Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Hemólise , Primaquina , Humanos , Primaquina/efeitos adversos , Primaquina/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/complicações , Hemólise/efeitos dos fármacos , Colômbia , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Masculino , Adulto , Malária Vivax/tratamento farmacológicoRESUMO
OBJECTIVES: Primaquine is essential for the radical cure of Plasmodium vivax malaria and must be metabolized into its bioactive metabolites. Accordingly, polymorphisms in primaquine-metabolizing enzymes can impact the treatment efficacy. This pioneering study explores the influence of monoamine oxidase-A (MAO-A) on primaquine metabolism and its impact on malaria relapses. METHODS: Samples from 205 patients with P. vivax malaria were retrospectively analysed by genotyping polymorphisms in MAO-A and cytochrome P450 2D6 (CYP2D6) genes. We measured the primaquine and carboxyprimaquine blood levels in 100 subjects for whom blood samples were available on the third day of treatment. We also examined the relationship between the enzyme variants and P. vivax malaria relapses in a group of subjects with well-documented relapses. RESULTS: The median carboxyprimaquine level was significantly reduced in individuals carrying low-expression MAO-A alleles plus impaired CYP2D6. In addition, this group experienced significantly more P. vivax relapses. The low-expression MAO-A status was not associated with malaria relapses when CYP2D6 had normal activity. This suggests that the putative carboxyprimaquine contribution is irrelevant when the CYP2D6 pathway is fully active. CONCLUSIONS: We found evidence that the low-expression MAO-A variants can potentiate the negative impact of impaired CYP2D6 activity, resulting in lower levels of carboxyprimaquine metabolite and multiple relapses. The findings support the hypothesis that carboxyprimaquine may be further metabolized through CYP-mediated pathways generating bioactive metabolites that act against the parasite.
Assuntos
Antimaláricos , Citocromo P-450 CYP2D6 , Malária Vivax , Monoaminoxidase , Primaquina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antimaláricos/uso terapêutico , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Malária Vivax/tratamento farmacológico , Malária Vivax/genética , Monoaminoxidase/genética , Plasmodium vivax/genética , Polimorfismo Genético , Primaquina/uso terapêutico , Recidiva , Estudos RetrospectivosRESUMO
BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.
Assuntos
Antimaláricos , Glucosefosfato Desidrogenase , Malária Vivax , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/uso terapêutico , Guiana Francesa/epidemiologia , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Cinética , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/fisiologia , Primaquina/uso terapêutico , Estudos Retrospectivos , Idoso de 80 Anos ou maisRESUMO
Primaquine is the mainstream antimalarial drug to prevent Plasmodium vivax relapses. However, this drug can induce hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency. Nanostructure formulations of primaquine loaded with D-galactose were used as a strategy to target the drug to the liver and decrease the hemolytic risks. Nanoemulsion (NE-Pq) and nanochitosan (NQ-Pq) formulations of primaquine diphosphate containing D-galactose were prepared and characterized by their physicochemistry properties. Pharmacokinetic and biodistribution studies were conducted using Swiss Webster mice. A single dose of 10 mg/kg of each nanoformulation or free primaquine solution was administered by gavage to the animals, which were killed at 0.5, 1, 2, 4, 8, and 24 hours. Blood samples and tissues were collected, processed, and analyzed by high-performance liquid chromatography. The nanoformulation showed sizes around 200 nm (NE-Pq) and 400 nm (NQ-Pq) and physicochemical stability for over 30 days. Free primaquine solution achieved higher primaquine Cmax in the liver than NE-Pq or NQ-Pq at 0.5 hours. However, the half-life and mean residence time (MRT) of primaquine in the liver were three times higher with the NQ-Pq formulation than with free primaquine, and the volume distribution was four times higher. Conversely, primaquine's half-life, MRT, and volume distribution in the plasma were lower for NQ-Pq than for free primaquine. NE-Pq, on the other hand, accumulated more in the lungs but not in the liver. Galactose-coated primaquine nanochitosan formulation showed increased drug targeting to the liver compared to free primaquine and may represent a promising strategy for a more efficient and safer radical cure for vivax malaria.
