Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.083
Filtrar
1.
Carbohydr Res ; 542: 109200, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964015

RESUMO

The polymeric nanoparticles (PNPs) loaded with prednisolone were developed to exhibit pH-responsive properties owing to the attachment of a hydrazone linkage between the copolymer chitosan and mPEG. In the diseased cellular environment, the hydrazone bond tends to break due to reduced pH, leading to the release of the drug from the PNPs at the required site of action. The fabricated PNPs exhibit spherical morphology, optimum size (∼200 nm), negative surface charge, and monodispersed particle size distribution. The encapsulation efficiency of the PNPs was determined to be 71.1 ± 0.79 % and two experiments (polymer weight loss and drug release) confirmed the pH-responsive properties of the PNPs. The cellular study cytotoxicity assay showed biocompatibility of PNPs and drug molecule-mediated toxicity to A549 cells. The ligand atrial natriuretic peptide-attached PNPs internalized into A549 cells via natriuretic peptide receptor-A to achieve target specificity. The PNPs cytotoxicity and pH-response medicated inflammation reduction functionality was studied in inflammation-induced RAW264.7 cell lines. The study observed the PNPs effectively reduced the inflammatory mediators NO and ROS levels in RAW264.7. The results showed that pH-responsive properties of PNPs and this novel fabricated delivery system effectively treat inflammatory and cancer diseases.


Assuntos
Quitosana , Química Click , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Concentração de Íons de Hidrogênio , Humanos , Camundongos , Animais , Nanopartículas/química , Células RAW 264.7 , Células A549 , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Polímeros/química , Polímeros/síntese química , Polímeros/farmacologia , Liberação Controlada de Fármacos , Prednisolona/química , Prednisolona/farmacologia , Sobrevivência Celular/efeitos dos fármacos
2.
Nanoscale ; 16(28): 13386-13398, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38967103

RESUMO

Mechanical properties, as crucial physical properties, have a significant impact on the occurrence, development, and metastasis of tumors. Regulating the mechanical properties of tumors to enhance their sensitivity to radiotherapy and chemotherapy has become an important strategy in the field of cancer treatment. Over the past few decades, nanomaterials have made remarkable progress in cancer therapy, either based on their intrinsic properties or as drug delivery carriers. However, the investigation of nanomaterials of mechanical regulation in tumor therapy is currently in its initial stages. The mechanical properties of nanomaterials themselves, drug carrier targeting, and regulation of the mechanical environment of tumor tissue have far-reaching effects on the efficient uptake of drugs and clinical tumor treatment. Therefore, this review aims to comprehensively summarize the applications and research progress of nanomaterials in tumor therapy based on the regulation of mechanical properties, in order to provide strong support for further research and the development of treatment strategies in this field.


Assuntos
Nanoestruturas , Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos
3.
Int J Nanomedicine ; 19: 7033-7048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015675

RESUMO

Purpose: The anticancer potential of indomethacin and other nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro, in vivo, and in clinical trials is well known and widely reported in the literature, along with their side effects, which are mainly observed in the gastrointestinal tract. Here, we present a strategy for the application of the old drug indomethacin as an anticancer agent by encapsulating it in nanostructured lipid carriers (NLC). We describe the production method of IND-NLC, their physicochemical parameters, and the results of their antiproliferative activity against selected cancer cell lines, which were found to be higher compared to the activity of free indomethacin. Methods: IND-NLC were fabricated using the hot high-pressure homogenization method. The nanocarriers were physicochemically characterized, and their biopharmaceutical behaviour and therapeutic efficacy were evaluated in vitro. Results: Lipid nanoparticles IND-NLC exhibited a particle size of 168.1 nm, a negative surface charge (-30.1 mV), low polydispersity index (PDI of 0.139), and high encapsulation efficiency (over 99%). IND-NLC were stable for over 60 days and retained integrity during storage at 4 °C and 25 °C. The potential therapeutic benefits of IND-NLC were screened using in vitro cancer models, where nanocarriers with encapsulated drug effectively inhibited the growth of breast cancer cell line MDA-MB-468 at dosage 15.7 µM. Conclusion: We successfully developed IND-NLC for delivery of indomethacin to cancer cells and confirmed their antitumoral efficacy in in vitro studies. The results suggest that indomethacin encapsulated in lipid nanoparticles possesses high anticancer potential. Moreover, the presented strategy is highly promising and may offer a new alternative for future therapeutic drug innovations.


