Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.023
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2402538121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905240

RESUMO

Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.


Assuntos
Homeostase , Prolina Dioxigenases do Fator Induzível por Hipóxia , Manganês , Humanos , Manganês/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células HEK293 , Ferro/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928200

RESUMO

Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Masculino , Linhagem Celular Tumoral , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Pessoa de Meia-Idade , Prolil Hidroxilases/metabolismo , Prolil Hidroxilases/genética , Idoso , Carcinogênese/genética , Adulto
3.
J Therm Biol ; 122: 103881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38870755

RESUMO

Heat stress (HS) poses a substantial threat to animal growth and development, resulting in declining performance and economic losses. The intestinal system is susceptible to HS and undergoes intestinal hyperthermia and pathological hypoxia. Hypoxia-inducible factor-1α (HIF-1α), a key player in cellular hypoxic adaptation, is influenced by prolyl-4-hydroxylase 2 (PHD2) and heat shock protein 90 (HSP90). However, the comprehensive regulation of HIF-1α in the HS intestine remains unclear. This study aims to explore the impact of HS on pig intestinal mucosa and the regulatory mechanism of HIF-1α. Twenty-four Congjiang Xiang pigs were divided into the control and five HS-treated groups (6, 12, 24, 48, and 72 h). Ambient temperature and humidity were maintained in a thermally-neutral state (temperature-humidity index (THI) < 74) in the control group, whereas the HS group experienced moderate HS (78 < THI <84). Histological examination revealed villus exfoliation after 12 h of HS in the duodenum, jejunum, and ileum, with increasing damage as HS duration extended. The villus height to crypt depth ratio (V/C) decreased and goblet cell number increased with prolonged HS. Quantitative real-time PCR, Western blot, and immunohistochemistry analysis indicated increased expression of HIF-1α and HSP90 in the small intestine with prolonged HS, whereas PHD2 expression decreased. Further investigation in IPEC-J2 cells subjected to HS revealed that overexpressing PHD2 increased PHD2 mRNA and protein expression, while it decreases HIF-1α. Conversely, interfering with HSP90 expression substantially decreased both HSP90 and HIF-1α mRNA and protein levels. These results suggest that HS induces intestinal hypoxia with concomitant small intestinal mucosal damage. The expression of HIF-1α in HS-treated intestinal epithelial cells may be co-regulated by HSP90 and PHD2 and is possibly linked to intestinal hyperthermia and hypoxia.


Assuntos
Células Epiteliais , Proteínas de Choque Térmico HSP90 , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Intestino Delgado , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Suínos , Intestino Delgado/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Linhagem Celular
4.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770916

RESUMO

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Assuntos
Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células Endoteliais , Prolina Dioxigenases do Fator Induzível por Hipóxia , Receptores Notch , Neovascularização Retiniana , Transdução de Sinais , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Receptores Notch/metabolismo , Receptores Notch/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Vasos Retinianos/metabolismo , Angiogênese
5.
Hum Genomics ; 18(1): 52, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790075

RESUMO

The recent article by Harit et al. in Human Genomics reported a novel association of the C allele of rs479200 in the human EGLN1 gene with severe COVID-19 in Indian patients. The gene in context is an oxygen-sensor gene whose T allele has been reported to contribute to the inability to cope with hypoxia due to increased expression of the EGLN1 gene and therefore persons with TT genotype of EGLN1 rs479200 are more susceptible to severe manifestations of hypoxia. In contrast to this dogma, Harit et al. showed that the C allele is associated with the worsening of COVID-19 hypoxia without suggesting or even discussing the scientific plausibility of the association. The article also suffers from certain epidemiological, statistical, and mathematical issues that need to be critically elaborated and discussed. In this context, the findings of Harit et al. may be re-evaluated.


