Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1719-1728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38173257

RESUMO

The infection of young winter barley (Hordeum vulgare L.) root system in winter by barley yellow mosaic virus (BaYMV) can lead to high yield losses. Resistance breeding is critical for managing this virus, but there are only a few reports on resistance genes that describe how the genes control BaYMV propagation and the systemic movement from the roots to the leaves. Here we report a real-time quantitative PCR analysis of the virus in barley roots and leaves carrying BaYMV resistance genes (rym1 to rym15 and an unknown gene) to elucidate the molecular mechanisms underlying the barley response to BaYMV. The resistance mechanism directly targets the virus. Moreover, the resistance genes/cultivars were classified into the following three groups according to their BaYMV titer: (i) immune (BaYMV was undetectable in the roots or leaves), (ii) partially immune (BaYMV was detected in the roots but not in the leaves), and (iii) susceptible (BaYMV was detected in the roots and leaves). Our results clarified the functions of the resistance genes in barley roots and leaves following a BaYMV infection. We anticipate our analysis to be a starting point for more understanding of the correspondence between resistance genes of Triticeae and the soil-borne viruses.


Assuntos
Resistência à Doença , Hordeum , Doenças das Plantas , Folhas de Planta , Raízes de Plantas , Hordeum/virologia , Hordeum/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Raízes de Plantas/virologia , Raízes de Plantas/genética , Folhas de Planta/virologia , Resistência à Doença/genética , Replicação Viral/genética , Genes de Plantas/genética , Potyviridae/fisiologia , Potyviridae/genética
2.
Infect Genet Evol ; 94: 105001, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271188

RESUMO

Effective control of ipomoviruses that cause cassava brown streak disease (CBSD) in Africa has remained problematic despite eight remarkable decades (1930-2021) of research efforts. Molecular mechanisms underlying resistance breakdown in genetically improved cassava are still unknown. The vast genetic diversity of cassava brown streak viruses, which is crucial for the improvement of routine reverse transcription polymerase chain reaction (RT-qPCR) assays in CBSD-endemic regions of Africa, is controversial and underrepresented. From a molecular epidemiology viewpoint, this review discusses the reasons for why permanent control of CBSD is difficult in the modern era, even with the presence of diverse in silico and omics tools, recombinant DNA, and high throughput next-generation sequencing technologies. Following an extensive nucleotide data search in the National Centre for Biotechnology Information (NCBI) database and a literature review in PubMed and Scopus, we report that genomic data of 87.62% (474/541) strains of cassava brown streak virus are missing due to poor sequencing capacity in Africa. The evolution dynamics of viral virulence and pathogenicity has not yet been fully explored from the available 67 (12.38%) genomic sequences, owing to poor bioinformatics capacity. Tanzania and Zambia have the highest and lowest disease inoculum pressure, correspondingly. Knowledge gaps in molecular biology and the overall molecular pathogenesis of CBSD viruses impede effective disease control in Africa. Recommendations for possible solutions to the research questions, controversies, and hypotheses raised in this study serve as a roadmap for the invention of more effective CBSD control methods.


Assuntos
Doenças das Plantas/prevenção & controle , Potyviridae/fisiologia , África Subsaariana , Manihot/virologia
3.
Theor Appl Genet ; 134(3): 823-833, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33263784

RESUMO

KEY MESSAGE: We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley's secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Potyviridae/fisiologia , Resistência à Doença/imunologia , Marcadores Genéticos , Hordeum/imunologia , Hordeum/virologia , Doenças das Plantas/virologia
4.
Curr Opin Insect Sci ; 45: 21-27, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33249178

RESUMO

Wheat curl mite (WCM) is the only known arthropod vector of four wheat viruses, the most important of which is Wheat streak mosaic virus (WSMV). Host resistance to WCM and WSMV is limited to a small number of loci, most of which are introgressed from wild relatives and are often associated with linkage drag and temperature sensitivity. Reports of virulent WCM populations and potential resistance-breaking WSMV isolates highlight the need for more diverse sources of resistance. Genome sequencing will be critical to fully characterize the genetic diversity in WCM and WSMV populations to better understand the incidence of WCM-transmitted viruses and to evaluate the potential stability of resistance genes. Characterizing host resistance genes will help build a mechanistic understanding of wheat-WCM-WSMV interactions and inform strategies to identify and engineer more durable resistance sources.


