Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 18(1): 19, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490612

RESUMO

BACKGROUND: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. RESULTS: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. CONCLUSIONS: Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Queijo/virologia , Genoma Viral , Filogenia , Propionibacterium acnes/virologia , Propionibacterium freudenreichii/virologia , Bacteriófagos/ultraestrutura , Composição de Bases , Sequência de Bases , Queijo/microbiologia , Mapeamento Cromossômico , Variação Genética , Genômica , Especificidade de Hospedeiro , Lisogenia , Anotação de Sequência Molecular , Prófagos/genética , Propionibacteriaceae/virologia , Propionibacterium/virologia , Sequenciamento Completo do Genoma
2.
J Microbiol Biotechnol ; 17(10): 1704-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18156789

RESUMO

Monitoring of the phage-host system of Microlunatus phosphovorus indigenous in activated sludge was attempted. A laboratory-scale activated sludge process was operated for 5 weeks with synthetic wastewater. The phage-host system population in the process was monitored by plaque assay and FISH methods at every 3 days. During the process operation, the phage-host system populations were more or less steady, except for 1 week in the middle of the operation. In that period, initially M. phosphovorus decreased significantly and its lytic bacteriophages increased, and then M. phosphovorus increased back to its original level while its lytic bacteriophages decreased. This observation suggests that lytic bacteriophages should be considered as one of the biological factors affecting the bacterial population dynamics in activated sludge processes.


Assuntos
Bacteriófagos , Propionibacteriaceae/virologia , Esgotos/microbiologia , Bacteriólise , Hibridização in Situ Fluorescente , Ensaio de Placa Viral
3.
Lett Appl Microbiol ; 42(3): 259-64, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478514

RESUMO

AIMS: To isolate and characterize lytic-bacteriophages specific to Microlunatus phosphovorus, and prepare fluorescently labelled phages (FLPs) for the rapid detection of the host bacterium in activated sludge. METHODS AND RESULTS: Isolation of bacteriophages lytic to M. phosphovorus was attempted by applying supernatants of activated sludge processes on the lawn of M. phosphovorus JCM9379 for plaque formation. Thirteen bacteriophage isolates were obtained. The restriction fragment length polymorphism analysis distinguished them into two different bacteriophages designated as phiMP1 and phiMP2. They were found to possess double-stranded DNA and host specificity. Morphological observations were done by electron microscopy. The bacteriophage particles stained by SYBR Green I was shown to be applicable to detect their host bacterial cells mixed with activated sludge. CONCLUSIONS: Two M. phosphovorus-specific bacteriophages were isolated and classified as Siphoviridae. FLPs of them were prepared, and successfully applied to detect the host bacterium added into the activated sludge. SIGNIFICANCE AND IMPACT OF THE STUDY: At least some of bacteria in activated sludge are susceptible to their related bacteriophages. Bacteriophages lytic to activated sludge bacteria could be affecting the bacterial population in activated sludge. The FLPs could be used for the easy-rapid detection of their host bacterium in activated sludge.


Assuntos
Bacteriófagos/isolamento & purificação , Microbiologia Ambiental , Propionibacteriaceae/virologia , Esgotos/microbiologia , Bacteriólise , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Fluorescência , Microscopia Eletrônica de Transmissão , Propionibacteriaceae/isolamento & purificação , Propionibacteriaceae/fisiologia , Especificidade da Espécie , Coloração e Rotulagem , Tóquio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...