Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 181: 191-203, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359561

RESUMO

Atherosclerosis is a degenerative disease characterized by lesions that develop in the wall of large- and medium-sized arteries due to the accumulation of low-density lipoproteins (LDLs) in the intima. A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and the aldehyde 4-hydroxy-2-nonenal (HNE), the major pro-atherogenic components of oxidized LDLs, significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. The involvement of certain members of the protein convertase subtilisin/kexin proteases (PCSKs) in atherosclerosis has been recently hypothesized. Among them, PCSK6 has been associated with plaque instability, mainly thanks to its ability to stimulate the activity of matrix metalloproteinases (MMPs) involved in extracellular matrix remodeling and to enhance inflammation. In U937 promonocytic cells and in human umbilical vein endothelial cells, an oxysterol mixture and HNE were able to up-regulate the level and activity of PCSK6, resulting in MMP-9 activation as demonstrated by PCSK6 silencing. Inflammation, enhanced by these lipid oxidation products, plays a key role in the up-regulation of PCSK6 activity as demonstrated by cell pretreatment with NS-398, with epigallocatechin gallate or with acetylsalicylic acid, all with anti-inflammatory effects. For the first time, we demonstrated that both oxysterols and HNE, which substantially accumulate in the atherosclerotic plaque, up-regulate the activity of PCSK6. Of note, we also suggest a potential association between PCSK6 activity and MMP-9 activation, pointing out that PCSK6 could contribute to atherosclerotic plaque development.


Assuntos
Aterosclerose/enzimologia , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Placa Aterosclerótica/enzimologia , Pró-Proteína Convertases/biossíntese , Serina Endopeptidases/biossíntese , Regulação para Cima , Aterosclerose/genética , Aterosclerose/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Oxisteróis/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Células U937
2.
Protein Expr Purif ; 176: 105725, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32800900

RESUMO

The gene encoding S. cerevisiae Kex2 protease derivative Kex2-667 (encoding the N-terminal 20th to 667th amino acid residues of Kex2 protease, containing the propeptide, catalytic domain, P domain and Ser/Thr enrichment region) and its 225th amino acid residue mutant K225L were overexpressed in Pichia pastoris. Proteases were purified by dialysis and anion exchange chromatography (Q-FF). Their properties were further investigated. For catalysis efficiency, the value of Kcat/Km of Kex2-667-K225L was 3 folds higher than that of Kex2-667. Both were quite stable at 25 °C and 37 °C after 8 h of incubation at pH5.6, while Kex2-667 remained nearly 90% of the total activity while Kex2-667-K225L remained only 80%. The stability of Kex2-667-K225L was lower than that of Kex2-667 from pH4.0 to pH9.0. Due to the mutation site K225 was located at one of the calcium ion binding sites, it resulted in a tighter calcium ion binding region, which may be the reason why the catalytic efficiency of Kex2-667-K225L was improved while the stability was a little decreased.


Assuntos
Pró-Proteína Convertases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Catálise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Mutação de Sentido Incorreto , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 290(52): 31003-12, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26547624

RESUMO

Disruption of the body clock has been recognized as a risk factor for cardiovascular disease. How the circadian pacemaker interacts with the genetic factors associated with plasma lipid traits remains poorly understood. Recent genome-wide association studies have identified an expanding list of genetic variants that influence plasma cholesterol and triglyceride levels. Here we analyzed circadian regulation of lipid-associated candidate genes in the liver and identified two distinct groups exhibiting rhythmic and non-rhythmic patterns of expression during light-dark cycles. Liver-specific inactivation of Bmal1 led to elevated plasma LDL/VLDL cholesterol levels as a consequence of the disruption of the PCSK9/LDL receptor regulatory axis. Ablation of the liver clock perturbed diurnal regulation of lipid-associated genes in the liver and markedly reduced the expression of the non-rhythmically expressed gene Trib1. Adenovirus-mediated rescue of Trib1 expression lowered plasma PCSK9 levels, increased LDL receptor protein expression, and restored plasma cholesterol homeostasis in mice lacking a functional liver clock. These results illustrate an unexpected mechanism through which the biological clock regulates cholesterol homeostasis through its regulation of non-rhythmic genes in the liver.


