Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.430
Filtrar
1.
Glob Chang Biol ; 30(5): e17315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721865

RESUMO

Grasslands provide important ecosystem services to society, including biodiversity, water security, erosion control, and forage production. Grasslands are also vulnerable to droughts, rendering their future vitality under climate change uncertain. Yet, the grassland response to drought is not well understood, especially for heterogeneous Central European grasslands. We here fill this gap by quantifying the spatiotemporal sensitivity of grasslands to drought using a novel remote sensing dataset from Landsat/Sentinel-2 paired with climate re-analysis data. Specifically, we quantified annual grassland vitality at fine spatial scale and national extent (Germany) from 1985 to 2021. We analyzed grassland sensitivity to drought by testing for statistically robust links between grassland vitality and common drought indices. We furthermore explored the spatiotemporal variability of drought sensitivity for 12 grassland habitat types given their different biotic and abiotic features. Grassland vitality maps revealed a large-scale reduction of grassland vitality during past droughts. The unprecedented drought of 2018-2019 stood out as the largest multi-year vitality decline since the mid-1980s. Grassland vitality was consistently coupled to drought (R2 = .09-.22) with Vapor Pressure Deficit explaining vitality best. This suggests that high atmospheric water demand, as observed during recent compounding drought and heatwave events, has major impacts on grassland vitality in Central Europe. We found a significant increase in drought sensitivity over time with highest sensitivities detected in periods of extremely high atmospheric water demand, suggesting that drought impacts on grasslands are becoming more severe with ongoing climate change. The spatial variability of grassland drought sensitivity was linked to different habitat types, with declining sensitivity from dry and mesic to wet habitats. Our study provides the first large-scale, long-term, and spatially explicit evidence of increasing drought sensitivities of Central European grasslands. With rising compound droughts and heatwaves under climate change, large-scale grassland vitality loss, as in 2018-2019, will thus become more likely in the future.


Assuntos
Mudança Climática , Secas , Pradaria , Tecnologia de Sensoriamento Remoto , Alemanha , Água/análise , Atmosfera
2.
Nat Commun ; 15(1): 3829, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714701

RESUMO

Human wellbeing depends on ecosystem services, highlighting the need for improving the ecosystem-service multifunctionality of food and feed production systems. We study Swiss agricultural grasslands to assess how employing and combining three widespread aspects of grassland management and their interactions can enhance 22 plot-level ecosystem service indicators, as well as ecosystem-service multifunctionality. The three management aspects we assess are i) organic production system, ii) an eco-scheme prescribing extensive management (without fertilization), and iii) harvest type (pasture vs. meadow). While organic production system and interactions between the three management aspects play a minor role, the main effects of eco-scheme and harvest type considerably shape single services. Moreover, the eco-scheme 'extensive management' and the harvest type 'pasture' enhance plot-scale ecosystem-service multifunctionality, mostly through facilitating cultural services at the expense of provisioning services. These changes in ecosystem-service supply occur mainly via changes in land-use intensity, i.e., reduced fertilizer input and harvest frequency. In conclusion, diversifying grassland management where this is currently homogeneous across farms and landscapes depicts an important first step to improve landscape-scale multifunctionality for sustainable grassland systems. To meet societal ecosystem services demand, the three studied management aspects can be systematically combined to increase ecosystem services that are in short supply.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pradaria , Conservação dos Recursos Naturais/métodos , Suíça , Agricultura/métodos , Fertilizantes , Humanos
3.
Sci Rep ; 14(1): 10265, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704461

RESUMO

In low-diversity productive grasslands, modest changes to plant diversity (richness, composition and relative abundance) may affect multiple ecosystem functions (multifunctionality), including yield. Despite the economic importance of productive grasslands, effects of plant diversity and environmental disturbance on multifunctionality are very rarely quantified. We systematically varied species richness, composition, and relative abundance of grassland ley communities and manipulated water supply (rainfed and drought) to quantify effects of diversity and environmental disturbance on multifunctionality. We then replaced the grassland leys with a monoculture crop to investigate 'follow-on' effects. We measured six agronomy-related ecosystem functions across one or both phases: yield, yield consistency, digestibility and weed suppression (grassland ley phase), legacy effect (effect on follow-on crop yield), and nitrogen fertiliser efficiency (full rotation). Drought reduced most ecosystem functions, although effects were species- and function-specific. Increased plant diversity affected mean performance, and reduced variation, across the six functions (contributing to multifunctional stability). Multifunctionality index values across a wide range of mixture diversity were higher than the best monoculture under both rainfed and drought conditions (transgressive over-performance). Higher-diversity, lower-nitrogen (150N) mixtures had higher multifunctionality than a low-diversity, higher-nitrogen (300N) grass monoculture. Plant diversity in productive grasslands is a practical farm-scale management action to mitigate drought impacts and enhance multifunctionality of grassland-crop rotation systems.


