Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasites Hosts Dis ; 62(2): 205-216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835261

RESUMO

Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 µm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 µm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1µm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.


Assuntos
Clonorchis sinensis , Glutationa Transferase , Oxirredutases Intramoleculares , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Clonorchis sinensis/enzimologia , Clonorchis sinensis/genética , Animais , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Lipocalinas/metabolismo , Lipocalinas/genética , Lipocalinas/química , Lipocalinas/imunologia , Escherichia coli/genética , Prostaglandina H2/metabolismo , Prostaglandina H2/química , Cinética
2.
Inflammation ; 46(3): 893-911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36598592

RESUMO

Inflammation is a hallmark in severe diseases such as atherosclerosis and non-alcohol-induced steatohepatitis (NASH). In the development of inflammation, prostaglandins, especially prostaglandin E2 (PGE2), are major players alongside with chemo- and cytokines, like tumor-necrosis-factor alpha (TNFα) and interleukin-1 beta (IL-1ß). During inflammation, PGE2 synthesis can be increased by the transcriptional induction of the two key enzymes: cyclooxygenase 2 (COX-2), which converts arachidonic acid to PGH2, and microsomal prostaglandin E2 synthase 1 (mPGES-1), which synthesizes PGE2 from PGH2. Both COX-2 and mPGES-2 were induced by a dietary intervention where mice were fed a fatty acid-rich and, more importantly, cholesterol-rich diet, leading to the development of NASH. Since macrophages are the main source of PGE2 synthesis and cholesterol is predominantly transported as LDL, the regulation of COX-2 and mPGES-1 expression by native LDL was analyzed in human macrophage cell lines. THP-1 and U937 monocytes were differentiated into macrophages, through which TNFα and PGE-2 induced COX-2 and mPGES-1 expression by LDL could be analyzed on both mRNA and protein levels. In addition, the interaction of LDL- and EP receptor signal chains in COX-2/mPGES-1 expression and PGE2-synthesis were analyzed in more detail using EP receptor specific agonists. Furthermore, the LDL-mediated signal transduction in THP-1 macrophages was analyzed by measuring ERK and Akt phosphorylation as well as transcriptional regulation of transcription factor Egr-1. COX-2 and mPGES-1 were induced in both THP-1 and U937 macrophages by the combination of TNFα and PGE2. Surprisingly, LDL dose-dependently increased the expression of mPGES-1 but repressed the expression of COX-2 on mRNA and protein levels in both cell lines. The interaction of LDL and PGE2 signal chains in mPGES-1 induction as well as PGE2-synthesis could be mimicked by through simultaneous stimulation with EP2 and EP4 agonists. In THP-1 macrophages, LDL induced Akt-phosphorylation, which could be blocked by a PI3 kinase inhibitor. Alongside blocking Akt-phosphorylation, the PI3K inhibitor inhibited LDL-mediated mPGES-1 induction; however, it did not attenuate the repression of COX-2 expression. LDL repressed basal ERK phosphorylation and expression of downstream transcription factor Egr-1, which might lead to inhibition of COX-2 expression. These findings suggest that simultaneous stimulation with a combination of TNFα, PGE2, and native LDL-activated signal chains in macrophage cell lines leads to maximal mPGES-1 activity, as well repression of COX-2 expression, by activating PI3K as well as repression of ERK/Egr-1 signal chains.


Assuntos
Dinoprostona , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Ciclo-Oxigenase 1/metabolismo , Prostaglandina H2/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo
3.
EMBO J ; 41(19): e108536, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924455

RESUMO

During development, hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium and will expand in a transient hematopoietic niche. Prostaglandin E2 (PGE2) is essential during vertebrate development and HSC specification, but its precise source in the embryo remains elusive. Here, we show that in the zebrafish embryo, PGE2 synthesis genes are expressed by distinct stromal cell populations, myeloid (neutrophils, macrophages), and endothelial cells of the caudal hematopoietic tissue. Ablation of myeloid cells, which produce the PGE2 precursor prostaglandin H2 (PGH2), results in loss of HSCs in the caudal hematopoietic tissue, which could be rescued by exogeneous PGE2 or PGH2 supplementation. Endothelial cells contribute by expressing the PGH2 import transporter slco2b1 and ptges3, the enzyme converting PGH2 into PGE2. Of note, differential niche cell expression of PGE2 biosynthesis enzymes is also observed in the mouse fetal liver. Taken altogether, our data suggest that the triad composed of neutrophils, macrophages, and endothelial cells sequentially and synergistically contributes to blood stem cell expansion during vertebrate development.