Assuntos
Colesterol/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Pró-Proteína Convertases/biossíntese , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de LDL/biossíntese , Serina Endopeptidases/biossíntese , Animais , Colesterol/genética , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Camundongos , Camundongos Transgênicos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de LDL/genética , Serina Endopeptidases/genética
4.
Biomed Res Int ; 2015: 824014, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114115

RESUMO

The overexpression as well as the critical implication of the proprotein convertase PACE4 in prostate cancer progression has been previously reported and supported the development of peptide inhibitors. The multi-Leu peptide, a PACE4-specific inhibitor, was further generated and its capability to be uptaken by tumor xenograft was demonstrated with regard to its PACE4 expression status. To investigate whether the uptake of this inhibitor was directly dependent of PACE4 levels, uptake and efflux from cancer cells were evaluated and correlations were established with PACE4 contents on both wild type and PACE4-knockdown cell lines. PACE4-knockdown associated growth deficiencies were established on the knockdown HepG2, Huh7, and HT1080 cells as well as the antiproliferative effects of the multi-Leu peptide supporting the growth capabilities of PACE4 in cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Neoplasias/genética , Pró-Proteína Convertases/biossíntese , Serina Endopeptidases/biossíntese , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nature ; 520(7546): 186-91, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25830891

RESUMO

The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Engenharia Genética/métodos , Genoma/genética , Staphylococcus aureus/enzimologia , Animais , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Colesterol/sangue , Colesterol/metabolismo , Marcação de Genes , Fígado/metabolismo , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/sangue , Pró-Proteína Convertases/deficiência , Pró-Proteína Convertases/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/sangue , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Staphylococcus aureus/genética , Especificidade por Substrato
6.
Hum Genet ; 134(6): 627-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25813623

RESUMO

Proprotein convertase subtilisin/kexin (PCSK) enzymes cleave and convert their immature substrates into biologically active forms. Polymorphisms in the PCSK genes have been reported to associate with human diseases and phenotypes, including hypercholesterolemia and blood pressure (BP), and targeting PCSKs is considered a promising future form of drug therapy. PCSK processing is readily induced upon upregulation of the enzyme, but the genetic factors contributing to PCSK expression have not been thoroughly characterized. To gain a comprehensive understanding of the genetic regulation of PCSK expression, we performed, for the first time, a genome-wide expression quantitative trait loci (eQTL) analysis using mRNA expression in >1400 human peripheral blood samples from the Cardiovascular Risk in Young Finns Study and ca. ten million single-nucleotide polymorphisms (SNPs). The expression data showed clear expression for FURIN, PCSK5, PCSK7 and MBTPS1 (membrane-bound transcription factor peptidase, site 1) mRNAs in virtually all tested samples. A discovery analysis demonstrated a genome-wide significant (p < 5 × 10(-8)) association with the selected PCSK probes for 1024 variants, which were located at ten independent loci. Of these loci, 5/10 could be confirmed to regulate PCSK expression in two additional and independent sample sets. Finally, a phenotypic analysis demonstrated that a novel cis-eQTL SNP rs4702 for FURIN is strongly associated with both diastolic (p = 0.012) and systolic (p = 0.035) BP levels, as well as peripheral vascular resistance (p = 0.003). These findings indicate that the expression of the PCSK enzymes is regulated by genetic factors, which have biological roles in health and disease.