Assuntos
COVID-19 , Predisposição Genética para Doença , Prolina Dioxigenases do Fator Induzível por Hipóxia , SARS-CoV-2 , Humanos , Alelos , COVID-19/genética , COVID-19/epidemiologia , COVID-19/virologia , Genótipo , Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Índia/epidemiologia , Polimorfismo de Nucleotídeo Único/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
6.
Bioorg Med Chem Lett ; 108: 129799, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754564

RESUMO

Inhibition of the hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) represents a promising strategy for discovering next-generation treatments for renal anemia. We identified a pyrimidine core with HIF-PHD inhibitory activity based on scaffold hopping of FG-2216 using crystal structures of HIF-PHD2 in complex with compound. By optimizing the substituents at the 2- and 6- positions of the pyrimidine core, we discovered DS44470011, which improves the effectiveness of erythropoietin (EPO) release in cells. Oral administration of DS44470011 to cynomolgus monkeys increased plasma EPO levels.


Assuntos
Anemia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Macaca fascicularis , Inibidores de Prolil-Hidrolase , Animais , Anemia/tratamento farmacológico , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Administração Oral , Humanos , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/química , Inibidores de Prolil-Hidrolase/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Eritropoetina , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
7.
Theranostics ; 14(7): 2856-2880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773968

RESUMO

Cell metabolism reprogramming to sustain energy production, while reducing oxygen and energy consuming processes is crucially important for the adaptation to hypoxia/ischemia. Adaptive metabolic rewiring is controlled by hypoxia-inducible factors (HIFs). Accumulating experimental evidence indicates that timely activation of HIF in brain-resident cells improves the outcome from acute ischemic stroke. However, the underlying molecular mechanisms are still incompletely understood. Thus, we investigated whether HIF-dependent metabolic reprogramming affects the vulnerability of brain-resident cells towards ischemic stress. Methods: We used genetic and pharmacological approaches to activate HIF in the murine brain in vivo and in primary neurons and astrocytes in vitro. Numerous metabolomic approaches and molecular biological techniques were applied to elucidate potential HIF-dependent effects on the central carbon metabolism of brain cells. In animal and cell models of ischemic stroke, we analysed whether HIF-dependent metabolic reprogramming influences the susceptibility to ischemic injury. Results: Neuron-specific gene ablation of prolyl-4-hydroxylase domain 2 (PHD2) protein, negatively regulating the protein stability of HIF-α in an oxygen dependent manner, reduced brain injury and functional impairment of mice after acute stroke in a HIF-dependent manner. Accordingly, PHD2 deficient neurons showed an improved tolerance towards ischemic stress in vitro, which was accompanied by enhanced HIF-1-mediated glycolytic lactate production through pyruvate dehydrogenase kinase-mediated inhibition of the pyruvate dehydrogenase. Systemic treatment of mice with roxadustat, a low-molecular weight pan-PHD inhibitor, not only increased the abundance of numerous metabolites of the central carbon and amino acid metabolism in murine brain, but also ameliorated cerebral tissue damage and sensorimotor dysfunction after acute ischemic stroke. In neurons and astrocytes roxadustat provoked a HIF-1-dependent glucose metabolism reprogramming including elevation of glucose uptake, glycogen synthesis, glycolytic capacity, lactate production and lactate release, which enhanced the ischemic tolerance of astrocytes, but not neurons. We found that strong activation of HIF-1 in neurons by non-selective inhibition of all PHD isoenzymes caused a HIF-1-dependent upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 redirecting glucose-6-phosphate from pentose phosphate pathway (PPP) to the glycolysis pathway. This was accompanied by a reduction of NADPH production in the PPP, which further decreased the low intrinsic antioxidant reserve of neurons, making them more susceptible to ischemic stress. Nonetheless, in organotypic hippocampal cultures with preserved neuronal-glial interactions roxadustat decreased the neuronal susceptibility to ischemic stress, which was largely prevented by restricting glycolytic energy production through lactate transport blockade. Conclusion: Collectively, our results indicate that HIF-1-mediated metabolic reprogramming alleviates the intrinsic vulnerability of brain-resident cells to ischemic stress.


