent. Optimization of its pharmacokinetic properties is now required prior to its use against cardiac ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: This study demonstrates that the new cyclophilin inhibitor C31 potently inhibits cardiac mitochondrial permeability transition pore (mPTP) opening in vitro and ex vivo. The dual mechanism of action of C31 allows the prevention of mPTP opening beyond cyclophilin D inhibition. Further development of the compound might bring promising drug candidates for cardioprotection. However, the lack of effect of both C31 and cyclosporine A after systemic administration demonstrates the difficulties of targeting myocardial mitochondria in vivo and should be taken into account in cardioprotective strategies.


Assuntos
Coração/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Miocárdio/metabolismo , Pirrolidinas/química , Pirrolidinas/farmacologia , Animais , Transporte Biológico , Citosol/efeitos dos fármacos , Citosol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/citologia , Pirrolidinas/metabolismo
7.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319746

RESUMO

Aging-associated diseases, including cardiac dysfunction, are increasingly common in the population. However, the mechanisms of physiologic aging in general, and cardiac aging in particular, remain poorly understood. Age-related heart impairment is lacking a clinically effective treatment. Using the model of naturally aging mice and rats, we show direct evidence of increased proton leak in the aged heart mitochondria. Moreover, our data suggested ANT1 as the most likely site of mediating increased mitochondrial proton permeability in old cardiomyocytes. Most importantly, the tetra-peptide SS-31 prevents age-related excess proton entry, decreases the mitochondrial flash activity and mitochondrial permeability transition pore opening, rejuvenates mitochondrial function by direct association with ANT1 and the mitochondrial ATP synthasome, and leads to substantial reversal of diastolic dysfunction. Our results uncover the excessive proton leak as a novel mechanism of age-related cardiac dysfunction and elucidate how SS-31 can reverse this clinically important complication of cardiac aging.


Assuntos
Translocador 1 do Nucleotídeo Adenina/antagonistas & inibidores , Senescência Celular , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oligopeptídeos/farmacologia , Translocador 1 do Nucleotídeo Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Fatores Etários , Envelhecimento , Animais , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Miócitos Cardíacos/metabolismo , Prótons , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo
8.
Biomolecules ; 10(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019635

RESUMO

Damage to cerebral mitochondria, particularly opening of mitochondrial permeability transition pore (MPTP), is a key mechanism of ischemic brain injury, therefore, modulation of MPTP may be a potential target for a neuroprotective strategy in ischemic brain pathologies. The aim of this study was to investigate whether biguanides-metformin and phenformin as well as other inhibitors of Complex I of the mitochondrial electron transfer system may protect against ischemia-induced cell death in brain slice cultures by suppressing MPTP, and whether the effects of these inhibitors depend on the age of animals. Experiments were performed on brain slice cultures prepared from 5-7-day (premature) and 2-3-month old (adult) rat brains. In premature brain slice cultures, simulated ischemia (hypoxia plus deoxyglucose) induced necrosis whereas in adult rat brain slice cultures necrosis was induced by hypoxia alone and was suppressed by deoxyglucose. Phenformin prevented necrosis induced by simulated ischemia in premature and hypoxia-induced-in adult brain slices, whereas metformin was protective in adult brain slices cultures. In premature brain slices, necrosis was also prevented by Complex I inhibitors rotenone and amobarbital and by MPTP inhibitor cyclosporine A. The latter two inhibitors were protective in adult brain slices as well. Short-term exposure of cultured neurons to phenformin, metformin and rotenone prevented ionomycin-induced MPTP opening in intact cells. The data suggest that, depending on the age, phenformin and metformin may protect the brain against ischemic damage possibly by suppressing MPTP via inhibition of mitochondrial Complex I.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Metformina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Fenformin/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Complexo I de Transporte de Elétrons/genética , Humanos , Masculino , Mitocôndrias/genética , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/efeitos dos fármacos , Necrose/tratamento farmacológico , Necrose/metabolismo , Necrose/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fosforilação Oxidativa/efeitos dos fármacos , Ratos
9.
Biochimie ; 176: 150-157, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32721502

RESUMO

Itaconic acid (methylene-succinic acid, ItA) is an unsaturated dicarboxylic acid that is secreted by mammalian macrophages in response to a pro-inflammatory stimulus and shows an anti-inflammatory/antibacterial effect. Being a mitochondrial metabolite, it exhibits an inhibitory activity on succinate dehydrogenase and subsequently induces mitochondrial dysfunction. The present study has shown that ItA dose-dependently inhibited ADP- and DNP-stimulated (uncoupled) respiration of rat liver mitochondria energized with succinate. This effect of ItA could be related to the suppression of the activity of complex II and the combined activity of complexes II + III of the respiratory chain. At the same time, ItA had no effect on the activity of the dicarboxylate carrier, which catalyzes the transport of succinate across the inner mitochondrial membrane. It was found that 4 mM ItA diminished the rates of ADP- and DNP-stimulated mitochondrial respiration supported by the substrates of complex I glutamate and malate. A study of the effect of ItA on the activity of complexes of the respiratory chain showed that it decreases the activity of complex IV. It was observed that 4 mM ItA inhibited the rate of H2O2 production by mitochondria. At the same time, ItA promoted the opening of the cyclosporin A-sensitive Ca2+-dependent permeability transition pore. The latter was revealed as the decrease in the calcium retention capacity of mitochondria and the stimulation of release of cytochrome c from the organelles. ItA by itself promoted the cytochrome c release from mitochondria. Possible mechanisms of the effect of ItA on mitochondrial function are discussed.