Assuntos
Pressão Sanguínea , Furina , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Feminino , Furina/biossíntese , Furina/genética , Humanos , Masculino , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Subtilisinas/biossíntese , Subtilisinas/genética , Resistência Vascular/genética
7.
Atherosclerosis ; 235(2): 449-62, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24950000

RESUMO

BACKGROUND: CETP inhibitors block the transfer of cholesteryl ester from HDL-C to VLDL-C and LDL-C, thereby raising HDL-C and lowering LDL-C. In this study, we explored the effect of CETP inhibitors on hepatic LDL receptor (LDLR) and PCSK9 expression and further elucidated the underlying regulatory mechanism. RESULTS: We first examined the effect of anacetrapib (ANA) and dalcetrapib (DAL) on LDLR and PCSK9 expression in hepatic cells in vitro. ANA exhibited a dose-dependent inhibition on both LDLR and PCSK9 expression in CETP-positive HepG2 cells and human primary hepatocytes as well as CETP-negative mouse primary hepatocytes (MPH). Moreover, the induction of LDLR protein expression by rosuvastatin in MPH was blunted by cotreatment with ANA. In both HepG2 and MPH ANA treatment reduced the amount of mature form of SREBP2 (SREBP2-M). In vivo, oral administration of ANA to dyslipidemic C57BL/6J mice at a daily dose of 50 mg/kg for 1 week elevated serum total cholesterol by approximately 24.5% (p < 0.05%) and VLDL-C by 70% (p < 0.05%) with concomitant reductions of serum PCSK9 and liver LDLR/SREBP2-M protein. Finally, we examined the in vitro effect of two other strong CETP inhibitors evacetrapib and torcetrapib on LDLR/PCSK9 expression and observed a similar inhibitory effect as ANA in a concentration range of 1-10 µM. CONCLUSION: Our study revealed an unexpected off-target effect of CETP inhibitors that reduce the mature form of SREBP2, leading to attenuated transcription of hepatic LDLR and PCSK9. This negative regulation of SREBP pathway by ANA manifested in mice where CETP activity was absent and affected serum cholesterol metabolism.


Assuntos
Anticolesterolemiantes/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Colesterol/metabolismo , Pró-Proteína Convertases/biossíntese , Receptores de LDL/biossíntese , Serina Endopeptidases/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Amidas , Animais , Regulação para Baixo , Dislipidemias/sangue , Ésteres , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipídeos/sangue , Masculino , Oxazolidinonas/farmacologia , Pró-Proteína Convertase 9 , Compostos de Sulfidrila/farmacologia
8.
J Biol Chem ; 289(25): 17732-46, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24808179

RESUMO

Annexin A2 (AnxA2) was reported to be an extracellular endogenous inhibitor of proprotein convertase subtilisin kexin type 9 (PCSK9) activity on cell-surface LDL receptor degradation. In this study, we investigated the effect of silencing the expression of AnxA2 and PCSK9 in HepG2 and Huh7 cells to better define the role of AnxA2 in PCSK9 regulation. AnxA2 knockdown in Huh7 cells significantly increased PCSK9 protein levels as opposed to AnxA2 knockdown in HepG2 cells. However, HepG2 cells overexpressing AnxA2 had lower levels of PCSK9 protein. Overall, our data revealed a plausible new role of AnxA2 in the reduction of PCSK9 protein levels via a translational mechanism. Moreover, the C-terminal Cys/His-rich domain of PCSK9 is crucial in the regulation of PCSK9 activity, and we demonstrated by far-Western blot assay that the M1 and M2 domains are necessary for the specific interaction of PCSK9's C-terminal Cys/His-rich domain and AnxA2. Finally, we produced and purified recombinant PCSK9 from humans and mice, which was characterized and used to perform 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate LDL cell-based assays on the stable knockdown HepG2 and Huh7 cells. We also demonstrated for the first time the equipotency of human and mouse PCSK9 R218S on human cells.


