Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Mol Cell ; 81(21): 4540-4551.e6, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34433091

RESUMO

Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular ß sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.


Assuntos
Encéfalo/metabolismo , Microscopia Crioeletrônica/métodos , Polissacarídeos/química , Príons/química , Príons/ultraestrutura , Amiloide/química , Animais , Glicolipídeos/química , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Fenótipo , Proteínas Priônicas/química , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
2.
Chem Rev ; 121(13): 8285-8307, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34137605

RESUMO

This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-ß-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Príons/química , Agregados Proteicos , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Animais , Microscopia Crioeletrônica , Humanos , Príons/ultraestrutura
3.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513942

RESUMO

Stress granules are ribonucleoprotein assemblies that form in response to cellular stress. Many of the RNA-binding proteins found in stress granule proteomes contain prion-like domains (PrLDs), which are low-complexity sequences that compositionally resemble yeast prion domains. Mutations in some of these PrLDs have been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia, and are associated with persistent stress granule accumulation. While both stress granules and prions are macromolecular assemblies, they differ in both their physical properties and complexity. Prion aggregates are highly stable homopolymeric solids, while stress granules are complex dynamic biomolecular condensates driven by multivalent homotypic and heterotypic interactions. Here, we use stress granules and yeast prions as a paradigm to examine how distinct sequence and compositional features of PrLDs contribute to different types of PrLD-containing assemblies.


Assuntos
Grânulos Citoplasmáticos/genética , Organelas/genética , Proteínas Priônicas/genética , Príons/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Grânulos Citoplasmáticos/ultraestrutura , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Organelas/ultraestrutura , Proteínas Priônicas/ultraestrutura , Príons/ultraestrutura , Domínios Proteicos/genética , Proteoma/genética , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética
4.
FEBS J ; 288(9): 2956-2969, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33124131

RESUMO

The eukaryotic translation elongation factor 1Bγ (eEF1Bγ) is an atypical member of the glutathione transferase (GST) superfamily. Contrary to more classical GSTs having a role in toxic compound detoxification, eEF1Bγ is suggested to act as a scaffold protein, anchoring the elongation factor complex EF1B to the endoplasmic reticulum. In this study, we show that eEF1Bγ from the basidiomycete Phanerochaete chrysosporium is fully active as a glutathione transferase in vitro and undergoes conformational changes upon binding of oxidized glutathione. Using real-time analyses of biomolecular interactions, we show that GSSG allows eEF1Bγ to physically interact with other GSTs from the Ure2p class, opening new perspectives for a better understanding of the role of eEF1Bγ in cellular oxidative stress response.


Assuntos
Glutationa Peroxidase/genética , Estresse Oxidativo/genética , Fator 1 de Elongação de Peptídeos/ultraestrutura , Phanerochaete/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Glutationa/genética , Dissulfeto de Glutationa/genética , Glutationa Peroxidase/ultraestrutura , Glutationa Transferase/genética , Humanos , Camundongos , Fator 1 de Elongação de Peptídeos/genética , Phanerochaete/ultraestrutura , Príons/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
5.
Commun Biol ; 3(1): 402, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728168

RESUMO

Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP ß-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the ß2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.


Assuntos
Doenças Priônicas/genética , Proteínas Priônicas/genética , Príons/genética , Conformação Proteica , Animais , Humanos , Mutação Puntual/genética , Doenças Priônicas/patologia , Proteínas Priônicas/ultraestrutura , Príons/ultraestrutura , Conformação Proteica em Folha beta/genética
6.
Sci Rep ; 9(1): 19305, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848406

RESUMO

A conformational change from normal prion protein(PrPC) to abnormal prion protein(PrPSC) induces fatal neurodegenerative diseases. Acidic pH is well-known factors involved in the conformational change. Because the protonation of H187 is strongly linked to the change in PrP stability, we examined the charged residues R156, E196, and D202 around H187. Interestingly, there have been reports on pathological mutants, such as H187R, E196A, and D202N. In this study, we focused on how an acidic pH and pathological mutants disrupt this electrostatic network and how this broken network destabilizes PrP structure. To do so, we performed a temperature-based replica-exchange molecular dynamics (T-REMD) simulation using a cumulative 252 µs simulation time. We measured the distance between amino acids comprising four salt bridges (R156-E196/D202 and H187-E196/D202). Our results showed that the spatial configuration of the electrostatic network was significantly altered by an acidic pH and mutations. The structural alteration in the electrostatic network increased the RMSF value around the first helix (H1). Thus, the structural stability of H1, which is anchored to the H2-H3 bundle, was decreased. It induces separation of R156 from the electrostatic network. Analysis of the anchoring energy also shows that two salt-bridges (R156-E196/D202) are critical for PrP stability.