Assuntos
Complexo II de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Succinatos/farmacologia , Animais , Cálcio/metabolismo , Citocromos c/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Ratos , Ratos Wistar
10.
Int J Mol Med ; 45(5): 1514-1524, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323742

RESUMO

The aim of the present study was to determine whether curculigoside protects against myocardial ischemia­reperfusion injury (MIRI) and to investigate the underlying mechanisms. An in vitro model of hypoxia/reoxygenation (H/R) was established by culturing H9c2 cells under hypoxic conditions for 12 h, followed by reoxygenation for 1 h. Cell Counting kit­8 and lactate dehydrogenase (LDH) assays were subsequently used to examine cell viability and the degree of cell injury. In addition, isolated rat hearts were subjected to 30 min of ischemia followed by 1 h of reperfusion to establish a MIRI model. Triphenyltetrazolium chloride (TTC) staining was performed to measure the infarct size. Furthermore, TUNEL staining and flow cytometry were employed to evaluate cell apoptosis. The opening of the mitochondrial permeability transition pore (MPTP) and changes in the mitochondrial membrane potential (ΔΨm) were assessed. Reverse transcription­quantitative PCR and western blot analysis were performed to investigate the expression levels of mitochondrial apoptosis­related proteins. Curculigoside pre­treatment significantly improved cell viability, decreased cell apoptosis and LDH activity, and reduced the infarct size and myocardial apoptosis in vitro and ex vivo, respectively. Moreover, curculigoside markedly inhibited MPTP opening and preserved the ΔΨm. In addition, curculigoside significantly decreased the expression of cytochrome c, apoptotic protease activating factor­1, cleaved caspase­9 and cleaved caspase­3. Notably, atractyloside, a known MPTP opener, abrogated the protective effects of curculigoside. On the whole, the present study demonstrated that curculigoside protected against MIRI, potentially by decreasing the levels of mitochondria­mediated apoptosis via the inhibition of MPTP opening. Therefore, the results obtained in the present study may provide the theoretical basis for the future clinical application of curculigoside.


Assuntos
Benzoatos/farmacologia , Glucosídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar
11.
Pharmacol Res ; 151: 104548, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759087

RESUMO

Ischemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.g. cyclosporine A, CsA) targeting cyclophilin D (CyPD) which is a key modulator, but not a structural component of the PTP. This limitation might explain controversial findings in clinical studies. Therefore, we investigated the protective effects against I/R injury of small-molecule inhibitors of the PTP (63 and TR002) that do not target CyPD. Both compounds exhibited a dose-dependent inhibition of PTP opening in isolated mitochondria and were more potent than CsA. Notably, PTP inhibition was observed also in mitochondria devoid of CyPD. Compounds 63 and TR002 prevented PTP opening and mitochondrial depolarization induced by Ca2+ overload and by reactive oxygen species in neonatal rat ventricular myocytes (NRVMs). Remarkably, both compounds prevented cell death, contractile dysfunction and sarcomeric derangement induced by anoxia/reoxygenation injury in NRVMs at sub-micromolar concentrations, and were more potent than CsA. Cardioprotection was observed also in adult mouse ventricular myocytes and human iPSc-derived cardiomyocytes, as well as ex vivo in perfused hearts. Thus, this study demonstrates that 63 and TR002 represent novel cardioprotective agents that inhibit PTP opening independent of CyPD targeting.


Assuntos
Cardiotônicos/uso terapêutico , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Cardiotônicos/farmacologia , Linhagem Celular , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos Wistar , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Neurocrit Care ; 32(3): 812-821, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31576483

RESUMO

BACKGROUND AND OBJECTIVE: Attenuation of neuronal apoptosis helps maintain neurological function in patients after cardiac arrest. After ischemia-reperfusion, both cyclosporin A (CsA) and ischemic postconditioning independently protect mitochondria and thus reduce nerve injury. This study employed a rat model to evaluate the neuroprotective effect of combining ischemic postconditioning with CsA after cardiopulmonary resuscitation (CPR). METHODS: Rats were apportioned equally to model control, postconditioned, CsA-treated, or CsA + postconditioned groups. Asphyxial cardiac arrest was imposed using modified Utstein-style guidelines. In the appropriate groups, postconditioning was implemented by ischemia and reperfusion (clamping and loosening the left femoral artery); CsA treatment was delivered with a single intravenous dose. Neurological deficits were scored at different times after CPR. Histological evaluation and electron microscopy were used to evaluate tissue damage, and TUNEL and flow cytometry were used to measure the apoptotic rate of hippocampal neurons and size of the mitochondrial permeability transition pore (mPTP) opening. RESULTS: The apoptotic rate was significantly lower in the postconditioned and CsA-treated groups compared with the model control and lowest in the CsA + postconditioned group. By histological evaluation and electron microscopy, the least damage was observed in the CsA + postconditioned group. The neurological deficit score of the CsA + postconditioned group was significantly higher than that of the CsA-treated group, but the size of the mPTP openings of these two groups was comparable. CONCLUSION: Ischemic postconditioning combined with CsA exerted a better neuroprotective effect after CPR than did either postconditioning or CsA alone. Inhibiting the opening of the mPTP is not the only neuroprotective mechanism.


Assuntos
Apoptose/efeitos dos fármacos , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Pós-Condicionamento Isquêmico/métodos , Neurônios/efeitos dos fármacos , Síndrome Pós-Parada Cardíaca/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Reanimação Cardiopulmonar , Parada Cardíaca , Poro de Transição de Permeabilidade Mitocondrial/antagonistas & inibidores , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...