Assuntos
Anexina A2/metabolismo , Pró-Proteína Convertases/biossíntese , Biossíntese de Proteínas/fisiologia , Serina Endopeptidases/biossíntese , Animais , Anexina A2/química , Anexina A2/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Pró-Proteína Convertases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina Endopeptidases/química , Serina Endopeptidases/genética
9.
Arterioscler Thromb Vasc Biol ; 34(3): 644-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24407032

RESUMO

OBJECTIVE: Animal models have evidenced the role of intestinal triglyceride-rich lipoprotein overproduction in dyslipidemia. However, few studies have confronted this issue in humans and disclosed the intrinsic mechanisms. This work aimed to establish whether intestinal insulin resistance modifies lipid and lipoprotein homeostasis in the intestine of obese subjects. APPROACH AND RESULTS: Duodenal specimens obtained from 20 obese subjects undergoing bariatric surgery were paired for age, sex, and body mass index with or without insulin resistance, as defined by the homeostasis model assessment of insulin resistance. Insulin signaling, biomarkers of inflammation and oxidative stress, and lipoprotein assembly were assessed. The intestine of insulin-resistant subjects showed defects in insulin signaling as demonstrated by reduced protein kinase B phosphorylation and increased p38 mitogen-activated protein kinase phosphorylation, likely as the result of high oxidative stress (evidenced by malondialdehyde and conjugated dienes) and inflammation (highlighted by nuclear factor-κB, tumor necrosis factor-α, interleukin-6, intercellular adhesion molecule-1, and cyclooxygenase-2). Enhanced de novo lipogenesis rate and apolipoprotein B-48 biogenesis along with exaggerated triglyceride-rich lipoprotein production were observed, concomitantly with the high expression levels of liver and intestinal fatty acid-binding proteins and microsomal transfer protein. The presence of an aberrant intracellular cholesterol transport/metabolism was also suggested by the reduced expression of ATP-binding cassette A1 transporter and proprotein convertase subtilisin/kexin type 9. CONCLUSIONS: According to the present data, the small intestine may be classified as an insulin-sensitive tissue. Dysregulation of intestinal insulin signaling, possibly triggered by oxidative stress and inflammation, was associated with exaggerated lipogenesis and lipoprotein synthesis, which may represent a key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome.


Assuntos
Duodeno/fisiopatologia , Insulina/fisiologia , Obesidade/fisiopatologia , Adulto , Apolipoproteínas B/biossíntese , Apolipoproteínas B/genética , Biomarcadores , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Duodeno/enzimologia , Dislipidemias/etiologia , Dislipidemias/fisiopatologia , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Resistência à Insulina , Mucosa Intestinal/metabolismo , Lipogênese , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Estresse Oxidativo , Fosforilação , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Lancet ; 383(9911): 60-68, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24094767

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to LDL receptors, leading to their degradation. Genetics studies have shown that loss-of-function mutations in PCSK9 result in reduced plasma LDL cholesterol and decreased risk of coronary heart disease. We aimed to investigate the safety and efficacy of ALN-PCS, a small interfering RNA that inhibits PCSK9 synthesis, in healthy volunteers with raised cholesterol who were not on lipid-lowering treatment. METHODS: We did a randomised, single-blind, placebo-controlled, phase 1 dose-escalation study in healthy adult volunteers with serum LDL cholesterol of 3·00 mmol/L or higher. Participants were randomly assigned in a 3:1 ratio by computer algorithm to receive one dose of intravenous ALN-PCS (with doses ranging from 0·015 to 0·400 mg/kg) or placebo. The primary endpoint was safety and tolerability of ALN-PCS. Secondary endpoints were the pharmacokinetic characteristics of ALN-PCS and its pharmacodynamic effects on PCSK9 and LDL cholesterol. Study participants were masked to treatment assignment. Analysis was per protocol and we used ANCOVA to analyse pharmacodynamic endpoint data. This trial is registered with ClinicalTrials.gov, number NCT01437059. FINDINGS: Of 32 participants, 24 were randomly allocated to receive a single dose of ALN-PCS (0·015 mg/kg [n=3], 0·045 mg/kg [n=3], 0·090 mg/kg [n=3], 0·150 mg/kg [n=3], 0·250 mg/kg [n=6], or 0·400 mg/kg [n=6]) and eight to placebo. The proportions of patients affected by treatment-emergent adverse events were similar in the ALN-PCS and placebo groups (19 [79%] vs seven [88%]). ALN-PCS was rapidly distributed, with peak concentration and area under the curve (0 to last measurement) increasing in a roughly dose-proportional way across the dose range tested. In the group given 0·400 mg/kg of ALN-PCS, treatment resulted in a mean 70% reduction in circulating PCSK9 plasma protein (p<0·0001) and a mean 40% reduction in LDL cholesterol from baseline relative to placebo (p<0·0001). INTERPRETATION: Our results suggest that inhibition of PCSK9 synthesis by RNA interference (RNAi) provides a potentially safe mechanism to reduce LDL cholesterol concentration in healthy individuals with raised cholesterol. These results support the further assessment of ALN-PCS in patients with hypercholesterolaemia, including those being treated with statins. This study is the first to show an RNAi drug being used to affect a clinically validated endpoint (ie, LDL cholesterol) in human beings. FUNDING: Alnylam Pharmaceuticals.