Assuntos
Antibiose/genética , Ácaros/fisiologia , Defesa das Plantas contra Herbivoria/genética , Doenças das Plantas/virologia , Potyviridae/fisiologia , Triticum/fisiologia , Animais , Triticum/genética
5.
Mol Plant Microbe Interact ; 33(1): 108-122, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31687913

RESUMO

Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat (Triticum aestivum L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses. Development of dual-resistant wheat lines would provide effective control of these two viruses. In this study, a genetic resistance strategy employing an RNA interference (RNAi) approach was implemented by assembling a hairpin element composed of a 202-bp (404-bp in total) stem sequence of the NIb (replicase) gene from each of WSMV and TriMV in tandem and of an intron sequence in the loop. The derived RNAi element was cloned into a binary vector and was used to transform spring wheat genotype CB037. Phenotyping of T1 lineages across eight independent transgenic events for resistance revealed that i) two of the transgenic events provided resistance to WSMV and TriMV, ii) four events provided resistance to either WSMV or TriMV, and iii) no resistance was found in two other events. T2 populations derived from the two events classified as dual-resistant were subsequently monitored for stability of the resistance phenotype through the T4 generation. The resistance phenotype in these events was temperature-dependent, with a complete dual resistance at temperatures ≥25°C and an increasingly susceptible response at temperatures below 25°C. Northern blot hybridization of total RNA from transgenic wheat revealed that virus-specific small RNAs (vsRNAs) accumulated progressively with an increase in temperature, with no detectable levels of vsRNA accumulation at 20°C. Thus, the resistance phenotype of wheat harboring an RNAi element was correlated with accumulation of vsRNAs, and the generation of vsRNAs can be used as a molecular marker for the prediction of resistant phenotypes of transgenic plants at a specific temperature.


Assuntos
Resistência à Doença , Plantas Geneticamente Modificadas , Triticum , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Potyviridae/fisiologia , Interferência de RNA , Triticum/genética , Triticum/virologia
6.
Plant Dis ; 103(10): 2652-2664, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31322490

RESUMO

Cassava brown streak disease (CBSD), caused by cassava brown streak ipomoviruses (CBSIs), has become the most debilitating biotic stress to cassava production in East and Central Africa. Lack of CBSD-resistant varieties has necessitated the search for alternative control measures. Most smallholder farmers reuse stems from previous crops for planting in the new season. Recycling planting material in this way can lead to "degeneration" owing to the compounding effects of disease. In this study, degeneration was defined as the increase in CBSD incidence and reduction in marketable root yield over time. An experiment was established to study the rates of degeneration in selected cassava varieties Chereko, KBH2002_135, Kipusa, Kizimbani, and Mkuranga1 and cultivars Kiroba and Kikombe under high-CBSD inoculum conditions in Bagamoyo, Tanzania from 2013 to 2017. The experiment was replicated across two seasons: the first planted during the long rains (Masika) between March and June and the second planted during the short rains (Vuli) between October and December. Mean abundance of the whitefly vector (Bemisia tabaci) was much greater during the Vuli season (>19 insects per plant) than the Masika season (<2 insects per plant). CBSD shoot symptoms occurred naturally and were observed only on Kikombe, Kiroba, and Kipusa. New materials had overall lower CBSD shoot incidences (1.5%) compared with recycled materials (6.9%) in Masika, although no significant differences were obvious in Vuli. However, Masika (8.7%) had an overall lower CBSD shoot incidence than Vuli (16.5%) in the varieties that had shoot symptoms. CBSD root incidences were higher in Vuli (10.3%) than Masika (4.4%), and root yields in Masika (29.4 t/ha) were significantly greater than those in Vuli (22.5 t/ha). The highest percentage of roots rendered unusable owing to CBSD was observed in Vuli. There was significantly higher unusable root incidence in recycled materials (3.7%) than in new materials (1.4%) in Masika but not in Vuli. Overall root yield was similar between recycled and new materials in either season. Significant reductions in root yield over the course of the experiment were observed both in Masika and Vuli, whereas changes in marketable yield were significant only in Masika. Differences in the response of varieties to degeneration led to the identification of four degeneration patterns, namely "strong," "moderate," "mild," and "delayed" degeneration. The strongest effects of degeneration were most obvious in the susceptible cultivar (Kikombe), which also had the lowest marketable yield in either season. Seasonal differences were a key driver of degeneration, because its effects were much greater in Vuli than Masika. To the best of our knowledge, this work reports the first study of degeneration caused by cassava viruses.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Manihot , Potyviridae , África Central , Animais , Manihot/microbiologia , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/fisiologia , Tanzânia
7.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087083