Assuntos
Proteínas Priônicas/química , Príons/química , Conformação Proteica , Eletricidade Estática , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Proteínas Priônicas/ultraestrutura , Príons/ultraestrutura , Prótons
7.
PLoS Pathog ; 15(7): e1007864, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295325

RESUMO

Prions are unusual protein assemblies that propagate their conformationally-encoded information in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggregates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Register-ß-Sheet (PIRIBS) [2] or ß-solenoid conformations [3]. Similar folding models have also been proposed for PrPSc, although none of these have been confirmed experimentally. Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evidence that PrPSc is structured as a 4-rung ß-solenoid (4RßS) [4, 5]. Here, we combined different experimental data and computational techniques to build the first physically-plausible, atomic resolution model of mouse PrPSc, based on the 4RßS architecture. The stability of this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to be comparable to that of the prion forming domain of Het-s, a naturally-occurring ß-solenoid. Importantly, the 4RßS arrangement allowed the first simulation of the sequence of events underlying PrPC conversion into PrPSc. This study provides the most updated, experimentally-driven and physically-coherent model of PrPSc, together with an unprecedented reconstruction of the mechanism underlying the self-catalytic propagation of prions.


Assuntos
Proteínas PrPSc/química , Proteínas PrPSc/patogenicidade , Príons/química , Príons/patogenicidade , Animais , Microscopia Crioeletrônica , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas PrPC , Proteínas PrPSc/ultraestrutura , Príons/ultraestrutura , Conformação Proteica , Estrutura Quaternária de Proteína
8.
Sci Rep ; 9(1): 376, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30675000

RESUMO

Seeded polymerisation of proteins forming amyloid fibres and their spread in tissues has been implicated in the pathogenesis of multiple neurodegenerative diseases: so called "prion-like" mechanisms. While ex vivo mammalian prions, composed of multichain assemblies of misfolded host-encoded prion protein (PrP), act as lethal infectious agents, PrP amyloid fibrils produced in vitro generally do not. The high-resolution structure of authentic infectious prions and the structural basis of prion strain diversity remain unknown. Here we use cryo-electron microscopy and atomic force microscopy to examine the structure of highly infectious PrP rods isolated from mouse brain in comparison to non-infectious recombinant PrP fibrils generated in vitro. Non-infectious recombinant PrP fibrils are 10 nm wide single fibres, with a double helical repeating substructure displaying small variations in adhesive force interactions across their width. In contrast, infectious PrP rods are 20 nm wide and contain two fibres, each with a double helical repeating substructure, separated by a central gap of 8-10 nm in width. This gap contains an irregularly structured material whose adhesive force properties are strikingly different to that of the fibres, suggestive of a distinct composition. The structure of the infectious PrP rods, which cause lethal neurodegeneration, readily differentiates them from all other protein assemblies so far characterised in other neurodegenerative diseases.


Assuntos
Amiloide/química , Proteínas Priônicas/química , Príons/química , Amiloide/ultraestrutura , Animais , Mamíferos , Microscopia de Força Atômica , Príons/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes , Relação Estrutura-Atividade
9.
FEMS Yeast Res ; 18(6)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846554

RESUMO

Yeast prions are self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Here, we investigate the structure of NM fibrils templated into the prion conformation with cellular lysates. Our electron microscopy studies reveal that NM fibrils that confer either a strong or a weak prion phenotype are both mixtures of thin and thick fibrils that result from differences in packing of the M domain. Strong NM fibrils have more thin fibrils and weak NM fibrils have more thick fibrils. Interestingly, both mass per length and solid state NMR reveal that the thin and thick fibrils have different underlying molecular structures in the prion strain variants that do not interconvert.


Assuntos
Amiloide/genética , Amiloide/ultraestrutura , Príons/genética , Príons/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Amiloide/metabolismo , Microscopia Eletrônica de Varredura , Ressonância Magnética Nuclear Biomolecular , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fenótipo , Príons/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
10.
J Struct Biol ; 201(1): 5-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29078994

RESUMO

Prion and some other incurable human neurodegenerative diseases are associated with misfolding of specific proteins, followed by the formation of amyloids. Despite the widespread usage of the transmission electron and of the atomic force microscopy for studing such amyloids, many related methodological issues still have not been studied until now. Here, we consider one of the first amyloids found in Saccharomyces cerevisiae yeast, i.e. Sup35NMp, to study the adsorption of monomeric protein and its fibrils on the surface of mica, silica, gold and on formvar film. Comparison of linear characteristics of these units calculated by processing of images obtained by the atomic force, transmission and scanning electron microscopy was carried out. The minimal number of measurements of fibril diameters to obtain the values in a given confidence interval were determined. We investigated the film formed by monomeric protein on mica surface, which veiled some morphology features of fibrils. Besides, we revealed that parts of the Sup35NMp excluded from the fibril core can form a wide "coat". The length of the protein forming the core of the fibrils was estimated.


