Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
3.
Biochem Biophys Res Commun ; 723: 150187, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850809

RESUMO

This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.


Assuntos
LDL-Colesterol , Regulação para Baixo , Raios Infravermelhos , Pró-Proteína Convertase 9 , Canais de Cátion TRPV , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Células Hep G2 , Canais de Cátion TRPV/metabolismo , LDL-Colesterol/metabolismo , Regulação para Baixo/efeitos da radiação
4.
Cell Rep Med ; 5(6): 101614, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897173

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Hipercolesterolemia , Nanopartículas , Pró-Proteína Convertase 9 , Receptores de LDL , Vacinas , Pró-Proteína Convertase 9/imunologia , Pró-Proteína Convertase 9/metabolismo , Animais , Hipercolesterolemia/patologia , Nanopartículas/química , Vacinas/imunologia , Camundongos , Receptores de LDL/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/imunologia , Aterosclerose/patologia , Camundongos Endogâmicos C57BL , Humanos , Dieta Hiperlipídica , Masculino , Nanovacinas
5.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731489

RESUMO

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Assuntos
Ácido Gálico , Lipoproteínas LDL , Receptores de LDL , Humanos , Ácido Gálico/farmacologia , Receptores de LDL/metabolismo , Células Hep G2 , Lipoproteínas LDL/metabolismo , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética
6.
J Am Heart Assoc ; 13(11): e033669, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38818934

RESUMO

BACKGROUND: A phase 3 trial was conducted to evaluate the efficacy and safety of ongericimab, a monoclonal antibody that inhibits proprotein convertase subtilisin/kexin type 9, as an add-on treatment to optimized lipid-lowering therapy in Chinese patients with primary hypercholesterolemia and mixed dyslipidemia. METHODS AND RESULTS: A total of 806 patients who were receiving stable and optimized lipid-lowering therapy but did not achieve their low-density lipoprotein cholesterol (LDL-C) targets were enrolled and randomly assigned in a 2:1:2:1 ratio to receive either ongericimab 150 mg or matching placebo every 2 weeks, or ongericimab 300 mg or matching placebo every 4 weeks for 52 weeks. Efficacy and safety were evaluated in 802 patients who received at least 1 dose of ongericimab or placebo. The primary end point was the percentage change in LDL-C from baseline to week 24. Our findings demonstrated that the least-squares mean difference of percentage change in LDL-C from baseline to week 24 was -67.7% (95% CI, -72.5% to -63.0%; P<0.0001) in the ongericimab 150 mg every 2 weeks group compared with the placebo every 2 weeks group, and -61.2% (95% CI, -67.1% to -55.2%; P<0.0001) in the ongericimab 300 mg every 4 weeks group compared with the placebo every 4 weeks group. These reductions were sustained up to week 52. Furthermore, treatment with ongericimab favorably altered other lipid parameters. A similar incidence of adverse events was observed in the ongericimab and placebo groups. CONCLUSIONS: Ongericimab, as an add-on treatment to optimized lipid-lowering therapy, significantly reduced LDL-C and was well-tolerated in Chinese patients with primary hyperlipidemia and mixed dyslipidemia who did not achieve their LDL-C targets. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04781114.


Assuntos
LDL-Colesterol , Dislipidemias , Hipercolesterolemia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , LDL-Colesterol/sangue , China , Dislipidemias/tratamento farmacológico , Dislipidemias/sangue , Dislipidemias/diagnóstico , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Idoso , Método Duplo-Cego , Inibidores de PCSK9 , Adulto , Povo Asiático , Pró-Proteína Convertase 9/imunologia , Pró-Proteína Convertase 9/metabolismo , Biomarcadores/sangue , Fatores de Tempo , Quimioterapia Combinada , Anticolesterolemiantes/uso terapêutico , Anticolesterolemiantes/efeitos adversos , Anticolesterolemiantes/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/administração & dosagem , População do Leste Asiático
7.
Expert Opin Drug Discov ; 19(7): 773-782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804735

RESUMO

INTRODUCTION: Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of global morbidity and mortality. Lipid lowering therapy (LLT) constitutes the cornerstone of ASCVD prevention and treatment. However, several patients fail to achieve therapeutic goals due to low treatment adherence or limitations of standard-of-care (SoC) LLTs. Inclisiran represents a pivotal low-density lipoprotein cholesterol (LDL-C) lowering agent aiming to address current unmet needs in LLT. It is the first available small interfering RNA (siRNA) LLT, specifically targeting PCSK9 mRNA and leading to post-transcriptional gene silencing (PTGS) of the PCSK9 gene. AREAS COVERED: Promising phase III trials revealed an ~ 50% reduction in LDL-C levels with subcutaneous inclisiran administration on days 1 and 90, followed by semiannual booster shots. Coupled with inclisiran's favorable safety profile, these findings led to its approval by both the EMA and FDA. Herein, the authors highlight the preclinical discovery and development of this agent and provide the reader with their expert perspectives. EXPERT OPINION: The evolution of gene-silencing treatments offers new perspectives in therapeutics. Inclisiran appears to have the potential to revolutionize ASCVD prevention and treatment, benefiting millions of patients. Ensuring widespread availability of Inclisiran, as well as managing additional healthcare costs that may arise, should be of paramount importance.