Assuntos
LDL-Colesterol/sangue , Terapia Genética/métodos , Pró-Proteína Convertases/biossíntese , RNA Interferente Pequeno/farmacologia , Serina Endopeptidases/biossíntese , Adulto , LDL-Colesterol/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Terapia Genética/efeitos adversos , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/sangue , Pró-Proteína Convertases/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , Serina Endopeptidases/sangue , Serina Endopeptidases/genética , Método Simples-Cego
13.
Int J Oncol ; 43(3): 947-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835774

RESUMO

Polyphenols, a class of natural products, have been shown to exhibit cancer protective properties. Proprotein convertases form a family of mammalian subtilisin-like serine endoproteases. Increased expression of these enzymes has been associated with numerous pathologies including cancer. It has been suggested that the cancer protective effect of polyphenols might be related to their proprotein convertase inhibitory effects. Furin, the most studied proprotein convertase, was shown to be inhibited by polyphenols in an in vitro fluorescence peptide-based assay. Protein substrates or the presence of protein prevented this inhibition by prototype members of various classes of polyphenolic compounds. Inhibition appeared to be related to the reactivity of polyphenol auto-oxidation products to proteins. While direct inhibition by polyphenols of furin has, therefore, not been observed in cells, the existence of indirect mechanisms cannot be excluded. In the present investigation, 26 polyphenols and 5 control compounds were screened for indirect inhibition of furin in a cellular environment. Five polyphenols showed moderate inhibitory activity and three of these: octyl gallate, dodecyl gallate and nordihydroguariaretic acid were further studied. The processing in cells of several genuine furin substrates, including pro-IGF-1R, appeared to be inhibited by these polyphenols. The inhibition was not specific for furin but also affected other proprotein convertases. The three polyphenols inhibited the maturation of the furin zymogen, thereby limiting the formation of the active enzyme. The three polyphenols inhibited focus formation of HepG2 liver carcinoma cells suggesting reversal of the malignant phenotype. Anchorage-independent growth of these cells, a hallmark feature of tumor cells, was also inhibited. Since, dependent of the molecular subclass of hepatocellular carcinoma, overexpression of furin can have either favourable or detrimental effects, it seems advisable to take indirect proprotein convertase inhibitory activity into account when polyphenols are considered for therapy of hepatocellular carcinoma.


Assuntos
Furina/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Polifenóis/administração & dosagem , Pró-Proteína Convertases/genética , Sequência de Aminoácidos , Furina/biossíntese , Furina/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Polifenóis/classificação , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/biossíntese , Subtilisinas/genética , Subtilisinas/metabolismo
14.
Dev Dyn ; 241(12): 1986-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027401