Assuntos
Antimaláricos , Quitosana , Galactose , Fígado , Primaquina , Primaquina/farmacocinética , Primaquina/química , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Galactose/química , Quitosana/química , Antimaláricos/farmacocinética , Nanopartículas/química , Distribuição Tecidual , Nanoestruturas/química , MasculinoRESUMO
BACKGROUND: Prevention of Plasmodium vivax malaria recurrence is essential for malaria elimination in Brazil. We evaluated the real-world effectiveness of an updated treatment algorithm for P vivax radical cure in the Brazilian Amazon. METHODS: In this non-interventional observational study, we used retrospective data from the implementation of a P vivax treatment algorithm at 43 health facilities in Manaus and Porto Velho, Brazil. The treatment algorithm consisted of chloroquine (25 mg/kg over 3 days) and point-of-care quantitative glucose-6-phosphate dehydrogenase (G6PD) testing followed by single-dose tafenoquine 300 mg (G6PD normal, aged ≥16 years, not pregnant and not breastfeeding), 7-day primaquine 0·5 mg/kg per day (G6PD intermediate or normal, aged ≥6 months, not pregnant, and not breastfeeding or breastfeeding for >1 month), or primaquine 0·75 mg/kg per week for 8 weeks (G6PD deficient, aged ≥6 months, not pregnant, and not breastfeeding or breastfeeding for >1 month). P vivax recurrences were identified from probabilistic linkage of routine patient records from the Brazilian malaria epidemiological surveillance system. Recurrence-free effectiveness at day 90 and day 180 was estimated using Kaplan-Meier analysis and hazard ratios (HRs) by multivariate analysis. This clinical trial is registered with ClinicalTrials.gov, NCT05096702, and is completed. FINDINGS: Records from Sept 9, 2021, to Aug 31, 2022, included 5554 patients with P vivax malaria. In all treated patients of any age and any G6PD status, recurrence-free effectiveness at day 180 was 75·8% (95% CI 74·0-77·6) with tafenoquine, 73·4% (71·9-75·0) with 7-day primaquine, and 82·1% (77·7-86·8) with weekly primaquine. In patients aged at least 16 years who were G6PD normal, recurrence-free effectiveness until day 90 was 88·6% (95% CI 87·2-89·9) in those who were treated with tafenoquine (n=2134) and 83·5% (79·8-87·4) in those treated with 7-day primaquine (n=370); after adjustment for confounding factors, the HR for recurrence following tafenoquine versus 7-day primaquine was 0·65 (95% CI 0·49-0·86; p=0·0031), with similar outcomes between the two treatments at day 180 (log-rank p=0·82). Over 180 days, median time to recurrence in patients aged at least 16 years who were G6PD normal was 92 days (IQR 76-120) in those treated with tafenoquine and 68 days (52-94) in those treated with 7-day primaquine. INTERPRETATION: In this real-world setting, single-dose tafenoquine was more effective at preventing P vivax recurrence in patients aged at least 16 years who were G6PD normal compared with 7-day primaquine at day 90, while overall efficacy at 180 days was similar. The public health benefits of the P vivax radical cure treatment algorithm incorporating G6PD quantitative testing and tafenoquine support its implementation in Brazil and potentially across South America. FUNDING: Brazilian Ministry of Health, Municipal and State Health Secretariats; Fiocruz; Medicines for Malaria Venture; Bill & Melinda Gates Foundation; Newcrest Mining; and the UK Government. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.
Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Plasmodium vivax , Primaquina , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Primaquina/uso terapêutico , Primaquina/administração & dosagem , Estudos Retrospectivos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Feminino , Masculino , Adulto , Brasil/epidemiologia , Aminoquinolinas/uso terapêutico , Aminoquinolinas/administração & dosagem , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Plasmodium vivax/efeitos dos fármacos , Pré-Escolar , Lactente , Prevenção Secundária/métodos , Cloroquina/uso terapêutico , Cloroquina/administração & dosagem , Recidiva , Resultado do Tratamento , IdosoRESUMO
Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , NADPH-Ferri-Hemoproteína Redutase , Cloroquina/farmacologia , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Plasmodium vivax/genéticaRESUMO
BACKGROUND: To achieve malaria elimination, Brazil must implement Plasmodium vivax radical cure. We aimed to investigate the operational feasibility of point-of-care, quantitative, glucose-6-phosphate dehydrogenase (G6PD) testing followed by chloroquine plus tafenoquine or primaquine. METHODS: This non-interventional, observational study was done at 43 health facilities in Manaus (Amazonas State) and Porto Velho (Rondônia State), Brazil, implementing a new P vivax treatment algorithm incorporating point-of-care quantitative G6PD testing to identify G6PD status and single-dose tafenoquine (G6PD normal, aged ≥16 years, and not pregnant or breastfeeding) or primaquine (intermediate or normal G6PD, aged ≥6 months, not pregnant, or breastfeeding >1 month). Following training of health-care providers, we collated routine patient records from the malaria epidemiological surveillance system (SIVEP-Malaria) retrospectively for all consenting patients aged at least 6 months with parasitologically confirmed P vivax malaria mono-infection or P vivax plus P falciparum mixed infection, presenting between Sept 9, 2021, and Aug 31, 2022. The primary endpoint was the proportion of patients aged at least 16 years with P vivax mono-infection treated or not treated appropriately with tafenoquine in accordance with their G6PD status. The trial is registered with ClinicalTrials.gov, NCT05096702, and is completed. FINDINGS: Of 6075 patients enrolled, 6026 (99·2%) had P vivax mono-infection, 2685 (44·6%) of whom were administered tafenoquine. G6PD status was identified in 2685 (100%) of 2685 patients treated with tafenoquine. The proportion of patients aged at least 16 years with P vivax mono-infection who were treated or not treated appropriately with tafenoquine in accordance with their G6PD status was 99·7% (95% CI 99·4-99·8; 4664/4680). INTERPRETATION: Quantitative G6PD testing before tafenoquine administration was operationally feasible, with high adherence to the treatment algorithm, supporting deployment throughout the Brazilian health system. FUNDING: Brazilian Ministry of Health, Municipal and State Health Secretariats; Fiocruz; Medicines for Malaria Venture; Bill & Melinda Gates Foundation; Newcrest Mining; and the UK Government. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.
Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Feminino , Humanos , Gravidez , Antimaláricos/uso terapêutico , Brasil , Estudos de Viabilidade , Glucosefosfato Desidrogenase/análise , Malária Vivax/tratamento farmacológico , Plasmodium vivax , Sistemas Automatizados de Assistência Junto ao Leito , Primaquina/uso terapêutico , Estudos RetrospectivosRESUMO
BACKGROUND: Malaria transmission modelling has demonstrated the potential impact of semiquantitative glucose-6-phosphate dehydrogenase (G6PD) testing and treatment with single-dose tafenoquine for Plasmodium vivax radical cure but has not investigated the associated costs. This study evaluated the cost-effectiveness of P. vivax treatment with tafenoquine after G6PD testing using a transmission model. METHODS AND FINDINGS: We explored the cost-effectiveness of using tafenoquine after G6PD screening as compared to usual practice (7-day low-dose primaquine (0.5 mg/kg/day) without G6PD screening) in Brazil using a 10-year time horizon with 5% discounting considering 4 scenarios: (1) tafenoquine for adults only assuming 66.7% primaquine treatment adherence; (2) tafenoquine for adults and children aged >2 years assuming 66.7% primaquine adherence; (3) tafenoquine for adults only assuming 90% primaquine adherence; and (4) tafenoquine for adults only assuming 30% primaquine adherence. The incremental cost-effectiveness ratios (ICERs) were estimated by dividing the incremental costs by the disability-adjusted life years (DALYs) averted. These were compared to a willingness to pay (WTP) threshold of US$7,800 for Brazil, and one-way and probabilistic sensitivity analyses were performed. All 4 scenarios were cost-effective in the base case analysis using this WTP threshold with ICERs ranging from US$154 to US$1,836. One-way sensitivity analyses showed that the results were most sensitive to severity and mortality due to vivax malaria, the lifetime and number of semiquantitative G6PD analysers needed, cost per malaria episode and per G6PD test strips, and life expectancy. All scenarios had a 100% likelihood of being cost-effective at the WTP threshold. The main limitations of this study are due to parameter uncertainty around our cost estimates for low transmission settings, the costs of G6PD screening, and the severity of vivax malaria. CONCLUSIONS: In our modelling study that incorporated impact on transmission, tafenoquine prescribed after a semiquantitative G6PD testing was highly likely to be cost-effective in Brazil. These results demonstrate the potential health and economic importance of ensuring safe and effective radical cure.