RESUMO

Insect vector behavior and biology can be affected by pathogen-induced changes in the physiology and morphology of the host plant. Herein, we examined the temporal effects of Squash vein yellowing virus (family Potyviridae, genus Ipomovirus) infection on the settling, oviposition preference, and feeding behavior of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1), formerly known as B. tabaci biotype B. Settling and oviposition behavioral choice assays were conducted on pairs of infected and mock-inoculated watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) (Cucurbitales: Cucurbitaceae) at 5-6 days post inoculation (DPI) and 10-12 DPI. Electropenetrography, or electrical penetration graph (both abbreviated EPG), was used to assess differences in feeding behaviors of whitefly on mock-inoculated, 5-6 and 10-12 DPI infected watermelon plants. Whiteflies showed no preference in settling or oviposition on the infected and mock-inoculated plants at 5-6 DPI. However, at 10-12 DPI, whiteflies initially settled on infected plants but then preference of settling shifted to mock-inoculated plants after 8 h. Only at 10-12 DPI, females laid significantly more eggs on mock-inoculated plants than infected plants. EPG revealed no differences in whitefly feeding behaviors among mock-inoculated, 5-6 DPI infected and 10-12 DPI infected plants. The results highlighted the need to examine plant disease progression and its effect on vector behavior and performance, which could play a crucial role in Squash vein yellowing virus spread.


Assuntos
Comportamento Alimentar , Hemípteros/fisiologia , Hemípteros/virologia , Potyviridae/fisiologia , Animais , Citrullus/parasitologia , Citrullus/virologia , Eletrofisiologia/métodos , Feminino , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Oviposição/fisiologia , Doenças das Plantas/virologia
8.
Viruses ; 11(5)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137615

RESUMO

Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important virus infecting wheat in the Great Plains region of the USA. Previously, we reported that the P1 protein of WSMV acts as a viral suppressor of RNA silencing. In this study, we delineated the minimal region of WSMV P1 and examined its mechanisms in suppression of RNA silencing. We found that the 25 N-terminal amino acids are dispensable, while deletion of a single amino acid at the C-terminal region completely abolished the RNA silencing suppression activity of P1. Electrophoretic mobility shift assays with in vitro expressed P1 revealed that the P1 protein formed complexes with green fluorescent protein-derived 180-nt dsRNA and 21 and 24-nt ds-siRNAs, and WSMV coat protein-specific 600-nt dsRNA. These data suggest that the P1 protein of WSMV binds to dsRNAs in a size- and sequence-independent manner. Additionally, in vitro dicing assay with human Dicer revealed that the P1 protein efficiently protects dsRNAs from processing by Dicer into siRNAs, by forming complexes with dsRNA. Sequence comparison of P1-like proteins from select potyvirid species revealed that WSMV P1 harbors a glycine-tryptophan (GW) motif at the C-terminal region. Disruption of GW motif in WSMV P1 through W303A mutation resulted in loss of silencing suppression function and pathogenicity enhancement, and abolished WSMV viability. These data suggest that the mechanisms of suppression of RNA silencing of P1 proteins of potyvirid species appear to be broadly conserved in the family Potyviridae.


Assuntos
Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyviridae/fisiologia , Interferência de RNA , RNA de Cadeia Dupla , Sequência de Aminoácidos , Genes , Humanos , Mutação , Motivos de Nucleotídeos , Fenótipo , RNA Interferente Pequeno/genética , Proteínas Virais/metabolismo
9.
J Plant Physiol ; 237: 30-42, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31005806