Assuntos
Biodiversidade , Produtos Agrícolas , Secas , Produtos Agrícolas/crescimento & desenvolvimento , Pradaria , Ecossistema , Agricultura/métodos
4.
Sci Rep ; 14(1): 10305, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705916

RESUMO

This study investigates the intricate and enduring interplay of historical events, human activities, and natural processes shaping the landscape of North European Plain in western Poland over 230 years. Topographic maps serve as reliable historical data sources to quantify changes in forest, grassland, and wetland areas, scrutinizing their fragmentation and persistence. The primary objectives are to identify the permanent areas of the landscape and propose a universal cartographic visualization method for effectively mapping these changes. Using topographic maps and historical data, this research quantifies land cover changes, especially in forest, grassland, and wetland areas. With the help of retrogressive method we process raster historical data into vector-based information. Over time, wetlands experienced a substantial reduction, particularly in 1960-1982, attributed to both land reclamation and environmental factors. Grassland areas fluctuated, influenced by wetland and drier habitat dynamics. Fragmentation in grassland areas poses biodiversity and ecosystem health concerns, whereas forested areas showed limited fluctuations, with wetland forests nearly disappearing. These findings highlight wetland ecosystems' sensitivity to human impacts and emphasize the need to balance conservation and sustainable development to preserve ecological integrity. This study advances landscape dynamics understanding, providing insights into historical, demographic, economic, and environmental transformations. It underscores the imperative for sustainable land management and conservation efforts to mitigate human impacts on ecosystems and biodiversity in the North European Plain.


Assuntos
Conservação dos Recursos Naturais , Florestas , Pradaria , Áreas Alagadas , Polônia , Conservação dos Recursos Naturais/métodos , Humanos , Biodiversidade , Ecossistema , História do Século XVIII
5.
Proc Biol Sci ; 291(2023): 20232604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807521

RESUMO

Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.


Assuntos
Flores , Pólen , Polinização , Abelhas/fisiologia , Animais , Ecossistema , Pradaria , Biodiversidade
6.
Technol Cult ; 65(2): 531-554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766960

RESUMO

At the turn of the twentieth century, Russian imperial officials hoped to transform the Kazakh Steppe from a zone of pastoral nomadism into a zone of sedentary grain farms. They planned to accomplish this transformation by importing peasants from European Russia and settling them in the steppe along with advanced scientific agricultural practices, equipment, and infrastructure. It was a project that linked steppe settlement and the Russian Empire to a global story of settler colonialism, science, and technology in the first decades of the twentieth century. An examination of this project through the lens of the expansion of grain farming reveals that the changes it wrought were not solely due to European science and technology but were contingent, dependent on local knowledge, the vagaries of climate, and adaptation to the realities of the steppe environment.


Assuntos
Agricultura , História do Século XX , Agricultura/história , Federação Russa , Colonialismo/história , Pradaria , Cazaquistão , Humanos
7.
Nat Commun ; 15(1): 4364, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777837

RESUMO

The ability of our ancestors to switch food sources and to migrate to more favourable environments enabled the rapid global expansion of anatomically modern humans beyond Africa as early as 120,000 years ago. Whether this versatility was largely the result of environmentally determined processes or was instead dominated by cultural drivers, social structures, and interactions among different groups, is unclear. We develop a statistical approach that combines both archaeological and genetic data to infer the more-likely initial expansion routes in northern Eurasia and the Americas. We then quantify the main differences in past environmental conditions between the more-likely routes and other potential (less-likely) routes of expansion. We establish that, even though cultural drivers remain plausible at finer scales, the emergent migration corridors were predominantly constrained by a combination of regional environmental conditions, including the presence of a forest-grassland ecotone, changes in temperature and precipitation, and proximity to rivers.