Assuntos
Malária Vivax , Primaquina , Adulto , Criança , Humanos , Primaquina/efeitos adversos , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Brasil , Análise de Custo-Efetividade , Glucosefosfato DesidrogenaseRESUMO
BACKGROUND: Malaria is endemic and represents an important public health issue in Brazil. Knowledge of risk factors for disease progression represents an important step in preventing and controlling malaria-related complications. Reports of severe forms of Plasmodium vivax malaria are now becoming a common place, but respiratory complications are described in less than 3% of global literature on severe vivax malaria. CASE PRESENTATION: A severe respiratory case of imported vivax malaria in a previously healthy 40-year-old woman has been reported. The patient died after the fifth day of treatment with chloroquine and primaquine due to acute respiratory distress syndrome. CONCLUSIONS: Respiratory symptoms started 48 h after the initiation of anti-malarial drugs, raising the hypothesis that the drugs may have been involved in the genesis of the complication. The concept that vivax malaria is a benign disease that can sometimes result in the development of serious complications must be disseminated. This report highlights, once more, the crucial importance of malaria early diagnosis, a true challenge in non-endemic areas, where health personnel are not familiar with the disease and do not consider its diagnosis promptly.
Assuntos
Antimaláricos , Malária Vivax , Malária , Adulto , Feminino , Humanos , Antimaláricos/efeitos adversos , Malária/epidemiologia , Malária Vivax/complicações , Malária Vivax/tratamento farmacológico , Malária Vivax/diagnóstico , Plasmodium vivax , Primaquina/efeitos adversosRESUMO
Malaria is caused by parasite of the genus Plasmodium and is still one of the most important infectious diseases in the world. Several biological characteristics of Plasmodium vivax contribute to the resilience of this species, including early gametocyte production, both of which lead to efficient malaria transmission to mosquitoes. This study evaluated the impact of currently used drugs on the transmission of P. vivax. Participants received one of the following treatments for malaria: i) chloroquine [10 mg/kg on day 1 and 7.5 mg/kg on day 2 and 3] co-administered with Primaquine [0.5 mg/kg/day for 7 days]; ii) Chloroquine [10 mg/kg on day 1 and 7.5 mg/kg on day 2 and 3] co-administered with one-dose of Tafenoquine [300 mg on day 1]; and iii) Artesunate and Mefloquine [100 mg and 200 mg on day 1, 2 and 3] co-administered with Primaquine [0.5 mg/kg/day for 14 days]. Patient blood was collected before treatment and 4 h, 24 h, 48 h and 72 h after treatment. The blood was used to perform a direct membrane feeding assay (DMFA) using Anopheles darlingi mosquitoes. The results showed 100% inhibition of the mosquito infection after 4 h using ASMQ+PQ, after 24 h for the combination of CQ+PQ and 48 h using CQ+TQ. The density of gametocytes declined over time in all treatment groups, although the decline was more rapid in the ASMQ+PQ group. In conclusion, it was possible to demonstrate the transmission-blocking efficacy of the malaria vivax treatment and that ASMQ+PQ acts faster than the two other treatments.