Assuntos
Antineoplásicos , Portadores de Fármacos , Indometacina , Lipídeos , Tamanho da Partícula , Indometacina/química , Indometacina/farmacologia , Indometacina/administração & dosagem , Indometacina/farmacocinética , Humanos , Portadores de Fármacos/química , Lipídeos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Nanoestruturas/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
4.
Phys Rev E ; 109(6-1): 064408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020963

RESUMO

Janus nanocarriers (NCs) provide promising features in interfacial applications such as targeted drug delivery. Herein, we use dissipative particle dynamics simulations to study the adhesion dynamics of NCs with Janus ligand compositions to the endothelial cell as a function of a series of effects, such as the initial orientation, ligand density, shape, and size of Janus NCs. The Janus NCs, with its long axis parallel to the endothelial glycocalyx (EG) layer, has the best penetration depth due to its lower potential energy and the lowest shell entropy loss. Among different shapes of Janus NCs, both the potential energy and the EG entropy loss control the penetration. In fact, at the parallel orientations, Janus shapes with a robust mechanical strength and larger surface area at the EG/water interface can rotate and penetrate more efficiently. An increase in the ligand density of Janus NCs increases entropy losses of both the hydrophilic and the hydrophobic ligands and decreases the potential energy. Thus, for a specific Janus NCs, functionalizing with an appropriate ligand density would help driving forces prevail over barriers of penetration into the EG layer. For a particular ligand density, once the radius of the Janus NCs exceeds the appropriate size, barriers such as hydrophobic ligands and shell entropy losses are also reinforced significantly and surpass driving forces. Our observations reveal that entropy losses for hydrophobic ligands of Janus NCs and for the shell of NCs are decisive for the adhesion and penetration of Janus NCs to endothelial cells.


Assuntos
Células Endoteliais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Nanopartículas/química , Entropia , Ligantes , Adesão Celular , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Glicocálix/metabolismo , Glicocálix/química , Modelos Biológicos
5.
Physiol Rep ; 12(13): e16095, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946616

RESUMO

The present study aimed to investigate the effect of catechin-loaded Chitosan-Alginate nanoparticles (NPs) on cognitive function in an aluminum chloride (AlCl3)-induced rat model of Alzheimer's disease (AD). The Catechin-loaded Chitosan-Alginate nanocarriers were synthesized through ionotropic gelation (IG) method. Physio-chemical characterization was conducted with the Zetasizer Nano system, the scanning electron microscope, and the Fourier transform infrared spectroscopy. The experiments were performed over 21 days on six groups of male Wistar rats. The control group, AlCl3 treated group, Catechin group, nanocarrier group, treatment group 1 (AlCl3 + Catechin), and treatment group 2 (AlCl3 + nanocarrier). A behavioral study was done by the Morris water maze (MWM) test. In addition, the level of oxidative indices and acetylcholine esterase (AChE) activity was determined by standard procedures at the end of the study. AlCl3 induced a significant increase in AChE activity, along with a significant decrease in the level of Catalase (CAT) and total antioxidant capacity (TAC) in the hippocampus. Moreover, the significant effect of AlCl3 was observed on the behavioral parameters of the MWM test. Both forms of Catechin markedly improved AChE activity, oxidative biomarkers, spatial memory, and learning. The present study indicated that the administration of Catechin-loaded Chitosan-Alginate NPs is a beneficial therapeutic option against behavioral and chemical alteration of AD in male Wistar rats.


Assuntos
Alginatos , Cloreto de Alumínio , Doença de Alzheimer , Catequina , Quitosana , Nanopartículas , Ratos Wistar , Animais , Catequina/administração & dosagem , Catequina/farmacologia , Cloreto de Alumínio/toxicidade , Quitosana/química , Quitosana/administração & dosagem , Alginatos/química , Alginatos/administração & dosagem , Masculino , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Ratos , Administração Oral , Cognição/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais de Doenças , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química
6.
AAPS PharmSciTech ; 25(6): 152, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954218