Assuntos
Arqueologia , Migração Humana , Humanos , Migração Humana/história , Meio Ambiente , Europa (Continente) , América , História Antiga , Temperatura , Ásia , Rios , Florestas , Pradaria
8.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755583

RESUMO

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Assuntos
Pradaria , Herbivoria , China , Clima Desértico , Solo/química , Fósforo/metabolismo , Fósforo/análise , Conservação dos Recursos Naturais , Nitrogênio/metabolismo , Poaceae , Carbono/metabolismo , Ecossistema , Nutrientes/metabolismo , Recuperação e Remediação Ambiental/métodos , Animais
9.
Sci Data ; 11(1): 478, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724554

RESUMO

Soil organic carbon (SOC) is a soil health indicator and understanding dynamics changing SOC stocks will help achieving net zero goals. Here we present four datasets featuring 11,750 data points covering co-located aboveground and below-ground metrics for exploring ecosystem SOC dynamics. Five sites across England with an established land use contrast, grassland and woodland next to each other, were rigorously sampled for aboveground (n = 109), surface (n = 33 soil water release curves), topsoil, and subsoil metrics. Commonly measured soil metrics were analysed in five soil increments for 0-1 metre (n = 4550). Less commonly measured soil metrics which were assumed to change across the soil profile were measured on a subset of samples only (n = 3762). Additionally, we developed a simple method for soil organic matter fractionation using density fractionation which is part of the less common metrics. Finally, soil metrics which may impact SOC dynamics, but with less confidence as to their importance across the soil profile were only measured on topsoil (~5-15 cm = mineral soil) and subsoil (below 50 cm) samples (n = 2567).


Assuntos
Carbono , Pradaria , Solo , Solo/química , Carbono/análise , Inglaterra , Florestas , Ecossistema
10.
PLoS One ; 19(5): e0300577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728344

RESUMO

To quantitatively analyze the impact of climate variability and human activities on grassland productivity of China's Qilian Mountain National Park, this study used Carnegic-Ames-Stanford Approach model (CASA) and Integrated Vegetation model improved by the Comprehensive and Sequential Classification System (CSCS) to assess the trends of grassland NPP from 2000 to 2015, the residual trend analysis method was used to quantify the impact of human activities and climate change on the grassland based on the NPP changes. The actual grassland NPP accumulation mainly occurred in June, July and August (autumn); the actual NPP showed a fluctuating upward trend with an average increase of 2.2 g C·m-2 a-1, while the potential NPP increase of 1.6 g C·m-2 a-1 and human-induced NPP decreased of 0.5 g C·m-2 a-1. The annual temperature showed a fluctuating upward trend with an average increase of 0.1°C 10a-1, but annual precipitation showed a fluctuating upward trend with an average annual increase of 1.3 mm a-1 from 2000 to 2015. The area and NPP of grassland degradation caused by climate variability was significantly greater than that caused by human activities and mainly distributed in the northwest and central regions, but area and NPP of grassland restored caused by human activities was significantly greater than that caused by climate variability and mainly distributed in the southeast regions. In conclusion, grassland in Qilian Mountain National Park showed a trend of degradation based on distribution area, but showed a trend of restoration based on actual NPP. Climate variability was the main cause of grassland degradation in the northwestern region of study area, and restoration of grassland in the eastern region was the result of the combined effects of human activities and climate variability. Under global climate change, the establishment of Qilian Mountain National Park was of great significance to the grassland's protection and the grasslands ecological restoration that have been affected by humans.


Assuntos
Mudança Climática , Pradaria , Atividades Humanas , Parques Recreativos , China , Humanos , Conservação dos Recursos Naturais , Clima , Ecossistema , Temperatura
11.
BMC Ecol Evol ; 24(1): 61, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734637