Assuntos
Aterosclerose , LDL-Colesterol , Desenvolvimento de Medicamentos , RNA Interferente Pequeno , Humanos , Aterosclerose/tratamento farmacológico , Animais , RNA Interferente Pequeno/administração & dosagem , LDL-Colesterol/sangue , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/administração & dosagem , Inativação Gênica , Descoberta de Drogas
8.
Lipids Health Dis ; 23(1): 156, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796450

RESUMO

The degradation of low-density lipoprotein receptor (LDLR) is induced by proprotein convertase subtilisin/kexin type 9 (PCSK9), resulting in elevated plasma concentrations of LDL cholesterol. Therefore, inhibiting the interactions between PCSK9 and LDLR is a desirable therapeutic goal for managing hypercholesterolemia. Aptamers, which are RNA or single-stranded DNA sequences, can recognize their targets based on their secondary structure. Aptamers exhibit high selectivity and affinity for binding to target molecules. The systematic evolution of ligands by exponential enrichment (SELEX), a combination of biological approaches, is used to screen most aptamers in vitro. Due to their unique advantages, aptamers have garnered significant interest since their discovery and have found extensive applications in various fields. Aptamers have been increasingly utilized in the development of biosensors for sensitive detection of pathogens, analytes, toxins, drug residues, and malignant cells. Furthermore, similar to monoclonal antibodies, aptamers can serve as therapeutic tools. Unlike certain protein therapeutics, aptamers do not elicit antibody responses, and their modified sugars at the 2'-positions generally prevent toll-like receptor-mediated innate immune responses. The focus of this review is on aptamer-based targeting of PCSK9 and the application of aptamers both as biosensors and therapeutic agents.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Metabolismo dos Lipídeos , Pró-Proteína Convertase 9 , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/sangue , Humanos , Técnicas Biossensoriais/métodos , Receptores de LDL/metabolismo , Técnica de Seleção de Aptâmeros , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/sangue , Animais , Inibidores de PCSK9
9.
Biochem Pharmacol ; 225: 116314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797271

RESUMO

Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.


Assuntos
Apolipoproteínas E , Estenose das Carótidas , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos C57BL , NF-kappa B , Pró-Proteína Convertase 9 , Transdução de Sinais , Tromboplastina , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos , NF-kappa B/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Humanos , Estenose das Carótidas/metabolismo , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Tromboplastina/metabolismo , Tromboplastina/genética , Tromboplastina/biossíntese , Transdução de Sinais/fisiologia , Camundongos Knockout para ApoE , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Knockout , Inibidores de PCSK9 , Feminino
10.
Int J Mol Med ; 53(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757360

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low­density lipoprotein­cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti­PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.


Assuntos
Hemostasia , Pró-Proteína Convertase 9 , Trombose , Humanos , Pró-Proteína Convertase 9/metabolismo , Hemostasia/efeitos dos fármacos , Trombose/metabolismo , Trombose/tratamento farmacológico , Animais , Plaquetas/metabolismo , Inibidores de PCSK9 , Metabolismo dos Lipídeos/efeitos dos fármacos
11.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786080

RESUMO

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Assuntos
Antígenos HLA-C , Proteína da Hemocromatose , Lisossomos , Pró-Proteína Convertase 9 , Transporte Proteico , Receptores de LDL , Humanos , Receptores de LDL/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Proteína da Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Antígenos HLA-C/metabolismo , Lisossomos/metabolismo , Células HEK293 , Ligação Proteica
12.
Respir Res ; 25(1): 213, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762465

RESUMO

BACKGROUND: Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS: Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-ß1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS: High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-ß1, IL-1ß, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-ß1 over-expressed transgenic mice with normal diet. CONCLUSIONS: Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.