Assuntos
Amiloide/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adsorção , Silicatos de Alumínio/química , Amiloide/ultraestrutura , Ouro/química , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Fatores de Terminação de Peptídeos/ultraestrutura , Príons/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Dióxido de Silício/química , Propriedades de Superfície
11.
J Phys Chem B ; 121(19): 5058-5071, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28459565

RESUMO

A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.


Assuntos
Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Príons/química , Príons/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
12.
Int Rev Cell Mol Biol ; 329: 277-301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28109330

RESUMO

Prion diseases, such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids (i.e., deer, elk, moose, and reindeer), and sheep scrapie, are caused by the misfolding of the cellular prion protein (PrPC) into a disease-causing conformer (PrPSc). PrPC is a normal, GPI-anchored protein that is expressed on the surface of neurons and other cell types. The structure of PrPC is well understood, based on studies of recombinant PrP, which closely mimics the structure of native PrPC. In contrast, PrPSc is prone to aggregate into a variety of quaternary structures, such as oligomers, amorphous aggregates, and amyloid fibrils. The propensity of PrPSc to assemble into these diverse forms of aggregates is also responsible for our limited knowledge about its structure. Then again, the repeating nature of certain regular PrPSc aggregates has allowed (lower resolution) insights into the structure of the infectious conformer, establishing a four-rung ß-solenoid structure as a key element of its architecture.


Assuntos
Mamíferos/metabolismo , Príons/química , Agregados Proteicos , Amiloide/química , Animais , Cristalização , Humanos , Modelos Moleculares , Príons/metabolismo , Príons/ultraestrutura
13.
J Cell Biol ; 211(1): 145-58, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26438827

RESUMO

Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.


Assuntos
Proteínas de Choque Térmico/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Príons/ultraestrutura , Agregados Proteicos
14.
Biochim Biophys Acta ; 1848(10 Pt A): 2422-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215743

RESUMO

PrP 106-126 conserves the pathogenic and physicochemical properties of the Scrapie isoform of the prion protein. PrP 106-126 and other amyloidal proteins are capable of inducing ion permeability through cell membranes, and this property may represent the common primary mechanism of pathogenesis in the amyloid-related degenerative diseases. However, for many amyloidal proteins, despite numerous phenomenological observations of their interactions with membranes, it has been difficult to determine the molecular mechanisms by which the proteins cause ion permeability. One approach that has not been undertaken is the kinetic study of protein-membrane interactions. We found that the reaction time constant of the interaction between PrP 106-126 and membranes is suitable for such studies. The kinetic experiment with giant lipid vesicles showed that the membrane area first increased by peptide binding but then decreased. The membrane area decrease was coincidental with appearance of extramembranous aggregates including lipid molecules. Sometimes, the membrane area would increase again followed by another decrease. The kinetic experiment with small vesicles was monitored by circular dichroism for peptide conformation changes. The results are consistent with a molecular simulation following a simple set of well-defined rules. We deduced that at the molecular level the formation of peptide amyloids incorporated lipid molecules as part of the aggregates. Most importantly the amyloid aggregates desorbed from the lipid bilayer, consistent with the macroscopic phenomena observed with giant vesicles. Thus we conclude that the main effect of membrane-mediated amyloid formation is extraction of lipid molecules from the membrane. We discuss the likelihood of this effect on membrane ion permeability.