RESUMO

BACKGROUND: Reintroduction represents an effective strategy for the conservation of endangered wildlife, yet it might inadvertently impact the native ecosystems. This investigation assesses the impact of reintroducing endangered Przewalski's horses into the desert grassland ecosystem of the Kalamaili Nature Reserve (KNR), particularly its effect on the spatial distribution of ticks. In a 25 km2 core area of Przewalski's horse distribution, we set up 441 tick sampling sites across diverse habitats, including water sources, donkey trails, and grasslands, recording horse feces and characteristics to analyze the occurrence rate of ticks. Additionally, we gathered the data of 669 fresh feces of horses. To evaluate the spatial dynamics between these feces and ticks, we used methods such as Fixed Kernel Estimation (FKE), Moran's I spatial autocorrelation index, and Generalized Linear Models (GLM). RESULTS: The dominant species of ticks collected in the core area were adult Hyalomma asiaticum (91.36%). Their occurrence rate was higher near donkey trails (65.99%) and water sources (55.81%), particularly in areas with the fresh feces of Przewalski's horses. The ticks' three risk areas, as defined by FKE, showed significant overlap and positive correlation with the distribution of Przewalski's horses, with respective overlap rates being 90.25% in high risk, 33.79% in medium risk, and 23.09% in low risk areas. Moran's I analysis revealed a clustering trend of the fresh feces of Przewalski's horses in these areas. The GLM confirmed a positive correlation between the distribution of H. asiaticum and the presence of horse fresh feces, alongside a negative correlation with the proximity to water sources and donkey trails. CONCLUSIONS: This study reveals the strong spatial correlation between Przewalski's horses and H. asiaticum in desert grasslands, underlining the need to consider interspecific interactions in wildlife reintroductions. The findings are crucial for shaping effective strategies of wildlife conservation and maintaining ecological balance.


Assuntos
Pradaria , Animais , Cavalos , Conservação dos Recursos Naturais/métodos , Análise Espacial , Fezes/parasitologia , Fezes/química , Clima Desértico , Ixodidae/fisiologia , Espécies em Perigo de Extinção
12.
Ecol Lett ; 27(5): e14435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735857

RESUMO

A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.


Assuntos
Biodiversidade , Pradaria , Doenças das Plantas , Temperatura , China , Doenças das Plantas/microbiologia , Fungos/fisiologia , Folhas de Planta/microbiologia , Poaceae/microbiologia , Poaceae/fisiologia
13.
Sci Total Environ ; 931: 172930, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701932

RESUMO

Similarly to other European mountain areas, in Serra da Estrela the grazing pressure has been reducing due to social and economic drivers that have pushed shepherds and sheep to the foothill, or plainly out of the sector. Shrub encroachment on commons and other previously grazed land is one of the most tangible effects of pastoral abandonment in Serra de Estrela. The impacts of the resulting increase in landscape continuity and biomass availability were made clear in the severe fires of 2017 and 2022. As fire risk is likely to increase with climate change, it becomes urgent to understand what strategies can be deployed to keep fragmentation in these landscapes. Key actors such as shepherds should be involved in this discussion to understand their perceptions, points of view and reasons for abandoning upland pastures. In this study, we use fuzzy cognitive mapping to identify the key variables and mechanisms affecting the pastoral system according to local shepherds. In our study, we developed with local stakeholders a framework outlining the local pastoral system. Based on that, we carried out the fuzzy cognitive mapping collecting 14 questionnaires. We found that shepherds' income is a central issue, but that it is highly dependent on many factors. Increasing the Common Agricultural Policy payments alone is not enough to incentivise the use of upland pastures. More targeted strategies, such as more support for shrub clearing, and direct payments conditional to transhumance are more impactful. Despite a contentious discourse between conservation and shepherding values in Serra da Estrela, we find that shepherd's values are aligned with biodiversity conservation and a potential nature-based solution for minimizing fire risk through woody fuel management. This opens up possibilities for new governance strategies, that put Serra da Estrela's social, environmental and cultural values at its core.


Assuntos
Altitude , Conservação dos Recursos Naturais , Animais , Espanha , Mudança Climática , Lógica Fuzzy , Agricultura , Pradaria
14.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703845

RESUMO

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Assuntos
Pradaria , Nitrogênio , Fósforo , Rizosfera , Microbiologia do Solo , Solo , Fósforo/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Solo/química , Microbiota
15.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722823