Assuntos
Dieta Hiperlipídica , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade , Fibrose Pulmonar , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Camundongos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Inibidores de PCSK9 , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Camundongos Obesos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Hiper-Reatividade Brônquica/prevenção & controle , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Anticorpos Monoclonais Humanizados
13.
Expert Opin Ther Pat ; 34(4): 245-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588538

RESUMO

INTRODUCTION: Proprotein convertase subtilisin/kexin 9 (PCSK9) plays a crucial role in breaking down the hepatic low-density lipoprotein receptor (LDLR), thereby influencing the levels of circulating low-density lipoprotein cholesterol (LDL-C). Consequently, inhibiting PCSK9 through suitable ligands has been established as a validated therapeutic strategy for combating hypercholesterolemia and cardiovascular diseases. AREA COVERED: Patent literature claiming novel compounds inhibiting PCSK9 disclosed from 2018 to June 2023 available in the espacenet database, which contains more than 150 million patent documents from over 100 patent-granting authorities worldwide. EXPERT OPINION: The undisputable beneficial influence of PCSK9 as a pharmacological target has prompted numerous private and public institutions to patent chemical frameworks as inhibitors of PCSK9. While several compounds have advanced to clinical trials for treating hypercholesterolemia, they have not completed these trials yet. These compounds must contend in a complex market where new, costly, and advanced drugs, such as monoclonal antibodies and siRNA, are prescribed instead of inexpensive and less potent statins.


Assuntos
Anticolesterolemiantes , Doenças Cardiovasculares , LDL-Colesterol , Hipercolesterolemia , Inibidores de PCSK9 , Patentes como Assunto , Pró-Proteína Convertase 9 , Humanos , Hipercolesterolemia/tratamento farmacológico , Animais , Pró-Proteína Convertase 9/metabolismo , LDL-Colesterol/sangue , Anticolesterolemiantes/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Desenvolvimento de Medicamentos , Receptores de LDL/metabolismo
14.
Fitoterapia ; 175: 105951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583637

RESUMO

Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 µM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 µM).


Assuntos
Alcaloides , Lignanas , Inibidores de PCSK9 , Compostos Fitoquímicos , Piper , Componentes Aéreos da Planta , Piper/química , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Lignanas/farmacologia , Lignanas/isolamento & purificação , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Componentes Aéreos da Planta/química , Amidas/farmacologia , Amidas/isolamento & purificação , Amidas/química , Pró-Proteína Convertase 9/metabolismo , China
15.
Fitoterapia ; 176: 105964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663561

RESUMO

Berberine was used as the lead compound in the present study to design and synthesize novel berberine derivatives by splicing bromine bridges of different berberine carbon chain lengths coupled nitric oxide donors, and their lipid lowering activities were assessed in a variety of ways. This experiment synthesized 17 new berberine nitric oxide donor derivatives. Compared with berberine hydrochloride, most of the compounds exhibited certain glycerate inhibitory activity, and compounds 6a, 6b, 6d, 12b and 12d showed higher inhibitory activity than berberine, with 6a, 6b and 6d having significant inhibitory activity. In addition, compound 6a linked to furazolidone nitric oxide donor showed better NO release in experiments; In further mechanistic studies, we screened and got two proteins, PCSK9 and ACLY, and docked two proteins with 17 compounds, and found that most of the compounds bound better with ATP citrate lyase (ACLY), among which there may be a strong interaction between compound 6a and ACLY, and the interaction force was better than the target drug Bempedoic Acid, which meaning that 6a may exert hypolipidemic effects by inhibiting ACLY; moreover, we also found that 6a may had the better performance in gastrointestinal absorption, blood-brain barrier permeability, Egan, Muegge class drug principle model calculation and bioavailability.


Assuntos
Berberina , Hipolipemiantes , Doadores de Óxido Nítrico , Berberina/farmacologia , Berberina/análogos & derivados , Berberina/síntese química , Berberina/química , Hipolipemiantes/farmacologia , Hipolipemiantes/síntese química , Hipolipemiantes/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/química , Humanos , Estrutura Molecular , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/metabolismo , Pró-Proteína Convertase 9/metabolismo , Simulação de Acoplamento Molecular , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Inibidores de PCSK9
16.
Stem Cells Dev ; 33(11-12): 290-305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573013

