Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Mol Oncol ; 17(11): 2337-2355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37609678

RESUMO

Targeted therapies for prostate, breast, and ovarian cancers are based on their activity against primary tumors rather than their anti-metastatic activity. Consequently, there is an urgent need for new agents targeting the metastatic process. Emerging evidence correlates in vitro and in vivo cancer invasion and metastasis with increased activity of the proteases mesotrypsin (prostate and breast cancer) and kallikrein 6 (KLK6; ovarian cancer). Thus, mesotrypsin and KLK6 are attractive putative targets for therapeutic intervention. As potential therapeutics for advanced metastatic prostate, breast, and ovarian cancers, we report novel mesotrypsin- and KLK6-based therapies, based on our previously developed mutants of the human amyloid ß-protein precursor Kunitz protease inhibitor domain (APPI). These mutants, designated APPI-3M (prostate and breast cancer) and APPI-4M (ovarian cancer), demonstrated significant accumulation in tumors and therapeutic efficacy in orthotopic preclinical models, with the advantages of long retention times in vivo, high affinity and favorable pharmacokinetic properties. The applicability of the APPIs, as a novel therapy and for imaging purposes, is supported by their good safety profile and their controlled and scalable manufacturability in bioreactors.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Masculino , Humanos , Feminino , Inibidores de Serina Proteinase/uso terapêutico , Peptídeos beta-Amiloides/uso terapêutico , Próstata/patologia , Precursor de Proteína beta-Amiloide/farmacologia , Precursor de Proteína beta-Amiloide/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Calicreínas/genética
2.
Int J Neuropsychopharmacol ; 26(9): 585-598, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490542

RESUMO

BACKGROUND: Alzheimer disease (AD) and depression often cooccur, and inhibition of phosphodiesterase-4 (PDE4) has been shown to ameliorate neurodegenerative illness. Therefore, we explored whether PDE4 inhibitor rolipram might also improve the symptoms of comorbid AD and depression. METHODS: APP/PS1/tau mice (10 months old) were treated with or without daily i.p. injections of rolipram for 10 days. The animal groups were compared in behavioral tests related to learning, memory, anxiety, and depression. Neurochemical measures were conducted to explore the underlying mechanism of rolipram. RESULTS: Rolipram attenuated cognitive decline as well as anxiety- and depression-like behaviors. These benefits were attributed at least partly to the downregulation of amyloid-ß, Amyloid precursor protein (APP), and Presenilin 1 (PS1); lower tau phosphorylation; greater neuronal survival; and normalized glial cell function following rolipram treatment. In addition, rolipram upregulated B-cell lymphoma-2 (Bcl-2) and downregulated Bcl-2-associated X protein (Bax) to reduce apoptosis; it also downregulated interleukin-1ß, interleukin-6, and tumor necrosis factor-α to restrain neuroinflammation. Furthermore, rolipram increased cAMP, PKA, 26S proteasome, EPAC2, and phosphorylation of ERK1/2 while decreasing EPAC1. CONCLUSIONS: Rolipram may mitigate cognitive deficits and depression-like behavior by reducing amyloid-ß pathology, tau phosphorylation, neuroinflammation, and apoptosis. These effects may be mediated by stimulating cAMP/PKA/26S and cAMP/exchange protein directly activated by cAMP (EPAC)/ERK signaling pathways. This study suggests that PDE4 inhibitor rolipram can be an effective target for treatment of comorbid AD and depression.


Assuntos
Doença de Alzheimer , Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Rolipram/farmacologia , Camundongos Transgênicos , Inibidores da Fosfodiesterase 4/farmacologia , Doenças Neuroinflamatórias , Presenilina-1/metabolismo , Presenilina-1/farmacologia , Depressão/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/tratamento farmacológico , Apoptose , Modelos Animais de Doenças
3.
Peptides ; 167: 171044, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330110