Assuntos
Anopheles , Antimaláricos , Malária Vivax , Malária , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Anopheles/parasitologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium vivaxRESUMO
In 2018, a mass drug administration (MDA) campaign for malaria elimination was piloted in Haiti. The pilot treated 36,338 people with sulfadoxine-pyrimethamine (SP) and primaquine; no severe adverse events were detected. In 2020, another MDA campaign using the same medications was implemented to mitigate an upsurge in malaria cases during the COVID-19 pandemic. Four cases of Stevens-Johnson syndrome (SJS) were identified among the 42,249 people who took the medications. Three of these individuals required hospitalization; all survived. In addition to SP ingestion, an investigation of potential causes for increased SJS cases identified that all four cases had human leukocyte antigens A*29 and/or B*44:03, another known risk factor for SJS. Additionally, three of the four case individuals had antibodies to SARS-CoV-2, and the fourth may have been exposed around the same time. These findings raise the possibility that recent SARS-CoV-2 infection may have contributed to the increased risk for SJS associated with SP exposure during the 2020 campaign.
Assuntos
Antimaláricos , COVID-19 , Malária , Síndrome de Stevens-Johnson , Humanos , Primaquina/efeitos adversos , Antimaláricos/efeitos adversos , Síndrome de Stevens-Johnson/etiologia , Síndrome de Stevens-Johnson/tratamento farmacológico , Síndrome de Stevens-Johnson/epidemiologia , Haiti/epidemiologia , Administração Massiva de Medicamentos , Pandemias , SARS-CoV-2 , Pirimetamina/efeitos adversos , Sulfadoxina/efeitos adversos , Combinação de Medicamentos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controleRESUMO
For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness.
Assuntos
Inseticidas , Malária , Humanos , Primaquina/efeitos adversos , Administração Massiva de Medicamentos , Estudos Transversais , Haiti/epidemiologia , Estudos de Viabilidade , Controle de Mosquitos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controleRESUMO
Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.
Assuntos
Antimaláricos , Culicidae , Malária Falciparum , Malária Vivax , Malária , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium berghei , Ensaios de Triagem em Larga Escala , Malária/prevenção & controle , Primaquina/uso terapêutico , Plasmodium falciparum , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológicoRESUMO
In the fight against malaria, the key is early treatment with antimalarial chemotherapy, such as artemisinin-based combination treatments (ACTs). However, Plasmodium has acquired multidrug resistance, including the emergence of P. falciparum strains with resistance to ACT. The development of novel antimalarial molecules, that are capable of interfering in the asexual and sexual blood stages, is important to slow down the transmission in endemic areas. In this work, we studied the ability of the mettalo copper-cinchonine complex to interfere in the sexual and asexual stages of Plasmodium. The tested compound in the in vitro assay was a cinchonine derivative, named CinCu (Bis[Cinchoninium Tetrachlorocuprate(II)]trihydrate). Its biological functions were assessed by antiplasmodial activity in vitro against chloroquine-resistant P. falciparum W2 strain. The mice model of P. berghei ANKA infection was used to analyze the antimalarial activity of CinCu and chloroquine and their acute toxicity. The oocyst formation-blocking assay was performed by experimental infection of Anopheles aquasalis with P. vivax infected blood, which was treated with different concentrations of CinCu, cinchonine, and primaquine. We found that CinCu was able to suppress as high as 81.58% of parasitemia in vitro, being considered a molecule with high antiplasmodial activity and low toxicity. The in vivo analysis showed that CinCu suppressed parasitemia at 34% up to 87.19%, being a partially active molecule against the blood-stage forms of P. berghei ANKA, without inducing severe clinical signs in the treated groups. The transmission-blocking assay revealed that both cinchonine and primaquine were able to reduce the infection intensity of P. vivax in A. aquasalis, leading to a decrease in the number of oocysts recovered from the mosquitoes' midgut. Regarding the effect of CinCu, the copper-complex was not able to induce inhibition of P. vivax infection; however, it was able to induce an important reduction in the intensity of oocyst formation by about 2.4 times. It is plausible that the metallo-compound also be able to interfere with the differentiation of parasite stages and/or ookinete-secreted chitinase into the peritrophic matrix of mosquitoes, promoting a reduction in the number of oocysts formed. Taken together, the results suggest that this compound is promising as a prototype for the development of new antimalarial drugs. Furthermore, our study can draw a new pathway for repositioning already-known antimalarial drugs by editing their chemical structure to improve the antimalarial activity against the asexual and sexual stages of the parasite.
Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Plasmodium , Camundongos , Animais , Antimaláricos/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Oocistos , Parasitemia/parasitologia , Cobre/farmacologia , Malária Falciparum/parasitologia , Cloroquina/farmacologia , Plasmodium falciparumRESUMO
There are scarce data about the glucose-6-phosphate dehydrogenase (G6PD) variants in Haiti to guide public health guidelines. In this study, we investigated the prevalence of the G6PD mutations related to the A- variant. We found an allelic frequency of 35.8% for the A376G mutation and of 12.2% for the G202A mutation. We also found a novel C370T mutation concomitant with the A376G mutation in one study participant. The G680T and T968C mutations were not found. The G6PD deficient variant A202 (A376G and G202A mutations) has appreciable prevalence in Haiti (16.6%), consideration is warranted when using drugs such as primaquine, which may trigger hemolytic anemia among G6PD-deficient people.
Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Haiti/epidemiologia , Genótipo , Primaquina/uso terapêuticoRESUMO
Introducción. La tafenoquina fue aprobada en el 2018 por la Food and Drug Administration de Estados Unidos y, en el 2019, por la Therapeutic Goods Administration en Australia. Su administración en dosis única y su mecanismo de acción en las fases aguda y latente han sido objeto de estudio para cambiar el esquema de tratamiento de la malaria por Plasmodium vivax. Objetivo. Evaluar la evidencia científica disponible sobre la eficacia de la tafenoquina en la profilaxis y el tratamiento de la malaria por P. vivax, entre el 2009 y el 2019. Materiales y métodos. Se establecieron los descriptores MeSH y DeCS. Se utilizó la sintaxis ((Malaria Vivax) AND (tafenoquine) AND (prophylaxis)) OR [(Malaria Vivax) AND (tafenoquine) AND (relapse)] en las siguientes bases de datos: Pubmed, The Cochrane Central Register of Controlled Clinical Trials (CENTRAL), ISIS Web of Science, Lilacs y Scopus. Los resultados obtenidos se sometieron a análisis crítico (matriz CASPE). El análisis cuantitativo se realizó utilizando la diferencia de riesgos en análisis de supervivencia (Kaplan-Meier) en los tres artículos finales. Resultados. Se sometieron tres estudios a metaanálisis (Llanos-Cuentas, 2014; Llanos- Cuentas, 2019, y Lacerda, 2019) para evaluar la eficacia del tratamiento con tafenoquina en comparación con primaquina. Se obtuvo una diferencia de riesgo global de 0,04 (IC95% 0-0,08; p=0,07). La tafenoquina no mostró inferioridad en la eficacia del tratamiento frente al esquema de primaquina. Conclusión. La tafenoquina es una alternativa que mejora el cumplimiento del tratamiento, lo que podría acercar a Colombia a las metas de la Estrategia Técnica Mundial contra la Malaria, 2016-2030.