RESUMO

BACKGROUND: Glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are hormones secreted by L and K cells, respectively, and by LK cells. To characterize L and K cells during development, we examined ileum from embryonic (e)- 12 to e-17. RESULTS: GLP-1 cells were first seen at e-15 and their number increased at e-17. At e-17, most GLP-1 cells co-expressed GIP. The transcription factors Pax6 and Pdx-1 are required for GIP expression, while Pax6 activates the expression of GLP-1. At e-17, the mucosa has GIP+ Pax6+, GIP+ Pdx-1+, GLP-1+ Pax6+, and GLP-1+ Pdx-1+ cells. Unlike ileal L cells of postnatal and adult mice, a subset of ileal L cells of e-17 embryos co-expressed GLP-1 and glucagon (Glu). Glu-positive cells contain proprotein-convertase 2 (PC2) and PC3/1, the enzymes responsible for Glu and GLP-1 synthesis, respectively. CONCLUSIONS: Our findings indicate that most GLP-1+ cells of ileum of e-17 embryos co-express GIP and, therefore, are LK cells. In addition, a subset of GLP-1+ cells of embryos but not of neonates co-express glucagon, indicating that the expression of Glu in GLP-1+ cells disappears after birth.


Assuntos
Embrião de Mamíferos/metabolismo , Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Íleo/embriologia , Animais , Embrião de Mamíferos/citologia , Células Enteroendócrinas/citologia , Polipeptídeo Inibidor Gástrico/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Íleo/citologia , Camundongos , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética
15.
Diabetes ; 61(8): 2016-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22740171

RESUMO

Diabetes is a chronic debilitating disease that results from insufficient production of insulin from pancreatic ß-cells. Islet cell replacement can effectively treat diabetes but is currently severely limited by the reliance upon cadaveric donor tissue. We have developed a protocol to efficiently differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population that further develops in vivo to mature pancreatic endocrine cells. Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes, and glycemia was initially controlled with exogenous insulin. As graft-derived insulin levels increased over time, diabetic mice were weaned from exogenous insulin and human C-peptide secretion was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant in immunodeficient rats. Throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to the developing human fetal pancreas. Our findings support the feasibility of using differentiated hESCs as an alternative to cadaveric islets for treating patients with diabetes.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Células Secretoras de Insulina/citologia , Pâncreas/citologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/terapia , Proteínas de Homeodomínio/biossíntese , Humanos , Insulina/uso terapêutico , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Pâncreas/embriologia , Pró-Proteína Convertases/biossíntese , Ratos , Células-Tronco/citologia , Transativadores/biossíntese
16.
Biochem Biophys Res Commun ; 419(4): 809-14, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22390935

RESUMO

Proprotein convertases (PCs) play critical roles in cleaving precursor proteins (growth factors, hormones, receptors and adhesion molecules) for activation. PCs are implicated in a number of cellular functions, including oncogenesis. Endometrial cancer is the most common gynecological cancer in the developed world, but the involvement of PCs is unclear. To characterize the role of PCs in endometrial cancer, we assessed expression of seven PCs (PC1/3, PC2, PACE4, PC4, furin, PC5/6 and PC7) by RT-PCR in six well characterized endometrial cancer cell lines. Expression was variable in all lines, with furin being most consistently expressed in all cell lines tested. We next determined the cellular localization and expression levels of four ubiquitously expressed PCs (furin, PACE4, PC5/6 and PC7) in post-menopausal endometrial biopsies from control (n=7) and endometrial cancer patients (n=30) by immunohistochemistry. Furin increased in tumors, whereas PC5/6, PACE4 and PC7 expression was reduced with increasing cancer grades. Uterine lavage is a non-invasive source material for evaluating the endometrium. We thus assessed whether total PC activity was altered in uterine lavage of endometrial cancer patients (n=36) compared to controls (n=10). PC activity was detected in all uterine lavage samples, and significantly elevated in all grades of endometrial cancer. This study demonstrates a complex association between individual PCs and endometrial cancer. Importantly, we show that monitoring the total PC activity in uterine lavage may provide a rapid and non-invasive method for the diagnosis of endometrial cancer in postmenopausal women.