RESUMO

Bedaquiline (BQ) solid lipid nanoparticles (SLNs), which have previously been formulated for parenteral administration, have a risk of patient non-compliance in treating tuberculosis. This research presents a strategy to develop BQ SLNs for oral delivery to improve patient adherence, The upper and lower levels for the formulation excipients were generated from screening experiments. Using 4 input factors (BQ, lecithin, Tween 80, and PEG), a full factorial design from 3 × 2x2 × 2 experiments was randomly arranged to investigate 3 response variables: Particle size distribution (PSD), polydispersity index (PdI), and zeta potential (ZP). High shear homogenization was used to mix the solvent and aqueous phases, with 15% sucrose as a cryoprotectant. The response variables were assessed using a zeta sizer while TEM micrographs confirmed the PSD data. Solid-state assessments were conducted using powdered X-ray diffraction and scanning electron microscopy (SEM) imaging. A comparative invitro assessment was used to determine drug release from an equivalent dose of BQ free base powder and BQ-SLN, both packed in hard gelatin capsules. The sonicated formulations obtained significant effects for PSD, PdI, and ZP. The p-values (0.0001 for PdI, 0.0091 for PSD) for BQ as an independent variable in the sonicated formulation were notably higher than those in the unsonicated formulation (0.1336 for PdI, 0.0117 for PSD). The SEM images were between 100 - 400 nm and delineated nanocrystals of BQ embedded in the lipid matrix. The SLN formulation provides higher drug levels over the drug's free base; a similarity factor (f2 = 18.3) was estimated from the dissolution profiles.


Assuntos
Química Farmacêutica , Diarilquinolinas , Lipídeos , Nanopartículas , Tamanho da Partícula , Diarilquinolinas/química , Diarilquinolinas/administração & dosagem , Nanopartículas/química , Lipídeos/química , Química Farmacêutica/métodos , Excipientes/química , Liberação Controlada de Fármacos , Antituberculosos/administração & dosagem , Antituberculosos/química , Composição de Medicamentos/métodos , Difração de Raios X/métodos , Microscopia Eletrônica de Varredura/métodos , Portadores de Fármacos/química , Administração Oral , Lipossomos
7.
AAPS PharmSciTech ; 25(6): 153, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961013

RESUMO

Despite ongoing advances in cancer therapy, the results for the treatment of breast cancer are not satisfactory. The advent of nanotechnology promises to be an essential tool to improve drug delivery effectiveness in cancer therapy. Nanotechnology provides an opportunity to enhance the treatment modality by preventing degradation, improving tumour targeting, and controlling drug release. Recent advances have revealed several strategies to prevent cancer metastasis using nano-drug delivery systems (NDDS). These strategies include the design of appropriate nanocarriers loaded with anti-cancer drugs that target the optimization of physicochemical properties, modulate the tumour microenvironment, and target biomimetic techniques. Nanocarriers have emerged as a preferential approach in the chemotropic treatment for breast cancer due to their pivotal role in safeguarding the therapeutic agents against degradation. They facilitate efficient drug concentration in targeted cells, surmount the resistance of drugs, and possess a small size. Nevertheless, these nanocarrier(s) have some limitations, such as less permeability across the barrier and low bioavailability of loaded drugs. To overcome these challenges, integrating external stimuli has been employed, encompassing infrared light, thermal stimulation, microwaves, and X-rays. Among these stimuli, ultrasound-triggered nanocarriers have gained significant attention due to their cost-effectiveness, non-invasive nature, specificity, ability to penetrate tissues, and capacity to deliver elevated drug concentrations to intended targets. This article comprehensively reviews recent advancements in different nanocarriers for breast cancer chemotherapy. It also delves into the associated hurdles and offers valuable insights into the prospective directions for this innovative field.


Assuntos
Antineoplásicos , Neoplasias da Mama , Portadores de Fármacos , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Humanos , Portadores de Fármacos/química , Antineoplásicos/administração & dosagem , Feminino , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Animais , Liberação Controlada de Fármacos , Nanotecnologia/métodos
8.
Biomed Mater ; 19(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955335

RESUMO

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Assuntos
Nanogéis , Psoríase , Absorção Cutânea , Psoríase/tratamento farmacológico , Psoríase/patologia , Animais , Nanogéis/química , Lecitinas/química , Pele/metabolismo , Pele/patologia , Tamanho da Partícula , Lipossomos/química , Polietilenoglicóis/química , Glycine max/química , Ratos , Masculino , Imiquimode/química , Portadores de Fármacos/química , Polietilenoimina/química , Difração de Raios X , Etanol/química , Acrilatos
9.
Int J Nanomedicine ; 19: 6603-6618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979533