RESUMO

OBJECTIVE: To explore the effects of different doses of almorexant (an dual orexin receptor antagonist) on learning and memory in Alzheimer's disease (AD) mice. METHODS: Forty-four APP/PS1 (model of Alzheimer's disease; AD) mice were randomly divided into 4 groups: the control group (CON) and those that received 10 mg/kg almorexant (low dose; LOW), 30 mg/kg almorexant (medium dose; MED) and 60 mg/kg almorexant (high dose; HIGH). During the 28-day intervention period, mice received an intraperitoneal injection at the beginning of the light period (6:00 am). The effects of different doses of almorexant on learning and memory and 24-hour sleep-wake behaviour were assessed by immunohistochemical staining. The above continuous variables are expressed as the mean ± standard deviation (SD), and then univariate regression analysis and generalized estimating equations were performed to compare the groups; these results are expressed as the mean difference (MD) and 95% confidence interval (CI). The statistical software used STATA 17.0 MP. RESULTS: Forty-one mice completed the experiment (3 died: 2 mice in the HIGH group and 1 mouse in the CON group). Compared with the CON group, the LOW group (MD=6803 s, 95% CI: 4470 to 9137 s), MED group (MD=14,473 s, 95% CI: 12,140-16,806 s) and the HIGH group (MD=24,505 s, 95% CI: 22,052-26,959 s) had significantly longer sleep durations. The Y maze results showed that LOW group (MD=0.14,95%CI: 0.078-0.20) and MED group (MD=0.14,95%CI = 0.074-0.20) mice compared to the CON group, and the low-medium dose of Almorexant did not damage the short-term learning and memory performance of APP / PS1 (AD) mice.Compared with the CON, LOW, and MED groups, the HIGH group exhibited a significant decrease in the Aß plaque-positive area in the cortex (MD= -0.030, 95% CI: -0.035 to -0.025; MD=-0.049, 95% CI: -0.054 to -0.044; and MD=-0.07, 95% CI: -0.076 to -0.066, respectively). CONCLUSION: The moderate dose of almorexant (30 mg/kg) prolonged the sleep duration of APP/PS1 (AD) mice to a greater extent than the low dose (10 mg/kg) without altering learning and memory. The MED mice showed a good sleep response and a small residual effect on the next day. High-dose (60 mg / kg) almorexant impaired behavioral learning and memory performance in mice.Compared to the CON group and the LOW group, the MED group exhibited improved working memory. Thus, treatment with almorexant may reduce ß-amyloid deposition in AD, slowing neurodegeneration. Additional studies are needed to determine the mechanism of action.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Camundongos Transgênicos , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Modelos Animais de Doenças , Aprendizagem em Labirinto , Hipocampo/metabolismo
4.
Behav Brain Funct ; 19(1): 7, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055801

RESUMO

Increasing evidence has shown that the NOD-like receptor protein 1 (NLRP1) inflammasome is associated with Aß generation and deposition, which contributes to neuronal damage and neuronal-inflammation in Alzheimer's disease (AD). However, the specific mechanism of NLRP1 inflammasome in the pathogenesis of AD is still unclear. It has been reported that autophagy dysfunction can aggravate the pathological symptoms of AD and plays an important role in regulating Aß generation and clearance. We hypothesized that NLRP1 inflammasome activation may induce autophagy dysfunction contributing to the progression of AD. In the present study, we observed the relationship between Aß generation and NLRP1 inflammasome activation, as well as AMPK/mTOR mediated-autophagy dysfunction in WT 9-month-old (M) mice, APP/PS1 6 M and APP/PS1 9 M mice. Additionally, we further studied the effect of NLRP1 knockdown on cognitive function, Aß generation, neuroinflammation and AMPK/mTOR mediated autophagy in APP/PS1 9 M mice. Our results indicated that NLRP1 inflammasome activation and AMPK/mTOR mediated-autophagy dysfunction are closely implicated in Aß generation and deposition in APP/PS1 9 M mice, but not in APP/PS1 6 M mice. Meanwhile, we found that knockdown of NLRP1 significantly improved learning and memory impairments, decreased the expressions of NLRP1, ASC, caspase-1, p-NF-κB, IL-1ß, APP, CTF-ß, BACE1 and Aß1-42, and decreased the level of p-AMPK, Beclin 1 and LC3 II, and increased the level of p-mTOR and P62 in APP/PS1 9 M mice. Our study suggested that inhibition of NLRP1 inflammasome activation improves AMPK/mTOR mediated-autophagy dysfunction, resulting in the decrease of Aß generation, and NLRP1 and autophagy might be important targets to delay the progression of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Secretases da Proteína Precursora do Amiloide/farmacologia , Proteínas NLR , Proteínas Quinases Ativadas por AMP/farmacologia , Camundongos Transgênicos , Ácido Aspártico Endopeptidases/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Modelos Animais de Doenças
5.
Curr Pharm Biotechnol ; 24(12): 1560-1567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36757040