Assuntos
Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/enzimologia , Pró-Proteína Convertases/biossíntese , Linhagem Celular Tumoral , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pós-Menopausa , Pró-Proteína Convertases/análise , Pró-Proteína Convertases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Int J Biol Sci ; 8(3): 310-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355267

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥ 25% for 7-14 days) that correlated well with the extent of PCSK9 occupancy by the antibody. In addition, 1B20 induces increases in total plasma antibody-bound PCSK9 levels and decreases in liver mRNA levels of SREBP-regulated genes PCSK9 and LDLR, with a time course that parallels decreases in plasma LDL-cholesterol (LDL-C). Consistent with this observation in mice, in statin-responsive human primary hepatocytes, 1B20 lowers PCSK9 and LDLR mRNA levels and raises serum steady-state levels of antibody-bound PCSK9. In addition, mRNA levels of several SREBP regulated genes involved in cholesterol and fatty-acid synthesis including ACSS2, FDPS, IDI1, MVD, HMGCR, and CYP51A1 were decreased significantly with antibody treatment of primary human hepatocytes. In rhesus monkeys, subcutaneous (SC) dosing of 1B20 dose-dependently induces robust LDL-C lowering (maximal ~70%), which is correlated with increases in target engagement and total antibody-bound PCSK9 levels. Importantly, a combination of 1B20 and Simvastatin in dyslipidemic rhesus monkeys reduced LDL-C more than either agent alone, consistent with a mechanism of action that predicts additive effects of anti-PCSK9 agents with statins. Our results suggest that antibodies targeting PCSK9 could provide patients powerful LDL lowering efficacy on top of statins, and lower cardiovascular risk.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , LDL-Colesterol/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Imunização Passiva , Síndrome Metabólica/terapia , Pró-Proteína Convertases/antagonistas & inibidores , Pró-Proteína Convertases/imunologia , Serina Endopeptidases/imunologia , Sinvastatina/uso terapêutico , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Anticolesterolemiantes/administração & dosagem , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Perfilação da Expressão Gênica , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macaca mulatta , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética , RNA Mensageiro/metabolismo , Receptores de LDL/biossíntese , Receptores de LDL/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Sinvastatina/administração & dosagem
18.
J Biol Chem ; 286(33): 29227-29240, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21652717

RESUMO

Site-1 protease (S1P) is a proprotein convertase with essential functions in lipid homeostasis and unfolded protein response pathways. We previously studied a mouse model of cartilage-specific knock-out of S1P in chondroprogenitor cells. These mice exhibited a defective cartilage matrix devoid of type II collagen protein (Col II) and displayed chondrodysplasia with no endochondral bone formation even though the molecular program for endochondral bone development appeared intact. To gain insights into S1P function, we generated and studied a mouse model in which S1P is ablated in postnatal chondrocytes. Postnatal ablation of S1P results in chondrodysplasia. However, unlike early embryonic ablations, the growth plates of these mice exhibit a lack of Ihh, PTHrP-R, and Col10 expression indicating a loss of chondrocyte hypertrophic differentiation and thus disruption of the molecular program required for endochondral bone development. S1P ablation results in rapid growth plate disruption due to intracellular Col II entrapment concomitant with loss of chondrocyte hypertrophy suggesting that these two processes are related. Entrapment of Col II in the chondrocytes of the prospective secondary ossification center precludes its development. Trabecular bone formation is dramatically diminished in the primary spongiosa and is eventually lost. The primary growth plate is eradicated by apoptosis but is gradually replaced by a fully functional new growth plate from progenitor stem cells capable of supporting new bone growth. Our study thus demonstrates that S1P has fundamental roles in the preservation of postnatal growth plate through chondrocyte differentiation and Col II deposition and functions to couple growth plate maturation to trabecular bone development in growing mice.