Assuntos
Astrócitos , Carbono , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , AVC Isquêmico , Neurônios , Animais , Feminino , Masculino , Camundongos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Carbono/metabolismo , Reprogramação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , AVC Isquêmico/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética
8.
J Nephrol ; 37(3): 753-767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705934

RESUMO

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are new drugs developed for the treatment of anemia associated with chronic kidney disease (CKD). This class of drugs stimulates endogenous erythropoietin production and, at the same time, improves iron absorption and mobilization of iron stores (less evident with daprodustat, vadadustat and enarodustat). Several studies have been published in the last few years showing that these agents are not inferior to standard therapy in correcting anemia associated with CKD. The efficacy of HIF-PHIs is coupled with a safety profile comparable to that of standard erythropoiesis stimulating agent (ESA) treatment. However, studies with HIF-PHIs were not long enough to definitively exclude the impact of new drugs on adverse events, such as cancer, death and possibly cardiovascular events, that usually occur after a long follow-up period. Kidney Disease: Improving Global Outcomes (KDIGO) recently reported the conclusions of the Controversies Conference on HIF-PHIs held in 2021. The goal of the present position paper endorsed by the Italian Society of Nephrology is to better adapt the conclusions of the latest KDIGO Conference on HIF-PHIs to the Italian context by reviewing the efficacy and safety of HIF-PHIs as well as their use in subpopulations of interest as emerged from more recent publications not discussed during the KDIGO Conference.


Assuntos
Anemia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Nefrologia , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , Anemia/tratamento farmacológico , Anemia/etiologia , Nefrologia/normas , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Consenso , Hematínicos/uso terapêutico , Itália , Inibidores de Prolil-Hidrolase/uso terapêutico , Sociedades Médicas
9.
Nihon Yakurigaku Zasshi ; 159(3): 157-159, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692879

RESUMO

Anemia in chronic kidney disease (CKD) occurs due to insufficient production of erythropoietin to compensate for the decrease in hemoglobin. Anemia in CKD has traditionally been treated with periodic injections of erythropoiesis-stimulating agents (ESAs), which are recombinant human erythropoietin preparations. Although ESA improved anemia in CKD and dramatically improved the quality of life of patients, there are some patients who are hyporesponsive to ESA, and the use of large doses of ESA in these patients may have a negative impact on patient prognosis. Currently, HIF prolyl hydroxylase (HIF-PH) inhibitors have been approved in Japan as a new treatment for anemia in CKD. HIF-PH inhibitors activate HIF and promote the production of endogenous erythropoietin. The 2019 Nobel Prize in Physiology or Medicine was awarded for groundbreaking research that uncovered the HIF pathway. Because HIF-PH inhibitors improve both erythropoietin production and iron metabolism, they are expected to be effective in treating ESA hyporesponsiveness and solve the inconvenience of injectable preparations. On the other hand, its effects are systemic and multifaceted, and long-term effects must be closely monitored.


Assuntos
Anemia , Humanos , Anemia/tratamento farmacológico , Anemia/etiologia , Eritropoetina/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo
10.
Nihon Yakurigaku Zasshi ; 159(3): 169-172, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692882

RESUMO

Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.


Assuntos
Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo
11.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 290-293, 2024 Mar 14.
Artigo em Chinês | MEDLINE | ID: mdl-38716602

RESUMO

Myelodysplastic syndromes is a heterogeneous group of myeloid neoplastic disorders originating from hematopoietic stem cells and manifesting as pathological bone marrow hematopoiesis and a high risk of transformation to acute myeloid leukemia. In low-risk patients, the therapeutic goal is to improve hematopoiesis and quality of life. Roxadustat is the world's first oral small-molecule hypoxia-inducible factor prolyl hydroxylase inhibitor, which, unlike conventional erythropoietin, corrects anemia through various mechanisms. In this study, we retrospectively analyzed the changes in anemia, iron metabolism, lipids and inflammatory indexes in patients with low-risk myelodysplastic syndromes to evaluate its therapeutic efficacy and safety, and to provide theoretical and practical data for the application of roxadustat in myelodysplastic syndromes.


Assuntos
Anemia , Isoquinolinas , Síndromes Mielodisplásicas , Humanos , Anemia/etiologia , Anemia/tratamento farmacológico , Glicina/análogos & derivados , Glicina/uso terapêutico , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Isoquinolinas/uso terapêutico , Isoquinolinas/administração & dosagem , Síndromes Mielodisplásicas/tratamento farmacológico , Inibidores de Prolil-Hidrolase/uso terapêutico , Estudos Retrospectivos
12.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726798

RESUMO

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Assuntos
Apoptose , Neoplasias da Mama , Prolina Dioxigenases do Fator Induzível por Hipóxia , Humanos , Feminino , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Camundongos , Hipóxia Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Tirapazamina/farmacologia , Tirapazamina/química , Tirapazamina/metabolismo
13.
Nat Cancer ; 5(6): 916-937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637657

RESUMO

Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.