RESUMO

In order to evaluate wheat resistance to wheat streak mosaic virus (WSMV) at low temperature and resistance breakdown at high temperature, metabolic profile of WSMV-resistant (R) and susceptible (S) wheat cultivars were analyzed. Metabolites were detected by UPLC-QTOF/MS in leaves of R and S plants challenged with WSMV at 20 °C and 32 °C, 24, 48 and 72 h post inoculation (hpi). WSMV and mock inoculated plants were used for discriminating the most significant metabolites and metabolic pathways affected at those temperatures. At 24 hpi/20 °C and 48 hpi/20 °C, the most important metabolites in R plants were coumarins, a limited number of lipids, and unknown compounds, while at 72 hpi/20 °C, in addition to coumarins, alkaloids and several amino acids were increased. Compared to 24 and 48 hpi, at 72hpi, in R plants most metabolic pathways were up-regulated at 20 °C. These resistance-related specific pathways included amino acid metabolism, lipid metabolism and alkaloids pathways. Also, several pathways were up-regulated at 32 °C.These combined heat stress and pathogen related pathways, included lipid metabolism and amino acid metabolism. Some carbohydrate metabolism pathways were considered as heat stress related pathways and could be associated with resistance breakdown. On the other hand, the increased expression of lipid compounds, especially 24 hpi at 32 °C in R plant, can be attributed to plant adaptation to combined stressors such as pathogen and high temperature. Increased susceptibility of R plants at 32 °C coincided with a down-regulated expression of components of signal transduction pathways or in a decreased level of metabolites related to this pathway, especially at a later time after infection, leading to decreased metabolite signaling. Decrease of signaling compounds under combined stress is a possible outcome of deactivating WSMV specific signaling networks leading to compatible response in R plants. The significance of these findings considering the recent increase of global temperature and the challenge of breakdown of temperature sensitive resistance to some plant viruses is discussed.


Assuntos
Metaboloma , Doenças das Plantas/virologia , Potyviridae/fisiologia , Triticum/virologia , Resistência à Doença , Metabolômica , Temperatura
10.
Mol Plant Microbe Interact ; 32(3): 336-350, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30106671

RESUMO

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), distinct members in the family Potyviridae, are economically important wheat-infecting viruses in the Great Plains region. Previously, we reported that coinfection of wheat by WSMV and TriMV caused disease synergism with increased concentration of both viruses. The mechanisms of synergistic interaction between WSMV and TriMV and the effects of prior infection of wheat by either of these "synergistically interacting partner" (SIP) viruses on the establishment of local and systemic infection by the other SIP virus are not known. In this study, using fluorescent protein-tagged viruses, we found that prior infection of wheat by WSMV or TriMV negatively affected the onset and size of local foci elicited by subsequent SIP virus infection compared with those in buffer-inoculated wheat. These data revealed that prior infection of wheat by an SIP virus has no measurable advantage for another SIP virus on the initiation of infection and cell-to-cell movement. In TriMV-infected wheat, WSMV exhibited accelerated long-distance movement and increased accumulation of genomic RNAs compared with those in buffer-inoculated wheat, indicating that TriMV-encoded proteins complemented WSMV for efficient systemic infection. In contrast, TriMV displayed delayed systemic infection in WSMV-infected wheat, with fewer genomic RNA copies in early stages of infection compared with those in buffer-inoculated wheat. However, during late stages of infection, TriMV accumulation in WSMV-infected wheat increased rapidly with accelerated long-distance movement compared with those in buffer-inoculated wheat. Taken together, these data suggest that interactions between synergistically interacting WSMV and TriMV are asymmetrical; thus, successful establishment of synergistic interaction between unrelated viruses will depend on the order of infection of plants by SIP viruses.


Assuntos
Potyviridae , Triticum , Doenças das Plantas/virologia , Potyviridae/fisiologia , Triticum/virologia
11.
Plant Dis ; 103(2): 338-344, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30562136

RESUMO

The wheat curl mite (WCM), Aceria tosichella Keifer, transmits three potentially devastating viruses to winter wheat. An increased understanding of mite movement and subsequent virus spread through the landscape is necessary to estimate the risk of epidemics by the virus in winter wheat. Owing to the small size of WCMs, their dispersal via wind is hard to monitor; however, the viruses they transmit produce symptoms that can be detected with remote sensing. The objective of this study was to characterize the spatial dispersal of the virus from a central mite-virus source. Virus infection gradients were measured spatially by using aerial remote sensing, ground measurements, geostatistics, and a geographic information system between 2006 and 2009. The red edge position vegetation index as measured via aerial imagery was significantly correlated with in-field biophysical measurements. The occurrence of virus symptoms extended differentially in all directions from mite-virus source plots, and predictions from cokriging revealed an oval pattern surrounding the source but displaced to the southeast. The variable dispersal in different directions appeared to be influenced by the mite source density and wind direction and speed, but temperature also seemed likely to have affected mite spread. The spatial spread revealed in this study may be used to estimate the potential sphere of influence of mite-infested volunteer wheat in production fields. These risk parameter estimates require further validation, but they may potentially aid growers in making better virus management decisions regarding differential virus spread potential away from a central source.