Assuntos
Diferenciação Celular , Condrócitos/enzimologia , Lâmina de Crescimento/enzimologia , Osteocondrodisplasias/enzimologia , Osteogênese , Pró-Proteína Convertases/biossíntese , Serina Endopeptidases/biossíntese , Células-Tronco/enzimologia , Animais , Condrócitos/patologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Lâmina de Crescimento/patologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Células-Tronco/patologia
19.
Mol Cell Biochem ; 348(1-2): 43-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21080038

RESUMO

Proprotein convertase subtilisin/kexin type 4 (PCSK4), also known as proprotein convertase 4 (PC4), is a serine endoproteinase primarily expressed in testicular germ cells and in sperm. Inactivation of its gene in mouse causes male infertility. From studies of the biosynthesis of PCSK3/furin, its closest relative, it has been inferred that PCSK4 is synthesised in the endoplasmic reticulum as a zymogen; that it is rapidly matured by autocatalytic cleavage between the prodomain and the catalytic domain; that the cleaved prodomain remains attached to the mature enzyme; and that the enzyme is finally activated by the removal of the prodomain peptides following a secondary cleavage within the prodomain. In this study, we used human embryonic kidney 293 (HEK293) cells to study the biosynthesis of rat or human PCSK4. Our results show that the bulk of PCSK4 remains as an intracellular zymogen, presumably trapped in the endoplasmic reticulum, where it interacts with the general molecular chaperone glucose-regulated protein 78/Immunoglobulin heavy-chain binding protein (GRP78/BiP). These data suggest that, unlike other members of the convertase family, proPCSK4 cannot efficiently self-activate in somatic cells. These cells may lack the intracellular environment and the interacting molecules specific to testicular germ cells where this enzyme is normally expressed.


Assuntos
Precursores Enzimáticos/metabolismo , Proteínas de Choque Térmico/metabolismo , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/metabolismo , Subtilisinas/metabolismo , Transfecção , Animais , Linhagem Celular , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Precursores Enzimáticos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Mutação , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/genética , Ligação Proteica , Transporte Proteico , Ratos , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Espermatozoides/enzimologia , Subtilisinas/biossíntese , Subtilisinas/genética , Fatores de Tempo
20.
Sheng Wu Gong Cheng Xue Bao ; 26(4): 495-502, 2010 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-20575438

RESUMO

Carboxyl-terminal processing protease of D1 protein (CtpA) catalyzes carboxyl terminal processing of the D1 protein of photosystem II, which is essential for the assembly of a manganese cluster and consequent light-mediated water oxidation. It is a target for the discovery of wide-spectrum herbicide. We amplified the CtpA gene from spinach cDNA with standard PCR method and constructed it into pET-28a vector to generate a recombinant expression plasmid. Recombinant CtpA fusion protein with His-tag was expressed as soluble protein in Escherichia coli BL21(DE3) after induction with 0.1 mmol/L IPTG at 8 degrees C for 72 h. We purified the CtpA protein with the Ni-NTA affinity chromatography and Superdex 75 gel filtration chromatography respectively, and verified the protein by SDS-PAGE and Western blotting with anti-his antibody. Hydrolysis activity of CtpA was assayed by HPLC method with a synthetic 24-mer oligopeptide corresponding to carboxyl terminal of precursor D1 protein, and gave a total activity of 1.10 nmol/(mg x min). We used the purified CtpA protein as antigen to immune rabbit for the production of polyclonal antibody, and prepared antibody with high specificity and sensitivity. The results obtained in this paper provided the feasibility of high-throughput screening of lead compounds for the protease as inhibitors and mechanism analysis of CtpA enzyme.


Assuntos
Anticorpos/metabolismo , Carboxipeptidases/biossíntese , Carboxipeptidases/imunologia , Pró-Proteína Convertases/biossíntese , Pró-Proteína Convertases/imunologia , Proteínas Recombinantes de Fusão/imunologia , Spinacia oleracea/enzimologia , Proteínas de Algas , Carboxipeptidases/química , Carboxipeptidases/genética , Clonagem Molecular , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Pró-Proteína Convertases/química , Pró-Proteína Convertases/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Spinacia oleracea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...