RESUMO

BACKGROUND: Alzheimer's disease (AD) is an age-related neurodegenerative disease and is featured by cognitive impairment. Procyanidins have been shown to have a potential protective effect against neurodegenerative diseases, but the underlying mechanism is not comprehensive enough. OBJECTIVE: To further investigate the effects of procyanidins from lotus seedpod (LSPC) on cognition in AD. METHODS: The APP/PS1 transgenic mice were administered with LSPC (100 mg/kg body weight) for five months. The Morris water maze test was used to assess learning and memory function, the long-term potentiation (LTP) was measured, and the expressions of Aß, pCREB/CREB and BDNF were quantified by western blot. RESULTS: LSPC significantly ameliorated cognitive dysfunction, reduced Aß deposition and reversed the remarkable reduction of the phosphorylation of CREB and the expression of BDNF, and then enhanced the effect of LTP in APP/PS1 mice. CONCLUSION: These results revealed that LSPC could ameliorate cognitive impairment through the CREB-BDNF pathway that mediates the enhancement of LTP in APP/PS1 transgenic mice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Lotus , Doenças Neurodegenerativas , Proantocianidinas , Camundongos , Animais , Camundongos Transgênicos , Potenciação de Longa Duração , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Proantocianidinas/metabolismo , Lotus/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Sementes , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Modelos Animais de Doenças , Aprendizagem em Labirinto , Hipocampo
6.
Neuromodulation ; 26(3): 589-600, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35595603

RESUMO

OBJECTIVES: Transauricular vagal nerve stimulation (taVNS) at 40 Hz attenuates hippocampal amyloid load in 6-month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, but it is unclear whether 40-Hz taVNS can improve cognition in these mice. Moreover, the underlying mechanisms are still unclear. MATERIALS AND METHODS: 6-month-old C57BL/6 (wild type [WT]) and APP/PS1 mice were subjected to 40-Hz taVNS. Novel Object Recognition and the Morris Water Maze were used to evaluate cognition. Hippocampal amyloid-ß (Aß)1-40, Aß1-42, pro-interleukin (IL)-1ß, and pro-IL-18 were measured using enzyme-linked immunosorbent assays. Hippocampal Aß42, purinergic 2X7 receptor (P2X7R), nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3), Caspase-1, IL-1ß, and IL-18 expression were evaluated by western blotting. Histologic assessments including immunofluorescence, immunohistochemistry, Nissl staining, and Congo red staining were used to assess microglial phagocytosis, neuroprotective effects, and Aß plaque load. RESULTS: 40-Hz taVNS improved spatial memory and learning in 6-month-old APP/PS1 mice but did not affect recognition memory. There were no effects on the cognitive behaviors of 6-month-old WT mice. taVNS at 40 Hz modulated microglia; significantly decreased levels of Aß1-40, Aß1-42, pro-IL-1ß, and pro-IL-18; inhibited Aß42, P2X7R, NLRP3, Caspase-1, IL-1ß, and IL-18 expression; reduced Aß deposits; and had neuroprotective effects in the hippocampus of 6-month-old APP/PS1 mice. These changes were not observed in 6-month-old WT mice. CONCLUSION: Our results show that 40-Hz taVNS inhibits the hippocampal P2X7R/NLRP3/Caspase-1 signaling and improves spatial learning and memory in 6-month-old APP/PS1 mice.


Assuntos
Fármacos Neuroprotetores , Estimulação do Nervo Vago , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Aprendizagem Espacial , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-1/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Camundongos Transgênicos , Hipocampo/metabolismo
7.
J Asian Nat Prod Res ; 25(4): 387-402, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35672874

RESUMO

The aim of this study is to explore the effect and mechanism of 3,6'-disinapoylsucrose (DISS) on an Alzheimer's disease (AD) mice model induced by APPswe695 lentivirus (LV) and intraperitoneal injection of lipopolysaccharide (LPS). The results show that DISS improves cognitive ability, decreases the levels of IL-2, IL-6, IL-1ß, and TNF-α, reduces the expression of NF-κB p65, and alleviates Aß deposition and nerve cell damage. DISS can regulate tyrosine kinase B (TrkB)/brain-derived neurotrophic factor (BDNF) signaling in the hippocampus. In summary, DISS can significantly alleviate neuroinflammation, spatial learning and memory disorders in AD model mice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Lipopolissacarídeos/farmacologia , Regulação para Cima , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo
8.
Neurotox Res ; 40(5): 1440-1454, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029454