RESUMO

Objective: Ovarian cancer cells are prone to acquire tolerance to chemotherapeutic agents, which seriously affects clinical outcomes. The development of novel strategies to enhance the targeting of chemotherapeutic agents to overcome drug resistance and minimize side effects is significant for improving the clinical outcomes of ovarian cancer patients. Methods: We employed folic acid (FA)-modified ZIF-90 nanomaterials (FA-ZIF-90) to deliver the chemotherapeutic drug, cisplatin (DDP), via dual targeting to improve its targeting to circumvent cisplatin resistance in ovarian cancer cells, especially by targeting mitochondria. FA-ZIF-90/DDP could rapidly release DDP in response to dual stimulation of acidity and ATP in tumor cells. Results: FA-ZIF-90/DDP showed good blood compatibility. It was efficiently taken up by human ovarian cancer cisplatin-resistant cells A2780/DDP and aggregated in the mitochondrial region. FA-ZIF-90/DDP significantly inhibited the mitochondrial activity and metastatic ability of A2780/DDP cells. In addition, it effectively induced apoptosis in A2780/DDP cells and overcame cisplatin resistance. In vivo experiments showed that FA-ZIF-90/DDP increased the accumulation of DDP in tumor tissues and significantly inhibited tumor growth. Conclusion: FA-modified ZIF-90 nanocarriers can improve the tumor targeting and anti-tumor effects of chemotherapeutic drugs, reduce toxic side effects, and are expected to be a novel therapeutic strategy to reverse drug resistance in ovarian cancer.


Assuntos
Antineoplásicos , Apoptose , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ácido Fólico , Imidazóis , Neoplasias Ovarianas , Zeolitas , Feminino , Cisplatino/farmacologia , Cisplatino/química , Cisplatino/farmacocinética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Zeolitas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Ácido Fólico/química , Ácido Fólico/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/administração & dosagem , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Nanomedicine ; 19: 6589-6602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979535

RESUMO

Orthopedic infection is one of the most intractable orthopedic problems. Bacteria resistant to antibiotics also develop gradually. Chitosan is widely used in the Biomedical field because of its high biocompatibility, biodegradability, and antibacterial activity. Chitosan-based drug delivery systems are frequently utilized to produce controlled medication release. When combined with antibiotics, synergistic antibacterial effects can be achieved. Chitosan-based nanoparticles are one of the most widely used applications in drug delivery systems. The focus of this review is to provide information on new methods being developed for chitosan-based nanoparticles in the field of bone infection treatment, including chitosan nanoparticles for antibacterial purposes, Ch-loaded with antibiotics, Ch-loaded with metal, and used as immune adjuvants. It may Provide ideas for the fundamental research and the prospects of future clinical applications of orthopedic infections.


Assuntos
Antibacterianos , Quitosana , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Humanos , Nanopartículas/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Animais , Sistemas de Liberação de Medicamentos/métodos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/química
11.
AAPS PharmSciTech ; 25(6): 157, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982006

RESUMO

Azithromycin traditional formulations possesses poor oral bioavailability which necessitates development of new formulation with enhanced bioavailability of the drug. The objective of current research was to explore the kinetics and safety profile of the newly developed azithromycin lipid-based nanoformulation (AZM-NF). In the in-vitro study of kinetics profiling, azithromycin (AZM) release was assessed using dialysis membrane enclosing equal quantity of either AZM-NF, oral suspension of azithromycin commercial product (AZM-CP), or azithromycin pure drug (AZM-PD) in simulated intestinal fluid. The ex-vivo study was performed using rabbit intestinal segments in physiological salts solution in a tissue bath. The in-vivo study was investigated by oral administration of AZM to rabbits while taking blood samples at predetermined time-intervals, followed by HPLC analysis. The toxicity study was conducted in rats to observe histopathological changes in rat's internal organs. In the in-vitro study, maximum release was 95.38 ± 4.58% for AZM-NF, 72.79 ± 8.85% for AZM-CP, and 46.13 ± 8.19% for AZM-PD (p < 0.0001). The ex-vivo investigation revealed maximum permeation of 85.68 ± 5.87 for AZM-NF and 64.88 ± 5.87% for AZM-CP (p < 0.001). The in-vivo kinetics showed Cmax 0.738 ± 0.038, and 0.599 ± 0.082 µg/ml with Tmax of 4 and 2 h for AZM-NF and AZM-CP respectively (p < 0.01). Histopathological examination revealed compromised myocardial fibers integrity by AZM-CP only, liver and kidney showed mild aberrations by both formulations, with no remarkable changes in the rest of studied organs. The results showed that AZM-NF exhibited significantly enhanced bioavailability with comparative safer profile to AZM-CP investigated.