RESUMO

The aim of this article was to investigate whether exosomes derived from bone marrow mesenchymal stem cells repair damaged endometrial stromal cells (EnSCs) through the miR-99b-5p/PCSK9 axis. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) were isolated by ultracentrifugation and characterized using transmission electron microscopy and nanoflow cytometry. A mifepristone-induced EnSC injury model was established in vitro, and the uptake of BMSC-exos was assessed. EnSCs were divided into three groups: the normal group (ctrl), EnSC injury group (model), and BMSC-exo treatment group. The effects of BMSC-exos on EnSC proliferation, apoptosis, and vascular endothelial growth factor (VEGF) expression were assessed by coculturing MSC-exos with endometrial cells. Furthermore, high-throughput sequencing was used to identify differentially expressed genes (DEGs). Through bioinformatics analysis, reverse transcription-quantitative polymerase chain reaction, western blotting, the CCK8 assay, immunohistochemistry, and dual-luciferase experiments, the potential mechanism by which BMSC-exos-derived miRNAs repair EnSC injury was studied. BMSC-exos expressed the marker proteins CD9 and CD63. Laser confocal microscopy showed that BMSC-exos could enter damaged EnSCs. In the BMSC-exos-EnSC coculture group compared with the model group, BMSC-exos significantly increased the proliferation of damaged EnSCs and inhibited cell apoptosis in a dose-dependent manner. The expression levels of Caspase-3, Caspase-9, Bax, and VEGF mRNA were significantly downregulated in the BMSC-exos-EnSC coculture group, whereas Bcl-2 expression was upregulated. We identified 28 overlapping DEGs between the model and ctrl groups and between the BMSC-exo and model groups. Transfection with miR-99b-5p mimics significantly decreased PCSK9 gene expression and inhibited the expression of the autophagy-related proteins Beclin-1 and LC3-II/I and apoptosis, thereby promoting EnSC proliferation. Transfection with a miR-99b-5p inhibitor showed the opposite effects. Beclin-1, LC3-II/I, and PCSK9 expression in the thin endometrium was significantly increased. miR-99b-5p promoted cell proliferation by targeting PCSK9. BMSC-exos promoted endometrial proliferation, and miR-99b-5p inhibited cell apoptosis and promoted EnSC proliferation by targeting PCSK9, providing a new target for the treatment of thin endometrium.


Assuntos
Endométrio , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Pró-Proteína Convertase 9 , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Endométrio/metabolismo , Endométrio/citologia , Exossomos/metabolismo , Exossomos/genética , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Proliferação de Células/genética , Apoptose/genética , Sobrevivência Celular/genética , Células Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
17.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600469

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Assuntos
Genes MHC da Classe II , Imunoterapia , Neoplasias , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Animais , Camundongos , Antígenos de Histocompatibilidade , Lipoproteínas LDL , Neoplasias/genética , Neoplasias/terapia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Receptores de LDL/genética , Microambiente Tumoral
18.
J Chem Inf Model ; 64(9): 3923-3932, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615325

RESUMO

The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.


Assuntos
Simulação de Dinâmica Molecular , Pró-Proteína Convertase 9 , Ligação Proteica , Receptores de LDL , Receptores de LDL/metabolismo , Receptores de LDL/química , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/química , Regulação Alostérica , Humanos , Conformação Proteica , Termodinâmica , Inibidores de PCSK9
19.
Brain Behav Immun ; 119: 494-506, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657842

RESUMO

Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.


Assuntos
Anticorpos Monoclonais Humanizados , Encéfalo , Etanol , Neurônios , Estresse Oxidativo , Inibidores de PCSK9 , Pró-Proteína Convertase 9 , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Alcoolismo/metabolismo , Alcoolismo/tratamento farmacológico , Microglia/metabolismo , Microglia/efeitos dos fármacos , Receptores de LDL/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças
20.
Atherosclerosis ; 393: 117554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663275

RESUMO

BACKGROUND AND AIMS: Long noncoding RNAs (lncRNAs) play important roles in the progression of atherosclerosis. In this study, we identified an uncharacterized lncRNA, Liver Expressions by PSRC1 Induced Specifically (LEPIS). This study aimed to clarify the mechanism though which LEPIS affects atherosclerosis (AS). METHODS: The expression of LEPIS and its potential target, tropomodulin 4 (TMOD4), was increased in the livers of ApoE-/- mice fed a high-fat diet (HFD). An ApoE-/- mouse model in which LEPIS or TMOD4 was overexpressed in the liver was established. The plaque load in the aorta was assessed, plasma was collected to measure blood lipid levels, and the liver was collected to study cholesterol metabolism. RESULTS: We found that both LEPIS and TMOD4 increased the AS burden and reduced hepatic cholesterol levels. A further study revealed that LEPIS and TMOD4 affected the expression of genes related to hepatic cholesterol homeostasis, including proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR), which are closely related to hypercholesterolemia. Mechanistically, human antigen R (HuR), an RNA-binding protein (RBP), was shown to be critical for the regulation of TMOD4 by LEPIS. Furthermore, we found that verexpression of LEPIS promoted the shuttling of HuR from the nucleus to the cytoplasm, enhanced the stability of TMOD4 mRNA, and in turn promoted the expression of TMOD4. In addition, TMOD4 was found to affect intracellular cholesterol levels through PCSK9. CONCLUSIONS: These results suggest that the LEPIS-HuR-TMOD4 axis is a potential intervention target for dysregulated hepatic cholesterol homeostasis and AS and may provide the basis for further reductions in the circulating LDL-C concentration and arterial plaque burden.


Assuntos
Aterosclerose , Colesterol , Modelos Animais de Doenças , Homeostase , Fígado , Camundongos Knockout para ApoE , Animais , Humanos , Masculino , Camundongos , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...