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder clinically manifested by a gradual cognitive decline. Intracerebroventricular injection (ICV) of streptozotocin (STZ), a model of sporadic AD (sAD), shows many aspects of sAD abnormalities (i.e., neuroinflammation, oxidative stress, protein aggregation), resulting in memory impairment. Andrographolide (ANDRO), a natural diterpene lactone, has numerous bioactivities including anti-inflammatory and antioxidant properties. Studies in rodents revealed that ANDRO has neuroprotective properties and restores cognitive impairment. In the present study, we investigated the effects of ANDRO in the ICV-STZ model relative to short-term spatial memory (object location test (OLT) and Y maze test), short-term recognition memory (object recognition test (ORT)), locomotor activity (open field test (OFT)), expression of amyloid precursor protein (APP), and activation of astrocytes (glial fibrillary acidic protein (GFAP) expression) and microglia (ionized calcium-binding adapter molecule-1 (Iba-1) immunohistochemistry) in the prefrontal cortex (PFC) and hippocampus (HIP). Wistar rats were injected ICV with STZ (3 mg/kg) or vehicle and treated with ANDRO (2 mg/kg, i.p.; three times per week). After four weeks, ANDRO attenuated the impairments of the Y maze and ORT performances, and the increase of astrocyte activation in the PFC induced by the ICV-STZ model. In addition, ANDRO decreased the number of activated microglia cells in the HIP of STZ-injected rats. The APP expression was not altered, neither by the STZ nor ANDRO. ANDRO showed a beneficial effect on memory impairment and neuroinflammation in the STZ model of AD.


Assuntos
Doença de Alzheimer , Diterpenos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Antioxidantes/farmacologia , Cálcio , Modelos Animais de Doenças , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Proteína Glial Fibrilar Ácida , Lactonas/efeitos adversos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Doenças Neuroinflamatórias , Agregados Proteicos , Ratos , Ratos Wistar , Estreptozocina/toxicidade
9.
Exp Neurol ; 358: 114212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029808

RESUMO

The purpose of this study was to investigate the effect of miR-702-5p on diabetic encephalopathy (DE) and the interaction of miR-702-5p/12/15-LOX in the central nervous system (CNS). In this study, db/db mice were used as DE animal model and HT22 cells were treated with high-glucose (HG). Based on the bioinformatics prediction of possible binding sites between miR-702-5p and 12/15-LOX, we found that the expression of miR-702-5p was significantly down-regulated while 12/15-LOX up-regulated in vivo and in vitro, and the expression changes were inversely correlated. In vivo, diabetic mice with cognitive dysfunction and hippocampal neuronal damage had a concomitant increase in amyloid precursor protein (APP), amyloid beta(Aß), tau, BAX protein expressions; by contrast, Bcl-2 protein expression was significantly decreased. Overexpression of miR-702-5p significantly reduced the histopathological damage of the hippocampus, improved the learning and memory function of db/db mice, down-regulated 12/15-LOX, APP, Aß, tau, BAX protein expressions significantly and up-regulated the expression of Bcl-2. In vitro, miR-702-5p mimic reversed the decline in cell viability and the increase in cell apoptosis induced by HG. Simultaneously, reduced 12/15-LOX, APP, Aß, BAX protein expressions, and increased Bcl-2 protein expression were detected in the miR-702-5p mimic group. Moreover, combined administration of miR-702-5p mimic and 12/15-LOX overexpression lentivirus significantly reversed the protective effect of up-regulation of miR-702-5p. In conclusion, miR-702-5p has a neuroprotective effect on DE, and this effect was achieved by inhibiting 12/15-LOX. However, miR-702-5p had an endogenous regulatory effect on 12/15-LOX rather than a direct targeting relationship.


Assuntos
Araquidonato 12-Lipoxigenase , Araquidonato 15-Lipoxigenase , Encefalopatias , Diabetes Mellitus Experimental , MicroRNAs , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Apoptose , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Encefalopatias/genética , Diabetes Mellitus Experimental/complicações , Glucose/metabolismo , Camundongos , MicroRNAs/genética , Neuroproteção , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2
10.
Environ Sci Pollut Res Int ; 29(46): 69635-69651, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576032

RESUMO

Cyclophosphamide (Cyclo) is a chemotherapeutic agent used as an immunosuppressant and as a treatment for many cancerous diseases. Many previous pieces of literature proved the marked cardio and neurotoxicity of the drug. Thus, this research provides evidence on the alleviative effect of flavocoxid on the cardiac and brain toxicity of cyclophosphamide in mice and determines its underlying mechanisms. Flavocoxid (Flavo) is a potent antioxidant and anti-inflammatory agent that inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Flavo was administered orally (20 mg/kg) for 2 weeks, followed by Cyclo (100 mg/kg, i.p.) on day 14. Higher heart and brain weight indices, serum lactate dehydrogenase (LDH), creatine kinase (CK-MB), and nitric oxide (NO) were mitigated following Flavo administration. Flavo modulated oxidative stress biomarkers (malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1ß. Additionally, cardiac troponin I (cTn-I), nuclear factor kappa B (NF-κB), brain amyloid precursor protein (APP), and granulocyte macrophage colony-stimulating factor (GM-CSF) were decreased by Flavo administration. Moreover, Flavo ameliorated heart and brain histopathological changes and caspase-3 levels. Collectively, Flavo (20 mg/kg) for 14 days showed significant cardio and neuroprotective effects due to its antioxidant, anti-inflammatory, and antiapoptotic activities via modulation of oxidative stress, inflammation, and the GM-CSF/NF-κB signaling pathway.