Assuntos
Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Leucemia Mieloide Aguda , Inibidores de Prolil-Hidrolase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Animais , Camundongos , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes
14.
Mol Carcinog ; 63(7): 1303-1318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634741

RESUMO

The expression pattern of MUC1-C in tumors is closely linked to tumor progression; however, its specific mechanism remains unclear. The expression of MUC1-C in cancer and adjacent normal tissues was detected using immunohistochemistry and Western blot. The IC50 of cells to gemcitabine was determined using the CCK8 assay. The effects of hypoxia and MUC1-C on the behavioral and metabolic characteristics of bladder cancer cells were investigated. Gene expression was assessed through Western blot and polymerase chain reaction. The relationship between the genes was analyzed by co-immunoprecipitation, immunofluorescence and Western blot. Finally, the role of the EGLN2 and NF-κB signaling pathways in the interaction between MUC1-C and hypoxia-inducible factor-1α (HIF-1α) was investigated. MUC1-C expression is significantly higher in bladder cancer tissues than in adjacent normal tissues, particularly in large-volume tumors, and is closely correlated with clinical features such as tumor grade. Tumor volume-mediated hypoxia resulted in increased expression of MUC1-C and HIF-1α in bladder cancer cells. Under stimulation of hypoxia, the inhibitory effect of EGLN2 on the NF-κB signaling pathway was weakened, allowing NF-κB to promote the positive feedback formation of MUC1-C and HIF-1α. Simultaneously, EGLN2-mediated degradation of HIF-1α was reduced. This ultimately led to elevated HIF-1α-mediated downstream gene expression, promoting increased glucose uptake and glycolysis, and ultimately resulting in heightened chemotherapy resistance and malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Mucina-1 , Transdução de Sinais , Neoplasias da Bexiga Urinária , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Gencitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Mucina-1/metabolismo , Mucina-1/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética
15.
Nat Commun ; 15(1): 3533, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670937

RESUMO

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia , Imunidade Inata , Fator Regulador 3 de Interferon , Oxigênio , Prolina , Peixe-Zebra , Animais , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Fator Regulador 3 de Interferon/metabolismo , Hidroxilação , Humanos , Prolina/metabolismo , Camundongos , Oxigênio/metabolismo , Células HEK293 , Fosforilação , Camundongos Knockout , Transdução de Sinais , Camundongos Endogâmicos C57BL
16.
Life Sci ; 346: 122641, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614299

RESUMO

AIMS: Kidney disease often leads to anemia due to a defect in the renal production of the erythroid growth factor erythropoietin (EPO), which is produced under the positive regulation of hypoxia-inducible transcription factors (HIFs). Chemical compounds that inhibit HIF-prolyl hydroxylases (HIF-PHs), which suppress HIFs, have been developed to reactivate renal EPO production in renal anemia patients. Currently, multiple HIF-PH inhibitors, in addition to conventional recombinant EPO reagents, are used for renal anemia treatment. This study aimed to elucidate the therapeutic mechanisms and drug-specific properties of HIF-PH inhibitors. METHODS AND KEY FINDINGS: Gene expression analyses and mass spectrometry revealed that HIF-PH inhibitors (daprodustat, enarodustat, molidustat, and vadadustat) alter Epo gene expression levels in the kidney and liver in a drug-specific manner, with different pharmacokinetics in the plasma and urine after oral administration to mice. The drug specificity revealed the dominant contribution of EPO induction in the kidneys rather than in the liver to plasma EPO levels after HIF-PH inhibitor administration. We also found that several HIF-PH inhibitors directly induce duodenal gene expression related to iron intake, while these drugs indirectly suppress hepatic hepcidin expression to mobilize stored iron for hemoglobin synthesis through induction of the EPO-erythroferrone axis. SIGNIFICANCE: Renal EPO induction is the major target of HIF-PH inhibitors for their therapeutic effects on erythropoiesis. Additionally, the drug-specific properties of HIF-PH inhibitors in EPO induction and iron metabolism have been shown in mice, providing useful information for selecting the proper HIF-PH inhibitor for each renal anemia patient.