RESUMO

Physiological responses of soil microorganisms to global warming are important for soil ecosystem function and the terrestrial carbon cycle. Here, we investigate the effects of weeks, years, and decades of soil warming across seasons and time on the microbial protein biosynthesis machineries (i.e. ribosomes), the most abundant cellular macromolecular complexes, using RNA:DNA and RNA:MBC (microbial biomass carbon) ratios as proxies for cellular ribosome contents. We compared warmed soils and non-warmed controls of 15 replicated subarctic grassland and forest soil temperature gradients subject to natural geothermal warming. RNA:DNA ratios tended to be lower in the warmed soils during summer and autumn, independent of warming duration (6 weeks, 8-14 years, and > 50 years), warming intensity (+3°C, +6°C, and +9°C), and ecosystem type. With increasing temperatures, RNA:MBC ratios were also decreasing. Additionally, seasonal RNA:DNA ratios of the consecutively sampled forest showed the same temperature-driven pattern. This suggests that subarctic soil microorganisms are depleted of ribosomes under warm conditions and the lack of consistent relationships with other physicochemical parameters besides temperature further suggests temperature as key driver. Furthermore, in incubation experiments, we measured significantly higher CO2 emission rates per unit of RNA from short- and long-term warmed soils compared to non-warmed controls. In conclusion, ribosome reduction may represent a widespread microbial physiological response to warming that offers a selective advantage at higher temperatures, as energy and matter can be reallocated from ribosome synthesis to other processes including substrate uptake and turnover. This way, ribosome reduction could have a substantial effect on soil carbon dynamics.


Assuntos
Ribossomos , Estações do Ano , Microbiologia do Solo , Solo , Ribossomos/metabolismo , Solo/química , Aquecimento Global , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Florestas , Pradaria , Temperatura , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Carbono/metabolismo
16.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791233

RESUMO

Lions (Panthera leo) play a crucial ecological role in shaping and maintaining fragile ecosystems within Africa. Conservation efforts should focus on genetic variability within wild populations when considering reintroduction attempts. We studied two groups of lions from two conservation sites located in Zambia and Zimbabwe to determine their genetic make-up, information that is usually unknown to the sites. In this study, we analysed 17 specimens for cytb and seven microsatellite markers to ascertain family relationships and genetic diversity previously obtained by observational studies. We then produced a standardised haplogroup phylogeny using all available entire mitogenomes, as well as calculating a revised molecular clock. The modern lion lineage diverged ~151 kya and was divided into two subspecies, both containing three distinct haplogroups. We confirm that Panthera leo persica is not a subspecies, but rather a haplogroup of the northern P.l. leo that exited Africa at least ~31 kya. The progenitor to all lions existed ~1.2 Mya, possibly in SE Africa, and later exited Africa and split into the two cave lion lineages ~175 kya. Species demography is correlated to major climactic events. We now have a detailed phylogeny of lion evolution and an idea of their conservation status given the threat of climate change.


Assuntos
Genoma Mitocondrial , Leões , Filogenia , Animais , Leões/genética , Leões/classificação , Genoma Mitocondrial/genética , Cavernas , Variação Genética , Haplótipos , Repetições de Microssatélites/genética , Pradaria , Zimbábue , Evolução Molecular , Zâmbia , Citocromos b/genética , DNA Mitocondrial/genética
17.
Nat Commun ; 15(1): 4506, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802365

RESUMO

Biodiversity often helps communities resist invasion. However, it is unclear whether this diversity-invasion relationship holds true under environmental changes. Here, we conduct a meta-analysis of 1010 observations from 25 grassland studies in which plant species richness is manipulated together with one or more environmental change factors to test invasibility (measured by biomass or cover of invaders). We find that biodiversity increases resistance to invaders across various environmental conditions. However, the positive biodiversity effect on invasion resistance is strengthened under experimental warming, whereas it is weakened under experimentally imposed drought. When multiple factors are imposed simultaneously, the positive biodiversity effect is strengthened. Overall, we show that biodiversity helps grassland communities resist plant invasions under multiple environmental changes. Therefore, investment in the protection and restoration of native biodiversity is not only important for prevention of invasions under current conditions but also under continued global environmental change.


Assuntos
Biodiversidade , Pradaria , Espécies Introduzidas , Biomassa , Plantas , Secas , Mudança Climática
18.
Sci Total Environ ; 933: 173155, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735323