Assuntos
NF-kappa B , Fármacos Neuroprotetores , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Caspase 3/metabolismo , Catequina , Creatina Quinase/metabolismo , Creatina Quinase/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclofosfamida/toxicidade , Combinação de Medicamentos , Glutationa/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Imunossupressores/farmacologia , Interleucinas/metabolismo , Lactato Desidrogenases/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Malondialdeído/farmacologia , Camundongos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/farmacologia , Estresse Oxidativo , Peroxidases/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Troponina I/metabolismo , Troponina I/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Comput Math Methods Med ; 2022: 1527159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432583

RESUMO

Alzheimer's disease (AD) is a brain illness that affects learning and memory capacities over time. In recent investigations, acupuncture has been shown to be an effective alternative treatment for AD. We investigated the effect of acupuncture on learning and memory abilities using a water maze in APP/PS1 transgenic mice. The amounts of Aß and tau protein in mice's hippocampal tissue were determined using Western blot. The levels of IL-1ß, IL-10, LPS and TNF-α in mice's serum were measured using ELISA. The variations of gut microbiota in mice's feces were determined using the 16SrDNA technique, and the metabolites were examined using a untargeted metabolomics methodology. The results showed that acupuncture treatment improved mice's learning and memory abilities substantially. Acupuncture therapy regulated the Aß and tau protein concentration as well as the levels of IL-10 and LPS. Acupuncture treatment influenced the mouse microbiota and metabolites and had been linked to six biochemical pathways. This study adds to our understanding of the effect of acupuncture on AD and opens the door to further research into the alterations of intestinal bacteria in the presence of AD.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-10/farmacologia , Lipopolissacarídeos , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Proteínas tau/genética
12.
J Comp Neurol ; 530(10): 1606-1621, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35014704

RESUMO

Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1), a negative regulator of oligodendrocyte differentiation and myelination, is associated with cognitive function, and its expression is highly upregulated in Alzheimer's disease (AD) patients. Anti-LINGO-1 antibody treatment can effectively antagonize the negative regulatory effect of LINGO-1. In this study, we aim to assess the effect of anti-LINGO-1 antibody treatment on cognition and hippocampal oligodendrocytes in an AD transgenic animal model. First, 10-month-old male amyloid-ß (Aß) protein precursor (APP)/presenilin 1 (PS1) mice were administered anti-LINGO-1 antibody for 8 weeks. Then, learning and memory abilities were assessed with the Morris water maze (MWM) and Y-maze tests, and Aß deposition and hippocampal oligodendrocytes were investigated by immunohistochemistry, immunofluorescence, and stereology. We found that anti-LINGO-1 antibody alleviated the deficits in spatial learning and memory abilities and working and reference memory abilities, decreased the density of LINGO-1 positive cells, decreased Aß deposition, significantly increased the number of mature oligodendrocytes and the density of myelin, reversed the abnormal increases in the number of oligodendrocyte lineage cells and the densities of oligodendrocytes precursor cells in APP/PS1 mice. Our results provide evidence that LINGO-1 might be involved in the process of oligodendrocyte dysmaturity in the hippocampus of AD mice, and that antagonizing LINGO-1 can alleviate cognitive deficits in APP/PS1 mice and decrease Aß deposition and promote oligodendrocyte differentiation and maturation in the hippocampus of these mice. Our findings suggest that changes in LINGO-1 and oligodendrocytes in the hippocampus play important roles in the pathogenesis of AD and that antagonizing LINGO-1 might be a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Hipocampo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Cognição , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Oligodendroglia/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-1/farmacologia
13.
Drug Deliv Transl Res ; 12(11): 2667-2677, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015254

RESUMO

Antibody drugs that target amyloid ß (Aß) are considered possible treatments for Alzheimer's disease; however, most have been dropped from clinical trials. We hypothesized that administration route for antiAß antibody (AntiAß) might affect its therapeutic potential and thus compared delivery of antibodies to the brain and their effect on cognitive dysfunction and amyloid disposition via intravenous (i.v.) and intranasal routes with and without the cell-penetrating peptide, L-penetratin. We demonstrated that intranasal administration with L-penetratin more efficiently delivered human immunoglobulin G (IgG), a model molecule for AntiAß, to the brain compared with i.v. injection. We found that multiple intranasal treatments with Alexa 594-labeled AntiAß (A594-AntiAß) with L-penetratin significantly improved learning by mice with aged amyloid precursor protein (APP) knock-in (App KI mice). Further, intranasal administration of A594-AntiAß increased the amount of soluble Aß (1-42) in the brain, suggesting suppression of Aß aggregation in insoluble form and involvement of activated microglia in Aß clearance. Thus, administration route may be critical for efficient delivery of AntiAß to the brain, and the nose-to-brain delivery with L-penetratin can maximize its therapeutic efficacy.


