Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.220
Filtrar
1.
Curr Biol ; 34(13): R640-R662, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981433

RESUMO

In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.


Assuntos
Potenciação de Longa Duração , Memória , Potenciação de Longa Duração/fisiologia , Animais , Memória/fisiologia , História do Século XX , Aprendizagem/fisiologia , Humanos , Coelhos
2.
J Neurophysiol ; 132(1): 177-183, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836296

RESUMO

The reliable induction of long-term potentiation (LTP) in the dentate gyrus (DG) in vitro requires the blockade of the γ-aminobutyric acid A (GABAA) receptor. In these studies we examined the effectiveness of the specific GABAA receptor antagonist bicuculline methiodide (BMI) in facilitating LTP in the DG from hippocampal slices obtained from either C57Bl/6 mice or Sprague-Dawley rats, two species commonly used for electrophysiology. In the C57Bl/6 mice, maximal short-term potentiation and LTP in the DG were produced with a concentration of 5 µM BMI. In contrast, a concentration of 10 µM BMI was required to produce maximal short-term potentiation and LTP in the DG of Sprague-Dawley rats. These results reveal that there are species differences in the optimal amount of BMI required to produce robust and reliable LTP in the rodent DG in vitro and highlight the need to take consideration of the species being used when choosing concentrations of pharmacological agents to employ for electrophysiological use.NEW & NOTEWORTHY In this report we provide specific neurophysiological evidence for concentrations of GABAA antagonist required to study long-term potentiation in the medial perforant pathway of the dentate gyrus. Two commonly used species, Sprague-Dawley rats and C57Bl/6 mice, require different concentrations of bicuculline methiodide to induce optimal short-term and long-term potentiation.


Assuntos
Bicuculina , Giro Denteado , Antagonistas de Receptores de GABA-A , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Bicuculina/farmacologia , Bicuculina/análogos & derivados , Antagonistas de Receptores de GABA-A/farmacologia , Camundongos , Ratos , Masculino , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Especificidade da Espécie
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853555

RESUMO

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Giro do Cíngulo , Potenciação de Longa Duração , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Tupaiidae , Animais , Potenciação de Longa Duração/fisiologia , Giro do Cíngulo/fisiologia , Tupaiidae/fisiologia , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/metabolismo , Adenilil Ciclases/metabolismo , Ácido Glutâmico/metabolismo , Masculino
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230235, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853561

RESUMO

Which proportion of the long-term potentiation (LTP) expressed in the bulk of excitatory synapses is postsynaptic and which presynaptic remains debatable. To understand better the possible impact of either LTP form, we explored a realistic model of a CA1 pyramidal cell equipped with known membrane mechanisms and multiple, stochastic excitatory axo-spinous synapses. Our simulations were designed to establish an input-output transfer function, the dependence between the frequency of presynaptic action potentials triggering probabilistic synaptic discharges and the average frequency of postsynaptic spiking. We found that, within the typical physiological range, potentiation of the postsynaptic current results in a greater overall output than an equivalent increase in presynaptic release probability. This difference grows stronger at lower input frequencies and lower release probabilities. Simulations with a non-hierarchical circular network of principal neurons indicated that equal increases in either synaptic fidelity or synaptic strength of individual connections also produce distinct changes in network activity, although the network phenomenology is likely to be complex. These observations should help to interpret the machinery of LTP phenomena documented in situ. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Modelos Neurológicos , Sinapses , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Células Piramidais/fisiologia , Animais , Simulação por Computador , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230241, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853556

RESUMO

The roles of Ca2+-induced calcium release in synaptic plasticity and metaplasticity are poorly understood. The present study has addressed the role of intracellular Ca2+ stores in long-term potentiation (LTP) and a form of heterosynaptic metaplasticity known as synaptic tagging and capture (STC) at CA1 synapses in mouse hippocampal slices. The effects of two compounds, ryanodine and cyclopiazonic acid (CPA), were examined on LTP induced by three distinct induction protocols: weak (w), compressed (c) and spaced (s) theta-burst stimulation (TBS). These compounds did not significantly affect LTP induced by the wTBS (one episode of TBS; 25 stimuli) or cTBS (three such episodes with a 10 s inter-episode interval (IEI); 75 stimuli) but substantially inhibited LTP induced by a sTBS (10 min IEI; 75 stimuli). Ryanodine and CPA also prevented a small heterosynaptic potentiation that was observed with the sTBS protocol. Interestingly, these compounds also prevented STC when present during either the sTBS or the subsequent wTBS, applied to an independent input. All of these effects of ryanodine and CPA were similar to that of a calcium-permeable AMPA receptor blocker. In conclusion, Ca2+ stores provide one way in which signals are propagated between synaptic inputs and, by virtue of their role in STC, may be involved in associative long-term memories. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Cálcio , Potenciação de Longa Duração , Rianodina , Sinapses , Animais , Potenciação de Longa Duração/fisiologia , Camundongos , Sinapses/fisiologia , Rianodina/farmacologia , Cálcio/metabolismo , Indóis/farmacologia , Hipocampo/fisiologia , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Região CA1 Hipocampal/fisiologia , Masculino
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230475, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853563