Assuntos
Amiloide/síntese química , Amiloide/ultraestrutura , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Fosfolipídeos/química , Príons/química , Príons/ultraestrutura , Lipossomas Unilamelares/química , Cinética
15.
J Biol Chem ; 290(35): 21510-22, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26175152

RESUMO

Human prion diseases can have acquired, sporadic, or genetic origins, each of which results in the conversion of prion protein (PrP) to transmissible, pathological forms. The genetic prion disease Gerstmann-Straussler-Scheinker syndrome can arise from point mutations of prolines 102 or 105. However, the structural effects of these two prolines, and mutations thereof, on PrP misfolding are not well understood. Here, we provide evidence that individual mutations of Pro-102 or Pro-105 to noncyclic aliphatic residues such as the Gerstmann-Straussler-Scheinker-linked leucines can promote the in vitro formation of PrP amyloid with extended protease-resistant cores reminiscent of infectious prions. This effect was enhanced by additional charge-neutralizing mutations of four nearby lysine residues comprising the so-called central lysine cluster. Substitution of these proline and lysine residues accelerated PrP conversion such that spontaneous amyloid formation was no longer slower than scrapie-seeded amyloid formation. Thus, Pro-102 and Pro-105, as well as the lysines in the central lysine cluster, impede amyloid formation by PrP, implicating these residues as key structural modulators in the conversion of PrP to disease-associated types of amyloid.


Assuntos
Amiloide/metabolismo , Lisina/metabolismo , Príons/química , Príons/metabolismo , Prolina/metabolismo , Amiloide/ultraestrutura , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sequência Conservada , Cricetinae , Endopeptidase K/metabolismo , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Mutação , Coloração Negativa , Proteínas PrPSc/metabolismo , Príons/ultraestrutura , Desnaturação Proteica , Estrutura Secundária de Proteína , Scrapie/metabolismo , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
16.
Tsitologiia ; 57(2): 144-52, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26035972

RESUMO

We have studied the steady-state transmembrane current induced by amyloid and amyloid-like peptides in lipid bilayers in the presence of dipole modifiers. It has been shown that the addition of dipole modifier, phloretin, to the membrane bathing solutions leads to an increase in the multichannel activity of amyloid beta-peptide fragment 25-35, [Gly35]-amyloid beta-peptide fragment 25--35, prion protein fragment 106-126 and amyloid-like peptides myr-BASP1 (1--13), myr-BASP1(1--19) and GAP-43(1--40). We have found that the effect of phloretin is not the result of dipole potential changes due to adsorption of this modifier on the membrane. Using the various fragments of amyloid beta-peptide, presenilin, prion protein and neuronal proteins BASP1 and GAP-43 allowes to conclude that the steady-state peptide-induced transmembrane current in the case of addition of phloretin is due to the electrostatic interaction between the positively charged channel-forming agents and negatively charged dipole modifier. The results obtained by electron microscopy have demonstrated that this interaction increases degree of peptide oligomerization.


Assuntos
Peptídeos beta-Amiloides/ultraestrutura , Proteína GAP-43/ultraestrutura , Proteínas de Membrana/ultraestrutura , Proteínas do Tecido Nervoso/ultraestrutura , Fragmentos de Peptídeos/ultraestrutura , Príons/ultraestrutura , Proteínas Repressoras/ultraestrutura , Peptídeos beta-Amiloides/efeitos dos fármacos , Proteína GAP-43/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/síntese química , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana , Proteínas de Membrana/efeitos dos fármacos , Microscopia Eletrônica , Proteínas do Tecido Nervoso/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos dos fármacos , Floretina/farmacologia , Príons/efeitos dos fármacos , Proteínas Repressoras/efeitos dos fármacos , Eletricidade Estática
17.
Sci Rep ; 5: 10062, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950908

RESUMO

Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method's effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions.


Assuntos
Encéfalo/metabolismo , Príons/isolamento & purificação , Príons/metabolismo , Animais , Cricetinae , Humanos , Camundongos , Príons/ultraestrutura
18.
Proteins ; 83(10): 1751-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26018750

RESUMO

The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid-based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrP(C)) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl(2), both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in-house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Príons/química , Príons/ultraestrutura , Análise por Conglomerados , Homologia Estrutural de Proteína , Propriedades de Superfície
19.
Sci Rep ; 5: 10101, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25960067

RESUMO

Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aß1-40, Aß1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.


Assuntos
Amiloide/química , Mamíferos/metabolismo , Príons/química , Sequência de Aminoácidos , Animais , Benzotiazóis , Dicroísmo Circular , Humanos , Cinética , Dados de Sequência Molecular , Coloração Negativa , Príons/isolamento & purificação , Príons/ultraestrutura , Agregados Proteicos , Dobramento de Proteína , Especificidade da Espécie , Tiazóis/metabolismo , Fatores de Tempo
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 882-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849399

RESUMO

Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a ß-sheet arrangement reminiscent of the ß-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.


Assuntos
Amiloide/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Fatores de Terminação de Peptídeos/ultraestrutura , Príons/ultraestrutura , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...