Assuntos
Doença de Alzheimer , Peptídeos Penetradores de Células , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Precursor de Proteína beta-Amiloide/uso terapêutico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Imunoglobulina G/metabolismo , Injeções Intravenosas , Camundongos
14.
Phytother Res ; 36(3): 1297-1309, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088915

RESUMO

Enhancing glucagon-like peptide 1 (GLP-1) signaling with a dipeptidyl peptidase IV (DPP-4) inhibitor might exert protective effects on Alzheimer's disease (AD). We found that intragastric administration of Gramcyclin A (10, 20 and 40 mg/kg), a novel DPP-4 inhibitor, for 3 months significantly reversed cognitive decline in APP/PS1/tau triple transgenic mice in a dose-dependent manner. Gramcyclin A treatment markedly reduced Aß plaques as well as the insoluble and soluble forms of Aß40 and Aß42 in the hippocampus of APP/PS1/tau mice. Treatment with Gramcyclin A remarkedly decreased the level of microglia and suppressed neuroinflammation in the hippocampus of APP/PS1/tau mice. Moreover, Gramcyclin A treatment could increase brain glucose uptake in APP/PS1/tau mice, as detected by 18-fluoro-2-deoxyglucose (18 F-FDG) micro-positron emission tomography (micro-PET) imaging. Furthermore, Gramcyclin A significantly increased expression of glucagon-like peptide-1 (GLP-1), GLP-1R, proliferator-activated receptor gamma coactivator (PGC)-1α and glucose transporter 4 (GLUT4), and inhibited insulin receptor (IRS)-1 phosphorylation and tau hyperphosphorylation in the hippocampus of APP/PS1/tau mice. Collectively, Gramcyclin A conferred protective effects against AD via enhancing brain GLP-1-dependent glucose uptake. The DPP-4 inhibitor Gramcyclin A might be a potential therapeutic drug for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Inibidores da Dipeptidil Peptidase IV , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Encéfalo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Glucose/metabolismo , Hipocampo , Camundongos , Camundongos Transgênicos
15.
J Nutr ; 152(1): 140-152, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636875

RESUMO

BACKGROUND: There is growing evidence of strong associations between the pathogenesis of Alzheimer's disease (AD) and dysbiotic oral and gut microbiota. Recent studies demonstrated that isoorientin (ISO) is anti-inflammatory and alleviates markers of AD, which were hypothesized to be mediated by the oral and gut microbiota. OBJECTIVES: We studied the effects of oral administration of ISO on AD-related markers and the oral and gut microbiota in mice. METHODS: Eight-month-old amyloid precursor protein/presenilin-1 (AP) transgenic male mice were randomly allocated to 3 groups of 15 mice each: vehicle (AP) alone or with a low dose of ISO (AP + ISO-L; 25 mg/kg) or a high dose of ISO (AP + ISO-H; 50 mg/kg). Age-matched wild-type (WT) C57BL/6 male littermates were used as controls. The 4 groups were treated intragastrically with ISO or sterilized ultrapure water for 2 months. AD-related markers in the brain, serum, colon, and liver were analyzed with immunohistochemical and histochemical staining, Western blotting, and ELISA. Oral and gut microbiotas were analyzed using 16S ribosomal RNA gene sequencing. RESULTS: The high-dose ISO treatment significantly decreased amyloid beta 42-positive deposition by 38.1% and 45.2% in the cortex and hippocampus, respectively, of AP mice (P < 0.05). Compared with the AP group, both ISO treatments reduced brain phospho-Tau, phosphor-p65, phosphor-inhibitor of NF-κB, and brain and serum LPS and TNF-α by 17.9%-72.5% and increased brain and serum IL-4 and IL-10 by 130%-210% in the AP + ISO-L and AP + ISO-H groups (P < 0.05). Abundances of 26, 25, and 23 microbial taxa in oral, fecal and cecal samples, respectively, were increased in both the AP + ISO-L and AP + ISO-H groups relative to the AP group [linear discriminant analysis (LDA) >3.0; P < 0.05]. Gram-negative bacteria, Alteromonas, Campylobacterales, and uncultured Bacteroidales bacterium were positively correlated (rho = 0.28-0.59; P < 0.05) with the LPS levels and responses of inflammatory cytokines. CONCLUSIONS: The microbiota-gut-brain axis is a potential mechanism by which ISO reduces AD-related markers in AP mice.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/farmacologia , Precursor de Proteína beta-Amiloide/uso terapêutico , Animais , Modelos Animais de Doenças , Luteolina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1
16.
Cell Physiol Biochem ; 55(S3): 157-170, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34318654