Assuntos
Ácaros , Potyviridae , Triticum , Animais , Ácaros/virologia , Potyviridae/fisiologia , Triticum/virologia
12.
Curr Opin Virol ; 33: 47-54, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30077887

RESUMO

Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) is the most economically important virus of wheat in the Great Plains region of the USA. WSMV is transmitted by the eriophyid wheat curl mite (WCM), Aceria tosichella Keifer. In contrast to Hemipteran-borne plant viruses, the mode and mechanism of eriophyid mite transmission of viruses have remained poorly understood, mostly due to difficulty of working with these ∼200 µm long microscopic creatures. Among eriophyid-transmitted plant viruses, relatively extensive work has been performed on population genetics of WCMs, WSMV determinants involved in WCM transmission, and localization of WSMV virions and inclusion bodies in WCMs. The main focus of this review is to appraise readers on WCM, WSMV encoded proteins required for WCM transmission and further details and questions on the mode of WSMV transmission by WCMs, and potential advances in management strategies for WCMs and WSMV with increased understanding of transmission.


Assuntos
Interações Hospedeiro-Parasita , Ácaros/virologia , Doenças das Plantas/virologia , Potyviridae/fisiologia , Triticum/virologia , Ligação Viral , Estruturas Animais/virologia , Animais , Proteínas de Artrópodes/metabolismo , Ligação Proteica , Estados Unidos , Proteínas Virais/metabolismo
13.
Phytopathology ; 108(10): 1196-1205, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29750593

RESUMO

Several aphid species transmit barley yellow dwarf, a globally destructive disease caused by viruses that infect cereal grain crops. Data from >400 samples collected across Kansas wheat fields in 2014 and 2015 were used to develop spatiotemporal models predicting the extent to which landcover, temperature and precipitation affect spring aphid vector abundance and presence of individuals carrying Barley yellow dwarf virus (BYDV). The distribution of Rhopalosiphum padi abundance was not correlated with climate or landcover, but Sitobion avenae abundance was positively correlated with fall temperature and negatively correlated to spring temperature and precipitation. The abundance of Schizaphis graminum was negatively correlated with fall precipitation and winter temperature. The incidence of viruliferous (+BYDV) R. padi was positively correlated with fall precipitation but negatively correlated with winter precipitation. In contrast, the probability of +BYDV S. avenae was unaffected by precipitation but was positively correlated with fall temperatures and distance to forest or shrubland. R. padi and S. avenae were more prevalent at eastern sample sites where ground cover is more grassland than cropland, suggesting that grassland may provide over-summering sites for vectors and pose a risk as potential BYDV reservoirs. Nevertheless, land cover patterns were not strongly associated with differences in abundance or the probability that viruliferous aphids were present.


Assuntos
Afídeos/virologia , Poaceae/virologia , Potyviridae/fisiologia , Distribuição Animal , Animais , Meio Ambiente , Kansas , Estações do Ano , Temperatura , Fatores de Tempo
14.
Mol Plant Pathol ; 19(5): 1282-1294, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28887856

RESUMO

Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re-emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re-emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936-2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security.


Assuntos
Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/fisiologia , Evolução Biológica , Resistência à Doença , Geografia , Potyviridae/genética
15.
Plant Dis ; 102(3): 645-650, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673479

RESUMO

Wheat streak mosaic virus (WSMV), transmitted by the wheat curl mite Aceria tosichella, frequently causes significant yield loss in winter wheat throughout the Great Plains of the United States. A field study was conducted in the 2013-14 and 2014-15 growing seasons to compare the impact of timing of WSMV inoculation (early fall, late fall, or early spring) and method of inoculation (mite or mechanical) on susceptibility of winter wheat cultivars Mace (resistant) and Overland (susceptible). Relative chlorophyll content, WSMV incidence, and yield components were determined. The greatest WSMV infection occurred for Overland, with the early fall inoculations resulting in the highest WSMV infection rate (up to 97%) and the greatest yield reductions relative to the control (up to 94%). In contrast, inoculation of Mace resulted in low WSMV incidence (1 to 28.3%). The findings from this study indicate that both method of inoculation and wheat cultivar influenced severity of wheat streak mosaic; however, timing of inoculation also had a dramatic influence on disease. In addition, mite inoculation provided much more consistent infection rates and is considered a more realistic method of inoculation to measure disease impact on wheat cultivars.