Introduction: Tafenoquine was approved in 2018 by the Food and Drug Administration in the United States and in 2019 by the Therapeutic Goods Administration in Australia. Its administration in a single dose and its mechanism of action in the acute and latent phases of the disease have been studied to change the treatment regimen for Plasmodium vivax malaria. Objective: To evaluate the available scientific evidence of the efficacy of tafenoquine in prophylaxis and treatment between 2009 and 2019. Materials and methods: We established the MeSH and DeCS descriptors and we used the syntax ((Malaria Vivax) AND (tafenoquine) AND (prophylaxis)) OR [(Malaria Vivax) AND (tafenoquine) AND (relapse)] in the following databases: Pubmed, The Cochrane Central Register of Controlled Clinical Trials (CENTRAL), ISIS Web of Science, Lilacs, and Scopus. The results obtained were subjected to critical analysis (CASPE matrix). The quantitative analysis was performed with risk differences in survival analysis (Kaplan Meier) in the final three articles. Results: Three studies underwent meta-analysis (Llanos-Cuentas, 2014; Llanos-Cuentas, 2019, and Lacerda, 2019) to evaluate the efficacy of the treatment with tafenoquine compared to primaquine. A global risk difference of 0.04 was obtained (95% CI: 0.00-0.08; p=0.07). Tafenoquine did not show inferiority in the efficacy of treatment compared to the primaquine scheme. Conclusion: Tafenoquine is a therapeutic alternative to primaquine that improves adherence, which could bring Colombia closer to the goals of the World Technical Strategy against Malaria 2016-2030.
Assuntos
Malária Vivax , Antimaláricos , Primaquina , Terapêutica , Profilaxia Pós-ExposiçãoRESUMO
BACKGROUND: Although primaquine (PQ) is indicated for G6PD-deficient patients, data on weekly PQ use in Brazil are limited. METHODS: We aimed to investigate malaria recurrences among participants receiving daily and weekly PQ treatments in a real-life setting of two municipalities in the Amazon between 2019 and 2020. RESULTS: Patients receiving weekly PQ treatment had a lower risk of recurrence than those receiving daily PQ treatment (risk ratio: 0.62, 95% confidence interval: 0.41-0.94), using a model adjusted for study site. CONCLUSIONS: Weekly PQ use did not increase the risk of malaria recurrence. Further studies with larger populations are warranted.
Assuntos
Antimaláricos , Malária Vivax , Antimaláricos/uso terapêutico , Estudos de Coortes , Humanos , Malária Vivax/tratamento farmacológico , Primaquina/uso terapêutico , RecidivaRESUMO
BACKGROUND: In most of the Americas, the recommended treatment to prevent relapse of Plasmodium vivax malaria is primaquine at a total dose of 3.5 mg per kilogram of body weight, despite evidence of only moderate efficacy. METHODS: In this trial conducted in Brazil, we evaluated three primaquine regimens to prevent relapse of P. vivax malaria in children at least 5 years of age and in adults with microscopy-confirmed P. vivax monoinfection. All the patients received directly observed chloroquine for 3 days (total dose, 25 mg per kilogram). Group 1 received a total primaquine dose of 3.5 mg per kilogram (0.5 mg per kilogram per day) over 7 days with unobserved administration; group 2 received the same regimen as group 1 but with observed administration; and group 3 received a total primaquine dose of 7.0 mg per kilogram over 14 days (also 0.5 mg per kilogram per day) with observed administration. We monitored the patients for 168 days. RESULTS: We enrolled 63 patients in group 1, 96 in group 2, and 95 in group 3. The median age of the patients was 22.4 years (range, 5.4 to 79.8). By day 28, three P. vivax recurrences were observed: 2 in group 1 and 1 in group 2. By day 168, a total of 70 recurrences had occurred: 24 in group 1, 34 in group 2, and 12 in group 3. No serious adverse events were noted. On day 168, the percentage of patients without recurrence was 58% (95% confidence interval [CI], 44 to 70) in group 1, 59% (95% CI, 47 to 69) in group 2, and 86% (95% CI, 76 to 92) in group 3. Survival analysis showed a difference in the day 168 recurrence-free percentage of 27 percentage points (97.5% CI, 10 to 44; P<0.001) between group 1 and group 3 and a difference of 27 percentage points (97.5% CI, 12 to 42; P<0.001) between group 2 and group 3. CONCLUSIONS: The administration of primaquine at a total dose of 7.0 mg per kilogram had higher efficacy in preventing relapse of P. vivax malaria than a total dose of 3.5 mg per kilogram through day 168. (Supported by the U.S. Agency for International Development; ClinicalTrials.gov number, NCT03610399.).