RESUMO

BACKGROUND/AIMS: The Amyloid Precursor Protein (APP) is involved in the regulation of multiple cellular functions via protein-protein interactions and has been most studied with respect to Alzheimer's disease (AD). Abnormal processing of the single transmembrane-spanning C99 fragment of APP contributes to the formation of amyloid plaques, which are causally related to AD. Pathological C99 accumulation is thought to associate with early cognitive defects in AD. Here, unexpectedly, sequence analysis revealed that C99 exhibits 24% sequence identity with the KCNE1 voltage-gated potassium (Kv) channel ß subunit, comparable to the identity between KCNE1 and KCNE2-5 (21-30%). This suggested the possibility of C99 regulating Kv channels. METHODS: We quantified the effects of C99 on Kv channel function, using electrophysiological analysis of subunits expressed in Xenopus laevis oocytes, biochemical and immunofluorescence techniques. RESULTS: C99 isoform-selectively inhibited (by 30-80%) activity of a range of Kv channels. Among the KCNQ (Kv7) family, C99 isoform-selectively inhibited, shifted the voltage dependence and/or slowed activation of KCNQ2, KCNQ3, KCNQ2/3 and KCNQ5, with no effects on KCNQ1, KCNQ1-KCNE1 or KCNQ4. C99/APP co-localized with KCNQ2 and KCNQ3 in adult rat sciatic nerve nodes of Ranvier. Both C99 and full-length APP co-immunoprecipitated with KCNQ2 in vitro, yet unlike C99, APP only weakly affected KCNQ2/3 activity. Finally, C99 altered the effects on KCNQ2/3 function of inhibitors tetraethylammounium and XE991, but not openers retigabine and ICA27243. CONCLUSION: Our findings raise the possibility of C99 accumulation early in AD altering cellular excitability by modulating Kv channel activity.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antracenos/farmacologia , Expressão Gênica , Humanos , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tetraetilamônio/farmacologia , Xenopus laevis
17.
Exp Cell Res ; 396(1): 112266, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905804

RESUMO

The aggregation of ß-amyloid (Aß) peptide in Alzheimer's disease (AD) is characterized by mitochondrial dysfunction and mitophagy impairment. Mitophagy is a homeostatic mechanism by which autophagy selectively eliminates damaged mitochondria. Valinomycin is a respiratory chain inhibitor that activates mitophagy via the PINK1/Parkin signaling pathway. However, the mechanism underlying the association between mitophagy and valinomycin in Aß formation has not been explored. Here, we demonstrate that genetically modified (N2a/APP695swe) cells overexpressing a mutant amyloid precursor protein (APP) serve as an in vitro model of AD for studying mitophagy and ATP-related metabolomics. Our results prove that valinomycin induced a time-dependent increase in the mitophagy activation of N2a/APP695swe cells as indicated by increased levels of PINK1, Parkin, and LC3II as well as increased the colocalization of Parkin-Tom20 and fewer mitochondria (indicated by decreased Tom20 levels). Valinomycin significantly decreased Aß1-42 and Aß1-40 levels after 3 h of treatment. ATP levels and ATP-related metabolites were significantly increased at this time. Our findings suggest that the elimination of impaired mitochondria via valinomycin-induced mitophagy ameliorates AD by decreasing Aß and improving ATP levels.


Assuntos
Trifosfato de Adenosina/biossíntese , Peptídeos beta-Amiloides/genética , Mitocôndrias/metabolismo , Mitofagia/genética , Fragmentos de Peptídeos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Ionóforos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metabolômica/métodos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Valinomicina/farmacologia
18.
PLoS One ; 15(8): e0237025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797057

