Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 58: e201048, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420446

RESUMO

Abstract Pregabalin, a GABA analogue is used to treat epilepsy and neuropathic pain. The drug poses problems in analytical quantification when estimated at a shorter UV wavelength. The expensive and non-repetitive reported analytical methods necessitate the utility and development of an accurate, precise, repetitive, simple and highly sensitive colorimetric method for pregabalin in solution as well as sustained release mini matrices. Pregabalin (having primary amino group) was derivatized at alkaline pH of mixture with optimized ninhydrin solution at ambient temperature (25oC). The ninhydrin-pregabalin derivatized complex (Ruhemann's Purple) was analyzed for drug concentration at absorption maximum (λmax) of 570nm. The linearity was observed in the concentration range of 5-150 µg/mL with coefficient of correlation, 0.998. The developed analytical method was validated according to ICH guidelines and proved to be highly sensitive (LOD 0.917µg/mL, LOQ 3.055µg/mL), with good inter-day as well as intra-day accuracy and precision as 4.65% and 3.75%, respectively. The proposed method was proved to be a simple, sensitive, precise and accurate for the estimation of the minute concentrations of pregabalin in pure form and the developed formulations. Results verified that the proposed method could determine pregabalin at the ambient temperature without requiring high temperatures used in the existing methods. It was concluded that developed method was easier and more suitable for analysis of pregabalin in quality control of commercial preparations


Assuntos
Temperatura , Pregabalina/análogos & derivados , Ninidrina/análise , Preparações Farmacêuticas/análise
2.
Brain Res Bull ; 142: 368-373, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30149198

RESUMO

One aspect of secondary injury in traumatic brain injury is the marked increase in intracellular calcium and resultant over-activation of the calcium-dependent neutral cysteine protease calpain. Gabadur is a novel protease inhibitor with calpain-inhibition properties formulated from the classic protease inhibitor leupeptin linked to a pregabalin carrier. This construction allows the entire compound to cross the blood-brain barrier after peripheral administration to better target the site of injury. In this study, a single intraperitoneal dose of Gabadur was administered immediately following controlled cortical impact injury in rats. Neocortical slices were examined at 48 h post-injury via Fluoro-Jade B staining, revealing an improvement in cortical neurodegeneration in Gabadur treated rats. Levels of detrimental active calpain-2 measured via western blot were also decreased in rats receiving Gabadur. This data supports the benefit of targeted protease inhibition in the treatment of traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Glicoproteínas/farmacologia , Leupeptinas/química , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pregabalina/análogos & derivados , Pregabalina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Modelos Animais de Doenças , Glicoproteínas/química , Estrutura Molecular , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/química , Pregabalina/química , Ratos Sprague-Dawley
3.
J Pharmacol Exp Ther ; 357(2): 240-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26907623

RESUMO

NCX1404 [(3S)-5-methyl-3-(((1-(4-(nitrooxy)butanoyloxy)ethoxy)carbonylamino) methyl)hexanoic acid] is a novel nitric oxide (NO)-donating pregabalin that is readily absorbed and processed in vivo to pregabalin and NO. We determined the antiallodynic response of NCX1404 after acute or after 7, 14, and 21 days of repeated daily oral dosing in mice with streptozotocin (STZ)-induced painful diabetic neuropathy (PDN). Pregabalin and its combination with the NO donor isosorbide mononitrate (ISMN) were used for comparison. The blood levels of pregabalin and nitrites, used as surrogate marker of NO release, after NCX1404 or pregabalin dosing were monitored in parallel experiments using liquid chromatography with tandem mass spectrometry (LC-MS/MS). NCX1404 and pregabalin resulted in similar pregabalin levels as it was their antiallodynic activity after acute dosing in STZ mice. However, NCX1404 resulted in disease-modifying properties when administered daily for 21 days, as indicated by the time- and dose-dependent reversal of STZ-induced mechanical allodynia (paw withdrawal threshold [PWT]Veh_21d= 1.3 ± 0.15 g for vehicle; PWTNCX1404_21d= 1.4 ± 0.5 g, 2.9 ± 0.2 g* and 4.1 ± 0.2 g*, respectively for 19, 63, and 190µmol/kg, oral gavage [PO] of NCX1404; *P< 0.05 versus vehicle). This effect was not shared by pregabalin at equimolar doses (190µmol/kg, PO, PWTPregab_21d= 1.4 ± 0.1 g*, *P< 0.05 versus equimolar NCX1404). In addition, the NO donor ISMN (52.3µmol/kg, PO) alone or combined with pregabalin (63µmol/kg) was active at 7 days (PWTVeh_7d= 1.7 ± 0.16 g; PWTISMN_7d= 3.9 ± 0.34 g*; PWTPregab_7d= 1.3 ± 0.07 g; PWTISMN+pregab_7d= 3.8 ± 0.29 g*; *P< 0.05) but not at later time points. The long-term effect of NCX1404 was independent of residual drug exposure and lasted for several days after the treatment was stopped. In summary, like pregabalin, NCX1404 is an effective antiallodynic agent. Differently from pregabalin, repeated dosing of NCX1404 re-established normal nociceptive responses in STZ-induced PDN in mice.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuralgia/tratamento farmacológico , Nitratos/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Nociceptividade/efeitos dos fármacos , Pregabalina/análogos & derivados , Pregabalina/uso terapêutico , Animais , Glicemia/análise , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Dinitrato de Isossorbida/uso terapêutico , Masculino , Camundongos , Neuralgia/etiologia , Neuralgia/metabolismo , Medição da Dor/efeitos dos fármacos , Pregabalina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...