Assuntos
Azitromicina , Disponibilidade Biológica , Lipídeos , Nanopartículas , Animais , Azitromicina/farmacocinética , Azitromicina/administração & dosagem , Azitromicina/química , Coelhos , Ratos , Lipídeos/química , Administração Oral , Masculino , Nanopartículas/química , Química Farmacêutica/métodos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos
12.
AAPS PharmSciTech ; 25(6): 162, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997615

RESUMO

In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 µm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluoruracila , Microesferas , Tamanho da Partícula , Fluoruracila/administração & dosagem , Fluoruracila/química , Sistemas de Liberação de Medicamentos/métodos , Porosidade , Emulsões/química , Celulose/química , Celulose/análogos & derivados , Química Farmacêutica/métodos , Polímeros/química , Excipientes/química , Solventes/química , Tensoativos/química , Resinas Acrílicas/química , Portadores de Fármacos/química , Géis/química
13.
Sci Rep ; 14(1): 15927, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987493

RESUMO

The development of intelligent, environmentally responsive and biocompatible photothermal system holds significant importance for the photothermal combined therapy of tumors. In this study, inspired by Lactobacillus (LAC), we prepared a biomimetic nanoplatform PDA&DOX@LAC for tumor photothermal-chemotherapy by integrating the chemotherapeutic drug doxorubicin (DOX) with dopamine through oxidative polymerization to form polydopamine (PDA) on the surface of LAC. The PDA&DOX@LAC nanoplatform not only achieves precise and controlled release of DOX based on the slightly acidic microenvironment of tumor tissues, but also exhibits enzyme-like properties to alleviate tumor hypoxia. Under near-infrared light irradiation, it effectively induces photothermal ablation of tumor cells, enhances cellular uptake of DOX with increasing temperature, and thus efficiently inhibits tumor cell growth. Moreover, it is further confirmed in vivo experiments that photothermal therapy combined with PDA&DOX@LAC induces tumor cells apoptosis, releases tumor-associated antigens, which is engulfed by dendritic cells to activate cytotoxic T lymphocytes, thereby effectively suppressing tumor growth and prolonging the survival period of 4T1 tumor-bearing mice. Therefore, the PDA&DOX@LAC nanoplatform holds immense potential in precise tumor targeting as well as photothermal combined therapy and provides valuable insights and theoretical foundations for the development of novel tumor treatment strategies based on endogenous substances within the body.


Assuntos
Doxorrubicina , Portadores de Fármacos , Indóis , Polímeros , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Animais , Indóis/química , Indóis/farmacologia , Indóis/administração & dosagem , Camundongos , Polímeros/química , Portadores de Fármacos/química , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos BALB C , Humanos , Nanopartículas/química , Apoptose/efeitos dos fármacos , Fototerapia/métodos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia
14.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000260

RESUMO

Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.


Assuntos
Bactérias , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Plantas , Vesículas Extracelulares/metabolismo , Bactérias/metabolismo , Humanos , Plantas/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Leveduras/metabolismo , Portadores de Fármacos/química
15.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000306

RESUMO

The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The physicochemical properties of the system were monitored using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method was chosen to determine the preferential conditions for the complex formation. The highest binding efficiency of the drug to the cationic dendrimer was observed under basic conditions when the DOX molecule was deprotonated. The decrease in the zeta potential of the complex confirms that DOX immobilizes through electrostatic interaction with the carrier's surface amine groups. The binding constants were determined from the fluorescence quenching of the DOX molecule in the presence of G4.0 PAMAM. The two-fold way of binding doxorubicin in the structure of dendrimers was visible in the Isothermal calorimetry (ITC) isotherm. Fluorescence spectra and release curves identified the reversible binding of DOX to the nanocarrier. Among the selected cancer cells, the most promising anticancer activity of the G4.0-DOX complex was observed in A375 malignant melanoma cells. Moreover, the preferred intracellular location of the complexes concerning the free drug was found, which is essential from a therapeutic point of view.


Assuntos
Dendrímeros , Doxorrubicina , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos
16.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000485

RESUMO

Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.