Assuntos
Suscetibilidade a Doenças , Doenças das Plantas/imunologia , Potyviridae/fisiologia , Triticum/imunologia , Clorofila/metabolismo , Nebraska , Doenças das Plantas/virologia , Estações do Ano , Fatores de Tempo , Triticum/virologia
16.
Plant Dis ; 102(7): 1410-1418, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673562

RESUMO

A diagnostic survey was conducted in July 2017 in two northern districts of Zambia to investigate presence or absence of cassava brown streak disease (CBSD) and its causal viruses. In total, 29 cassava fields were surveyed and cassava leaf samples were collected from 116 plants (92 symptomatic and 24 nonsymptomatic). CBSD prevalence was approximately 79% (23 of 29) across fields. Mean CBSD incidence varied across fields but averaged 32.3% while mean disease severity was 2.3 on a 1-to-5 rating scale. Reverse-transcription polymerase chain reaction screening of all 116 samples with one generic and two species-specific primer pairs yielded DNA bands of the expected sizes from all symptomatic plants with the generic (785 bp) and Ugandan cassava brown streak virus (UCBSV)-specific (440 bp) primers. All 24 nonsymptomatic samples were negative for UCBSV and all samples tested negative with primers targeting Cassava brown streak virus. The complete genome of a representative isolate of UCBSV (WP282) was determined to be 9,050 nucleotides in length, minus the poly A tail. A comparative analysis of this isolate with global virus isolates revealed its nature as a sequence variant of UCBSV sharing 94 and 96% maximum complete polyprotein nucleotide and amino acid identities, respectively, with isolates from Malawi (MF379362) and Tanzania (FJ039520). This is the first report of CBSD and UCBSV in Zambia, thus expanding the geographical distribution of the disease and its causal virus and further reinforcing the need to strengthen national and regional phytosanitary programs in Africa.


Assuntos
Manihot/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Potyviridae/fisiologia , Genoma Viral/genética , Geografia , Interações Hospedeiro-Patógeno , Malaui , Filogenia , Poliproteínas/genética , Potyviridae/genética , Análise de Sequência de DNA , Especificidade da Espécie , Tanzânia , Uganda , Zâmbia
17.
J Econ Entomol ; 110(4): 1433-1441, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854650

RESUMO

Plant viruses may indirectly affect insect vector behavior and fitness via a shared host plant. Here, we evaluated the host-mediated effects of Squash vein yellowing virus (SqVYV) on the behavior and fitness of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1, formerly biotype B. Alighting, settling, and oviposition behavioral assays were conducted on infected and mock-inoculated squash (Cucurbita pepo L.) and watermelon [Citrullus lanatus (Thunb) Matsum and Nakai] plants. Developmental time of immature stages, adult longevity, and fecundity were measured on infected and mock-inoculated squash plants. For adult longevity and fecundity, whiteflies were reared on infected and mock-inoculated squash plants to determine the effects of nymphal rearing host on the adult stage. More whiteflies alighted and remained settled on infected squash than on mock-inoculated squash 0.25, 1, 8, and 24 h after release. No such initial preference was observed on watermelon plants, but by 8 h after release, more whiteflies were found on mock-inoculated watermelon plants than on infected plants. Whiteflies laid approximately six times more eggs on mock-inoculated watermelon than on infected watermelon; however, no differences were observed on squash. Development from egg to adult emergence was 3 d shorter on infected than mock-inoculated squash plants. Females lived 25% longer and had higher fecundity on infected squash plants than on mock-inoculated plants, regardless of infection status of the rearing host. The host-mediated effects of SqVYV infection on whitefly behavior differ on two cucurbit host plants, suggesting the potential for more rapid spread of the virus within watermelon fields.