RESUMO

Troxerutin (TRX) is a water-soluble flavonoid which occurs commonly in the edible plants. Recent studies state that TRX improves the functionality of the nervous system and neutralizes Amyloid-ß induced neuronal toxicity. In this study, an in vitro assay based upon Neural stem cell (NSCs) isolated from the subventricular zone of the postnatal balb/c mice was established to explore the impact of TRX on individual neurogenesis processes in general and neuroprotective effect against ß-amyloid 1-42 (Aß42) induced inhibition in differentiation in particular. NSCs were identified exploiting immunostaining of the NSCs markers. Neurosphere clonogenic assay and BrdU/Ki67 immunostaining were employed to unravel the impact of TRX on proliferation. Differentiation experiments were carried out for a time span lasting from 48 h to 7 days utilizing ß-tubulin III and GFAP as neuronal and astrocyte marker respectively. Protective effects of TRX on Aß42 induced depression of NSCs differentiation were determined after 48 h of application. A neurosphere migration assay was carried out for 24 h in the presence and absence of TRX. Interestingly, TRX enhanced neuronal differentiation of NSCs in a dose-dependent manner after 48 h and 7 days of incubation and significantly enhanced neurite growth. A higher concentration of TRX also neutralized the inhibitory effects of Aß42 on neurite outgrowth and length after 48 h of incubation. TRX significantly stimulated cell migration. Overall, TRX not only promoted NSCs differentiation and migration but also neutralized the inhibitory effects of Aß42 on NSCs. TRX, therefore, offers an interesting lead structure from the perspective of drug design especially to promote neurogenesis in neurological disorders i.e. Alzheimer's disease.


Assuntos
Hidroxietilrutosídeo/análogos & derivados , Neuritos/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Flavonoides/farmacologia , Hidroxietilrutosídeo/metabolismo , Hidroxietilrutosídeo/farmacologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Neuroproteção , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia
19.
J Nat Prod ; 83(2): 223-230, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32031796

RESUMO

Cimicifuga dahurica has traditionally been used as an antipyretic, analgesic, and anti-inflammatory agent and as a treatment for uterine and anal prolapse. This study has investigated the potential beneficial effects of this medicinal plant and its components on Alzheimer's disease (AD) with a focus on amyloid beta (Aß) production and scopolamine-induced memory impairment in mice. An ethanol extract from C. dahurica roots decreased Aß production in APP-CHO cells [Chinese hamster ovarian (CHO) cells stably expressing amyloid precursor protein (APP)], as determined by an enzyme-linked immunosorbent assay and Western blot analysis. Then, the compounds isolated from C. dahurica were tested for their antiamyloidogenic activities. Four compounds (1-4) efficiently interrupted Aß generation by suppressing the level of ß-secretase in APP-CHO cells. Moreover, the in vivo experimental results demonstrated that compound 4 improved the cognitive performances of mice with scopolamine-induced disruption on behavioral tests and the expression of memory-related proteins. Taken together, these results suggest that C. dahurica and its constituents are potential agents for preventing or alleviating the symptoms of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/farmacologia , Plantas Medicinais/química , Escopolamina/farmacologia , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células CHO , Cimicifuga , Cricetinae , Cricetulus , Camundongos , Estrutura Molecular , Plantas Medicinais/metabolismo , Escopolamina/metabolismo
20.
J Neurosci ; 39(17): 3188-3203, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30804097

RESUMO

Secreted amyloid precursor protein-alpha (sAPPα) has growth factor-like properties and can modulate long-term potentiation (LTP) and memory. Here, we demonstrate that exposure to sAPPα converts short-lasting LTP into protein-synthesis-dependent late LTP in hippocampal slices from male rats. sAPPß had no discernable effect. We hypothesized that sAPPα facilitated LTP via regulated glutamate receptor trafficking and de novo protein synthesis. We found using a linear mixed model that sAPPα stimulated trafficking of GluA2-lacking AMPARs, as well as NMDARs to the extrasynaptic cell surface, in a calcium/calmodulin-dependent kinase II and protein kinase G-dependent manner. Both cell surface receptor accumulation and LTP facilitation were present even after sAPPα washout and inhibition of receptor trafficking or protein synthesis prevented all these effects. Direct visualization of newly synthesized proteins (FUNCAT-PLA) confirmed the ability of sAPPα to stimulate de novo protein synthesis and revealed GluA1 as one of the upregulated proteins. Therefore, sAPPα generates a coordinated synthesis and trafficking of glutamate receptors to the cell surface that facilitate LTP.SIGNIFICANCE STATEMENT Secreted amyloid precursor protein-alpha (sAPPα) is a neurotrophic and neuroprotective protein that can promote synaptic plasticity and memory, yet the molecular mechanisms underlying these effects are still not well understood. Here, we show that sAPPα facilitates long-term potentiation (LTP) in a concentration-dependent fashion through cellular processes involving de novo protein synthesis and trafficking of both GluA2-lacking AMPARs and NMDARs to the extrasynaptic cell surface. sAPPα also enhances GluA1, but not GluA2, synthesis. The trafficking effects, along with the LTP facilitation, persist after sAPPα washout, revealing a metaplastic capability of exogenous sAPPα administration. sAPPα thus facilitates LTP through coordinated activation of protein synthesis and trafficking of glutamate receptors to the cell surface, where they are positioned for priming LTP.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Biossíntese de Proteínas/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...