Assuntos
Glioblastoma , Lipoproteínas HDL , Nanopartículas , Esferoides Celulares , Xantonas , Humanos , Xantonas/química , Xantonas/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Nanopartículas/química , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Esferoides Celulares/efeitos dos fármacos , Portadores de Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Autofagia/efeitos dos fármacos
17.
Molecules ; 29(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999083

RESUMO

The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail. Special attention is given to their ability to strategically evade endosomal entrapment, thereby enhancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer nuanced insights into these investigative approaches' multifaceted aspects. We meticulously analyze the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal escape agents. Each mechanism's effectiveness and potential application in mitigating endosomal entrapment are scrutinized. This paper provides a critical overview of the current landscape, emphasizing the need for advanced delivery systems to navigate the complexities of cellular uptake. Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.


Assuntos
Endossomos , Lisossomos , Lisossomos/metabolismo , Humanos , Endossomos/metabolismo , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Nanoestruturas/química , Animais , Nanopartículas/química
18.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999936

RESUMO

The surface functionalization of polymer-mediated drug/gene delivery holds immense potential for disease therapy. However, the design principles underlying the surface functionalization of polymers remain elusive. In this study, we employed computer simulations to demonstrate how the stiffness, length, density, and distribution of polymer ligands influence their penetration ability across the cell membrane. Our simulations revealed that the stiffness of polymer ligands affects their ability to transport cargo across the membrane. Increasing the stiffness of polymer ligands can promote their delivery across the membrane, particularly for larger cargoes. Furthermore, appropriately increasing the length of polymer ligands can be more conducive to assisting cargo to enter the lower layer of the membrane. Additionally, the distribution of polymer ligands on the surface of the cargo also plays a crucial role in its transport. Specifically, the one-fourth mode and stripy mode distributions of polymer ligands exhibited higher penetration ability, assisting cargoes in penetrating the membrane. These findings provide biomimetic inspiration for designing high-efficiency functionalization polymer ligands for drug/gene delivery.


Assuntos
Polímeros , Polímeros/química , Ligantes , Transcitose , Portadores de Fármacos/química , Membrana Celular/metabolismo , Técnicas de Transferência de Genes , Sistemas de Liberação de Medicamentos , Simulação por Computador , Humanos
19.
ACS Appl Bio Mater ; 7(7): 4785-4794, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963757

RESUMO

The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.


Assuntos
Antibacterianos , Portadores de Fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Portadores de Fármacos/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Camundongos , Animais , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Quitosana/química
20.
AAPS PharmSciTech ; 25(6): 165, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009915

RESUMO

CaCO3 nanoparticles (nano-CaCO3) as nano-templates were prepared using CaCl2 and Na2CO3 solutions under controlled sonication (19.5 kHz). Using the same ultrasonic device, subsequently, hollow mesoporous silica nanoparticles (HMSNs) were obtained by the hard template of nano-CaCO3. HMSNs were selected as carriers for the antifungal drug voriconazole (VOR) loading to overcome poor water solubility. Three-dimensional CaCO3 nanosheets HMSNs were obtained under gentle sonication. Three-dimensional CaCO3 nanosheets of 24.5 nm (hydrodynamic diameter) were obtained under 17.6 W for 3 min. HMSNs were synthesized by double-template method with nano-CaCO3 as the hard template. Transmission electron microscopy measurements showed that the prepared HMSNs possess hollow structures with particle size between 110 and 120 nm. Nitrogen physisorption at -196 °C revealed that the HMSNs had high surface area (401.57 m2/g), high pore volume (0.11 cm3/g), and uniform pore size (2.22 nm) that facilitated the effective encapsulation of VOR in the HMSNs. The loading capacity of VOR (wt%) on the HMSNs was 7.96%, and the total VOR release amount of VOR-HMSNs material was 71.40% at 480 min. The kinetic model confirmed that the release mechanism of HMSNs nanoparticles followed Fickian diffusion at pH = 7.4 and 37 °C. Moreover, the cumulative VOR release at 42 °C (86.05%) was higher than that at 37 °C (71.40%). The cumulative release amount of VOR from the VOR-HMSNs material was 92.37% at pH = 5.8 at the same temperature. Both nano-CaCO3 templates and HMSNs were prepared by sonication at 19.5 kHz. The as-prepared HMSNs can effectively encapsulate VOR and released drug by Fickian diffusion.


Assuntos
Antifúngicos , Carbonato de Cálcio , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Voriconazol , Nanopartículas/química , Carbonato de Cálcio/química , Dióxido de Silício/química , Voriconazol/química , Voriconazol/administração & dosagem , Porosidade , Antifúngicos/administração & dosagem , Antifúngicos/química , Portadores de Fármacos/química , Solubilidade , Liberação Controlada de Fármacos , Sonicação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...