Assuntos
Citrullus/virologia , Cucurbita/virologia , Hemípteros/fisiologia , Doenças das Plantas/virologia , Potyviridae/fisiologia , Animais , Tamanho Corporal , Fertilidade , Voo Animal , Aptidão Genética , Hemípteros/genética , Longevidade , Oviposição
18.
PLoS One ; 12(8): e0181998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771520

RESUMO

Cassava (Manihot esculenta) is an important tropical subsistence crop that is severely affected by cassava brown streak disease (CBSD) in East Africa. The disease is caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Both have a (+)-sense single-stranded RNA genome with a 5' covalently-linked viral protein, which functionally resembles the cap structure of mRNA, binds to eukaryotic translation initiation factor 4E (eIF4E) or its analogues, and then enable the translation of viral genomic RNA in host cells. To characterize cassava eIF4Es and their potential role in CBSD tolerance and susceptibility, we cloned five eIF4E transcripts from cassava (accession TMS60444). Sequence analysis indicated that the cassava eIF4E family of proteins consisted of one eIF4E, two eIF(iso)4E, and two divergent copies of novel cap-binding proteins (nCBPs). Our data demonstrated experimentally the coding of these five genes as annotated in the published cassava genome and provided additional evidence for refined annotations. Illumina resequencing data of the five eIF4E genes were analyzed from 14 cassava lines tolerant or susceptible to CBSD. Abundant single nucleotide polymorphisms (SNP) and biallelic variations were observed in the eIF4E genes; however, most of the SNPs were located in the introns and non-coding regions of the exons. Association studies of non-synonymous SNPs revealed no significant association between any SNP of the five eIF4E genes and the tolerance or susceptibility to CBSD. However, two SNPs in two genes were weakly associated with the CBSD responses but had no direct causal-effect relationship. SNPs in an intergenic region upstream of eIF4E_me showed a surprising strong association with CBSD responses. Digital expression profile analysis showed differential expression of different eIF4E genes but no significant difference in gene expression was found between susceptible and tolerant cassava accessions despite the association of the intergenic SNPs with CBSD responses.


Assuntos
Resistência à Doença/imunologia , Fator de Iniciação 4E em Eucariotos/genética , Variação Genética/genética , Manihot/imunologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Potyviridae/fisiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Manihot/crescimento & desenvolvimento , Manihot/virologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Viral/genética
19.
Annu Rev Virol ; 4(1): 429-452, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28645239

RESUMO

Cassava is the fourth largest source of calories in the world but is subject to economically important yield losses due to viral diseases, including cassava brown streak disease and cassava mosaic disease. Cassava mosaic disease occurs in sub-Saharan Africa and the Asian subcontinent and is associated with nine begomovirus species, whereas cassava brown streak disease has to date been reported only in sub-Saharan Africa and is caused by two distinct ipomovirus species. We present an overview of key milestones and their significance in the understanding and characterization of these two major diseases as well as their associated viruses and whitefly vector. New biotechnologies offer a wide range of opportunities to reduce virus-associated yield losses in cassava for farmers and can additionally enable the exploitation of this valuable crop for industrial purposes. This review explores established and new technologies for genetic manipulation to achieve desired traits such as virus resistance.


Assuntos
Begomovirus , Manihot/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Potyviridae , África Subsaariana , Animais , Ásia , Begomovirus/genética , Begomovirus/isolamento & purificação , Begomovirus/fisiologia , Resistência à Doença , Hemípteros/virologia , Humanos , Vírus do Mosaico/genética , Vírus do Mosaico/patogenicidade , Vírus do Mosaico/fisiologia , Doenças das Plantas/economia , Potyviridae/genética , Potyviridae/isolamento & purificação , Potyviridae/fisiologia
20.
J Gen Virol ; 98(3): 352-354, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28366187

RESUMO

The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680-900 nm long and 11-20 nm wide. There are eight genera, distinguished by the host range, genomic features and phylogeny of the member viruses. Genomes range from 8.2 to 11.3 kb, with an average size of 9.7 kb. Most genomes are monopartite but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Potyviridae, which is available at www.ictv.global/report/potyviridae.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Potyviridae/classificação , Potyviridae/genética , Ordem dos Genes , Genoma Viral , Filogenia , Vírus de Plantas/fisiologia , Potyviridae/fisiologia , RNA Viral/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...