Assuntos
Eritropoetina , Prolina Dioxigenases do Fator Induzível por Hipóxia , Rim , Fígado , Inibidores de Prolil-Hidrolase , Pirazóis , Triazóis , Animais , Eritropoetina/metabolismo , Camundongos , Rim/metabolismo , Rim/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/farmacologia , Masculino , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Anemia/tratamento farmacológico , Anemia/metabolismo , Camundongos Endogâmicos C57BL
17.
Clin Exp Nephrol ; 28(5): 391-403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530490

RESUMO

BACKGROUND: Vadadustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor developed for treating anemia in chronic kidney disease (CKD). The purpose of this post-hoc analysis was to investigate the factors affecting the responsiveness to vadadustat in anemia patients with nondialysis-dependent (NDD) or hemodialysis-dependent (HDD) CKD in two Japanese phase 3 studies. METHODS: Of 151 and 162 patients enrolled in NDD-CKD and HDD-CKD studies, 136 and 140 patients, respectively, were included and divided into subgroups for the analysis. To assess vadadustat responsiveness, the resistance index was defined as the mean body weight-adjusted dose of vadadustat (mg/kg) at weeks 20-24 divided by the mean hemoglobin (g/dL) at weeks 20-24. Multivariate analysis was performed to identify the variables affecting the resistance index. RESULTS: Independent factors identified as determinants for better response to vadadustat were as follows: high baseline hemoglobin, low baseline eGFR, high week-20-24 ferritin, and CKD not caused by autoimmune disease/glomerulonephritis/vasculitis in NDD-CKD; and male sex, high baseline C-reactive protein, and low baseline erythropoiesis-stimulating agent resistance index (ERI) in HDD-CKD. CONCLUSIONS: In this post-hoc analysis, several factors were identified as affecting the response to vadadustat. These results may provide useful information leading to an appropriate dose modification for vadadustat. CLINICAL TRIAL REGISTRATION: NCT03329196 (MT-6548-J01) and NCT03439137 (MT-6548-J03).


Assuntos
Anemia , Glicina , Hemoglobinas , Ácidos Picolínicos , Insuficiência Renal Crônica , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anemia/tratamento farmacológico , Anemia/etiologia , Método Duplo-Cego , População do Leste Asiático , Ferritinas/sangue , Taxa de Filtração Glomerular , Glicina/análogos & derivados , Glicina/uso terapêutico , Hematínicos/uso terapêutico , Hemoglobinas/metabolismo , Hemoglobinas/análise , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Japão , Inibidores de Prolil-Hidrolase/uso terapêutico , Diálise Renal , Insuficiência Renal Crônica/complicações , Resultado do Tratamento
18.
Geroscience ; 46(4): 3945-3956, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38462569

RESUMO

Obesity and exercise intolerance greatly reduce the life quality of older people. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an important enzyme in modulating hypoxia-inducible factor-alpha (HIF) protein. Using vascular endothelial cell-specific PHD2 gene knockout (PHD2 ECKO) mice, we investigated the role of endothelial PHD2 in aging-related obesity and exercise capacity. Briefly, PHD2 ECKO mice were obtained by crossing PHD2-floxed mice with VE-Cadherin (Cdh5)-Cre transgenic mice. The effect of PHD2 ECKO on obesity and exercise capacity in PHD2 ECKO mice and control PHD2f/f mice were determined in young mice (6 to 7 months) and aged mice (16-18 months). We found that aged PHD2 ECKO mice, but not young mice, exhibited a lean phenotype, characterized by lower fat mass, and its ratio to lean weight, body weight, or tibial length, while their food uptake was not reduced compared with controls. Moreover, as compared with aged control mice, aged PHD2 ECKO mice exhibited increased oxygen consumption at rest and during exercise, and the maximum rate of oxygen consumption (VO2 max) during exercise. Furthermore, as compared with corresponding control mice, both young and aged PHD2 ECKO mice demonstrated improved glucose tolerance and lower insulin resistance. Together, these data demonstrate that inhibition of vascular endothelial PHD2 signaling significantly attenuates aging-related obesity, exercise intolerance, and glucose intolerance.