RESUMO

Climate change has induced substantial impact on the gross primary productivity (GPP) of terrestrial ecosystems by affecting vegetation phenology. Nevertheless, it remains unclear which among the mean rates of grass greening (RG), yellowing (RY), and the length of growing season (LOS) exhibit stronger explanatory power for GPP variations, and how RG and RY affect GPP variations under warming scenarios. Here, we explored the relationship between RG, RY, LOS, and GPP in arid Central Asia (ACA) from 1982 to 2019, elucidating the response mechanisms of RG, RY, and GPP to the mean temperature (TMP), vapor pressure deficit (VPD), precipitation (PRE), and soil moisture (SM). The results showed that the multi-year average length of greening (LG) in ACA was 22.7 days shorter than that of yellowing (LY) and the multi-year average GPP during LG (GPPlg) was 38.28 g C m-2 d -1 more than that of during LY (GPPly). RG and RY were positively correlated with GPPlg and GPPly, although the degree of correlation between RG and GPPlg was higher than that between RY and GPPly. Increases in RG and RY contributed to an increase in GPPlg (55.44 % of annual GPP) and GPPly (35.44 % of annual GPP). The correlation between RG and GPPlg was the strongest (0.49), followed by RY and GPPly (0.33), and LOS and GPP was the weakest (0.21). TMP, VPD, PRE, and SM primarily affected GPP by influencing RG and RY, rather than direct effects. The positive effects of TMP during LG (TMPlg), PRE during LG (PRElg), and SM during LG (SMlg) facilitated increases in RG and GPPlg, and higher VPD during LY (VPDly) and lower PRE during LY (PREly) accelerated increases in RY. Our study elucidated the impact of vegetation growth rate on GPP, thus providing an alternate method of quantifying the relationship between vegetation phenology and GPP.


Assuntos
Mudança Climática , Pradaria , Estações do Ano , Poaceae/crescimento & desenvolvimento , Ásia Central , Monitoramento Ambiental
19.
Sci Total Environ ; 933: 173146, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735338

RESUMO

Extreme, dry events have major impacts on vegetation phenology worldwide. However, the differential responses of vegetation phenology to climatic elements during these extreme events remain unclear. We investigated the response of vegetation phenology to climatic factors during extreme events in arid and semi-arid regions of the Chinese Loess Plateau, using the climate water deficit method, to identify extremely dry and wet events. The results revealed that extremely wet events extended the vegetation growth periods in addition to global warming, whereas extremely dry events did not completely counteract this effect. During different extreme events, phenological changes in vegetation on the Loess Plateau were primarily influenced by the interactive effects of climatic factors. During extremely dry events, a 100 mm increase in precipitation advanced the start of the season by 3.0, 9.2, and 16.7 days in forest, shrubland, and grassland, respectively. During extremely wet events, a 1 °C rise in temperature delayed the end of the season by 1.6, 0.6, and 3.8 days in forest, shrubland, and grassland, respectively. These findings provide crucial guidance for improving predictions of plant phenology changes under extreme climatic events and unraveling biosphere-atmosphere feedback cycles.


Assuntos
Mudança Climática , China , Estações do Ano , Desenvolvimento Vegetal , Clima , Aquecimento Global , Florestas , Temperatura , Ecossistema , Pradaria
20.
Planta ; 260(1): 2, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761315

RESUMO

MAIN CONCLUSION: Leaf vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles did not differ between monocot and dicot species in 21 species from the eastern Colorado steppe. Dicots possessed significantly larger minor vein networks than monocots. Across the tree of life, there is evidence that dendritic vascular transport networks are optimized, balancing maximum speed and integrity of resource delivery with minimal resource investment in transport and infrastructure. Monocot venation, however, is not dendritic, and remains parallel down to the smallest vein orders with no space-filling capillary networks. Given this departure from the "optimized" dendritic network, one would assume that monocots are operating at a significant energetic disadvantage. In this study, we investigate whether monocot venation networks bear significantly greater carbon/construction costs per leaf volume than co-occurring dicots in the same ecosystem, and if so, what physiological or ecological advantage the monocot life form possesses to compensate for this deficit. Given that venation networks could also be optimized for leaf mechanical support or provide herbivory defense, we measured the vascular system of both monocot and dicots at three scales to distinguish between leaf investment in mechanical support (macroscopic vein), total transport and capacitance (vascular bundle), or exclusively water transport (xylem) for both parallel and dendritic venation networks. We observed that vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles was not significantly different between monocot species and dicot species. Dicots, however, possess significantly larger minor vein networks than monocots. The 19 species subjected to gas-exchange measurement in the field displayed a broad range of Amax and but demonstrated no significant relationships with any metric of vascular network size in major or minor vein classes. Given that monocots do not seem to display any leaf hydraulic disadvantage relative to dicots, it remains an important research question why parallel venation (truly parallel, down to the smallest vessels) has not arisen more than once in the history of plant evolution.


Assuntos
Folhas de Planta , Folhas de Planta/anatomia & histologia , Colorado , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Pradaria , Magnoliopsida/fisiologia , Magnoliopsida/anatomia & histologia , Carbono/metabolismo , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...