RESUMO

Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse retrogradely into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is required for kainate receptor (KAR)-dependent presynaptic form of LTP (pre-LTP) in the adult insular cortex (IC). In the IC, we found that inhibition of NO synthase erased the maintenance of pre-LTP, while the induction of pre-LTP required the activation of KAR. Furthermore, NO is essential for pre-LTP induced between two pyramidal cells in the IC using the double patch-clamp recording. These results suggest that NO is required for homosynaptic pre-LTP in the IC. Our results present strong evidence for the critical roles of NO in pre-LTP in the IC. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Córtex Cerebral , Potenciação de Longa Duração , Óxido Nítrico , Terminações Pré-Sinápticas , Potenciação de Longa Duração/fisiologia , Óxido Nítrico/metabolismo , Animais , Córtex Cerebral/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de Ácido Caínico/metabolismo , Técnicas de Patch-Clamp , Ratos , Células Piramidais/fisiologia , Óxido Nítrico Sintase/metabolismo , Camundongos
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230218, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853569

RESUMO

We introduce and summarize reviews and research papers by speakers at a discussion meeting on 'Long-term potentiation: 50 years on' held at the Royal Society, London, on 20-21 November 2023. The meeting followed earlier discussion meetings marking the 30th and 40th anniversaries of the discovery of long-term potentiation. These new contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for our understanding of the neurobiological basis of many forms of learning and memory and a wide spectrum of neurological and cognitive disorders.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Potenciação de Longa Duração/fisiologia , Humanos , Animais , História do Século XX , Aprendizagem , Memória/fisiologia , História do Século XXI
8.
Proc Natl Acad Sci U S A ; 121(26): e2402783121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889145

RESUMO

Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Memória , Receptores de N-Metil-D-Aspartato , Sinapses , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Sinapses/metabolismo , Ratos , Camundongos
9.
Cell Rep Med ; 5(6): 101593, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843842

RESUMO

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.


Assuntos
Envelhecimento , Proteínas Quinases Dependentes de AMP Cíclico , Dieta Cetogênica , Potenciação de Longa Duração , Memória , Proteoma , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Dieta Cetogênica/métodos , Proteoma/metabolismo , Camundongos , Masculino , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Sinapses/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Fosforilação
10.
Mol Brain ; 17(1): 35, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858726

RESUMO

The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation. It is largely unknown in which behavioural tasks such synaptic plasticity occurs. Moreover, some stimuli can induce both LTP and LTD, thus making it difficult to separately study the different forms of synaptic plasticity. Two studies have shown that an aversive memory task - inhibitory avoidance learning and contextual fear conditioning - physiologically and selectively induce LTP and an LTP-like molecular change, respectively, in the hippocampus in vivo. Here, we show that a non-aversive behavioural task - exploration of new space - physiologically and selectively elicits a biochemical change in the hippocampus that is a hallmark of LTP. Specifically, we found that exploration of new space induces an increase in the phosphorylation of GluA1(Ser831), without affecting the phosphorylation of GluA1(Ser845), which are biomarkers of early-LTP and not NMDAR-mediated LTD. We also show that exploration of new space engenders the phosphorylation of the translational regulator S6K and the expression of Arc, which are features of electrophysiologically-induced late-LTP in the hippocampus. Therefore, our results show that exploration of new space is a novel non-aversive behavioural paradigm that elicits molecular changes in vivo that are analogous to those occurring during early- and late-LTP, but not during NMDAR-mediated LTD.


Assuntos
Proteínas do Citoesqueleto , Hipocampo , Potenciação de Longa Duração , Proteínas do Tecido Nervoso , Receptores de AMPA , Animais , Potenciação de Longa Duração/fisiologia , Fosforilação , Hipocampo/metabolismo , Hipocampo/fisiologia , Receptores de AMPA/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Citoesqueleto/metabolismo , Comportamento Exploratório/fisiologia , Serina/metabolismo
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230223, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853551

RESUMO

Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Animais , Feminino , Humanos , Masculino , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Fatores Sexuais
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230445, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853548

RESUMO

Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Hipocampo/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230224, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853547

RESUMO

Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Plasticidade Neuronal , Sinapses , Animais , Espinhas Dendríticas/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230220, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853553