Assuntos
Envelhecimento , Tolerância ao Exercício , Prolina Dioxigenases do Fator Induzível por Hipóxia , Camundongos Knockout , Obesidade , Animais , Obesidade/genética , Envelhecimento/fisiologia , Envelhecimento/genética , Envelhecimento/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Tolerância ao Exercício/fisiologia , Condicionamento Físico Animal/fisiologia , Masculino , Consumo de Oxigênio/fisiologia , Resistência à Insulina/fisiologia , Resistência à Insulina/genética , Modelos Animais de Doenças
19.
Life Sci ; 344: 122564, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492922

RESUMO

AIMS: Prolyl hydroxylase domain 2 (PHD2), encoded by the Egln1 gene, serves as a pivotal regulator of the hypoxia-inducible factor (HIF) pathway and acts as a cellular oxygen sensor. Somatic inactivation of Phd2 in mice results in polycythemia and congestive heart failure. However, due to the embryonic lethality of Phd2 deficiency, its role in development remains elusive. Here, we investigated the function of two egln1 paralogous genes, egln1a and egln1b, in zebrafish. MAIN METHODS: The egln1 null zebrafish were generated using the CRISPR/Cas9 system. Quantitative real-time PCR assays and Western blot analysis were employed to detect the effect of egln1 deficiency on the hypoxia signaling pathway. The hypoxia response of egln1 mutant zebrafish were assessed by analyzing heart rate, gill agitation frequency, and blood flow velocity. Subsequently, o-dianisidine staining and in situ hybridization were used to investigate the role of egln1 in zebrafish hematopoietic function. KEY FINDINGS: Our data show that the loss of egln1a or egln1b individually has no visible effects on growth rate. However, the egln1a; egln1b double mutant displayed significant growth retardation and elevated mortality at around 2.5 months old. Both egln1a-null and egln1b-null zebrafish embryo exhibited enhanced tolerance to hypoxia, systemic hypoxic response that include hif pathway activation, increased cardiac activity, and polycythemia. SIGNIFICANCE: Our research introduces zebrafish egln1 mutants as the first congenital embryonic viable systemic vertebrate animal model for PHD2, providing novel insights into hypoxic signaling and the progression of PHD2- associated disease.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia , Hipóxia , Policitemia , Peixe-Zebra , Animais , Camundongos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Policitemia/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474262

RESUMO

Detrimental molecular processes in multiple sclerosis (MS) lead to the cellular accumulation of lipid peroxidation products and iron in the CNS, which represents the main driving force for ferroptosis. Ferroptosis is an iron-dependent form of regulated cell death, with proposed roles in neurodegeneration, oligodendrocyte loss and neuroinflammation in the pathogenesis of MS. Ferroptosis-related gene expression signature and molecular markers, which could reflect MS severity and progression, are currently understudied in humans. To tackle these challenges, we have applied a curated approach to create and experimentally analyze a comprehensive panel of ferroptosis-related genes covering a wide range of biological processes associated with ferroptosis. We performed the first ferroptosis-related targeted RNAseq on PBMCs from highly distinctive MS phenotype groups: mild relapsing-remitting (RR) (n = 24) and severe secondary progressive (SP) (n = 24), along with protein detection of GPX4 and products of lipid peroxidation (MDA and 4-HNE). Out of 138 genes, 26 were differentially expressed genes (DEGs), indicating changes in both pro- and anti-ferroptotic genes, representing a molecular signature associated with MS severity. The top three DEGs, as non-core ferroptosis genes, CDKN1A, MAP1B and EGLN2, were replicated by qPCR to validate findings in independent patient groups (16 RR and 16 SP MS). Co-expression and interactions of DEGs were presented as additional valuable assets for deeper understanding of molecular mechanisms and key targets related to MS severity. Our study integrates a wide genetic signature and biochemical markers related to ferroptosis in easily obtainable PBMCs of MS patients with clinical data and disease severity, thus providing novel molecular markers which can complement disease-related changes in the brain and undergo further research as potential therapeutic targets.


Assuntos
Ferroptose , Esclerose Múltipla , Humanos , Transcriptoma , Recidiva Local de Neoplasia , Gravidade do Paciente , Ferro , Prolina Dioxigenases do Fator Induzível por Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...