RESUMO

This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Potenciação de Longa Duração , Receptores de AMPA , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Animais , Sinapses/fisiologia , Sinapses/metabolismo , Difusão , Humanos , Densidade Pós-Sináptica/metabolismo
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230231, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853566

RESUMO

Neurons are plastic. That is, they change their activity according to different behavioural conditions. This endows pyramidal neurons with an incredible computational power for the integration and processing of synaptic inputs. Plasticity can be investigated at different levels of investigation within a single neuron, from spines to dendrites, to synaptic input. Although most of our knowledge stems from the in vitro brain slice preparation, plasticity plays a vital role during behaviour by providing a flexible substrate for the execution of appropriate actions in our ever-changing environment. Owing to advances in recording techniques, the plasticity of neurons and the neural networks in which they are embedded is now beginning to be realized in the in vivo intact brain. This review focuses on the structural and functional synaptic plasticity of pyramidal neurons, with a specific focus on the latest developments from in vivo studies. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Plasticidade Neuronal , Células Piramidais , Células Piramidais/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/fisiologia , Encéfalo/citologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Humanos
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230229, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853558

RESUMO

Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are Hebbian forms of synaptic plasticity that are widely believed to comprise the physiological correlates of associative learning. They comprise a persistent, input-specific increase or decrease, respectively, in synaptic efficacy that, in rodents, can be followed for days and weeks in vivo. Persistent (>24 h) LTP and LTD exhibit distinct frequency-dependencies and molecular profiles in the hippocampal subfields. Moreover, causal and genetic studies in behaving rodents indicate that both LTP and LTD fulfil specific and complementary roles in the acquisition and retention of spatial memory. LTP is likely to be responsible for the generation of a record of spatial experience, which may serve as an associative schema that can be re-used to expedite or facilitate subsequent learning. In contrast, LTD may enable modification and dynamic updating of this representation, such that detailed spatial content information is included and the schema is rendered unique and distinguishable from other similar representations. Together, LTP and LTD engage in a dynamic interplay that supports the generation of complex associative memories that are resistant to generalization. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Hipocampo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Memória , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Animais , Hipocampo/fisiologia , Memória/fisiologia , Humanos , Memória Espacial/fisiologia , Ratos
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230239, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853568

RESUMO

N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Região CA1 Hipocampal , Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Potenciação de Longa Duração/fisiologia , Região CA1 Hipocampal/fisiologia , Plasticidade Neuronal/fisiologia , Ratos , Hipocampo/fisiologia
18.
Neuroscience ; 551: 323-332, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38821241

RESUMO

Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Potenciação de Longa Duração/fisiologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Adenosina/metabolismo , Adenosina/farmacologia , Camundongos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Hipocampo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/metabolismo
19.
Nat Commun ; 15(1): 4645, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821918

RESUMO

Non-synaptic (intrinsic) plasticity of membrane excitability contributes to aspects of memory formation, but it remains unclear whether it merely facilitates synaptic long-term potentiation or plays a permissive role in determining the impact of synaptic weight increase. We use tactile stimulation and electrical activation of parallel fibers to probe intrinsic and synaptic contributions to receptive field plasticity in awake mice during two-photon calcium imaging of cerebellar Purkinje cells. Repetitive activation of both stimuli induced response potentiation that is impaired in mice with selective deficits in either synaptic or intrinsic plasticity. Spatial analysis of calcium signals demonstrated that intrinsic, but not synaptic plasticity, enhances the spread of dendritic parallel fiber response potentiation. Simultaneous dendrite and axon initial segment recordings confirm these dendritic events affect axonal output. Our findings support the hypothesis that intrinsic plasticity provides an amplification mechanism that exerts a permissive control over the impact of long-term potentiation on neuronal responsiveness.


Assuntos
Cerebelo , Dendritos , Potenciação de Longa Duração , Plasticidade Neuronal , Células de Purkinje , Sinapses , Animais , Células de Purkinje/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Cerebelo/fisiologia , Cerebelo/citologia , Potenciação de Longa Duração/fisiologia , Dendritos/fisiologia , Sinapses/fisiologia , Cálcio/metabolismo , Masculino , Axônios/fisiologia , Camundongos Endogâmicos C57BL , Estimulação Elétrica , Feminino
20.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38806250

RESUMO

Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.


Assuntos
Hipocampo , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Receptores de N-Metil-D-Aspartato , Caracteres Sexuais , Sinapses , Animais , Masculino , Núcleo Accumbens/fisiologia , Potenciação de Longa Duração/fisiologia , Feminino , Camundongos , Sinapses/fisiologia , Hipocampo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/fisiologia , Neurônios Espinhosos Médios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...