Assuntos
Hemangioblastos , Peixe-Zebra , Animais , Dinoprostona/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Prostaglandina H2/metabolismo
4.
Biomol NMR Assign ; 16(2): 225-229, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35445291

RESUMO

Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH2 to produce PGD2, an endogenous somenogen, in the brains of various mammalians. We recently reported that various other PGs also bind to L-PGDS, suggesting that it could serve as an extracellular carrier for PGs. Although the solution and crystal structure of L-PGDS has been determined, as has the structure of L-PGDS complexed PGH2 analog, a structural analysis of L-PGDS complexed with other PGs is needed in order to understand the mechanism responsible for the PG trapping. Here, we report the nearly complete 1H, 13C, and 15N backbone and side chain resonance assignments of the L-PGDS/PGJ2 complex and the binding site for PGJ2 on L-PGDS.


Assuntos
Oxirredutases Intramoleculares , Lipocalinas , Animais , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Mamíferos/metabolismo , Camundongos , Ressonância Magnética Nuclear Biomolecular , Prostaglandina H2/metabolismo
5.
Biochem Biophys Res Commun ; 569: 66-71, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237429

RESUMO

Prostaglandin D2 (PGD2), an endogenous somnogen, is a unique PG that is secreted into the cerebrospinal fluid. PGD2 is a relatively fragile molecule and should be transported to receptors localized in the basal forebrain without degradation. However, it remains unclear how PGD2 is stably carried to such remote receptors. Here, we demonstrate that the PGD2-synthesizing enzyme, Lipocalin-type prostaglandin D synthase (L-PGDS), binds not only its substrate PGH2 but also its product PGD2 at two distinct binding sites for both ligands. This behaviour implys its PGD2 carrier function. Nevertheless, since the high affinity (Kd = âˆ¼0.6 µM) of PGD2 in the catalytic binding site is comparable to that of PGH2, it may act as a competitive inhibitor, while our binding assay exhibits only weak inhibition (Ki = 189 µM) of the catalytic reaction. To clarify this enigmatic behavior, we determined the solution structure of L-PGDS bound to one substrate analog by NMR and compared it with the two structures: one in the apo form and the other in substrate analogue complex with 1:2 stoichiometry. The structural comparisons showed clearly that open or closed forms of loops at the entrance of ligand binding cavity are regulated by substrate binding to two sites, and that the binding to a second non-catalytic binding site, which apparently substrate concentration dependent, induces opening of the cavity that releases the product. From these results, we propose that L-PGDS is a unique enzyme having a carrier function and a substrate-induced product-release mechanism.


Assuntos
Domínio Catalítico , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina H2/metabolismo , Animais , Sítios de Ligação , Biocatálise , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Cinética , Lipocalinas/química , Lipocalinas/genética , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Mutação , Prostaglandina D2/química , Prostaglandina H2/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
6.
J Cell Mol Med ; 23(12): 8343-8354, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628732

RESUMO

Uncontrollable bleeding is still a worldwide killer. In this study, we aimed to investigate a novel approach to exhibit effective haemostatic properties, which could possibly save lives in various bleeding emergencies. According to the structure-based enzymatic design, we have engineered a novel single-chain hybrid enzyme complex (SCHEC), COX-1-10aa-TXAS. We linked the C-terminus of cyclooxygenase-1 (COX-1) to the N-terminus of the thromboxane A2 (TXA2 ) synthase (TXAS), through a 10-amino acid residue linker. This recombinant COX-1-10aa-TXAS can effectively pass COX-1-derived intermediate prostaglandin (PG) H2 (PGH2 ) to the active site of TXAS, resulting in an effective chain reaction property to produce the haemostatic prostanoid, TXA2 , rapidly. Advantageously, COX-1-10aa-TXAS constrains the production of other pro-bleeding prostanoids, such as prostacyclin (PGI2 ) and prostaglandin E2 (PGE2 ), through reducing the common substrate, PGH2 being passed to synthases which produce aforementioned prostanoids. Therefore, based on these multiple properties, this novel COX-1-10aa-TXAS indicated a powerful anti-bleeding ability, which could be used to treat a variety of bleeding situations and could even be useful for bleeding prone situations, including nonsteroidal anti-inflammatory drugs (NSAIDs)-resulted TXA2 -deficient and PGI2 -mediated bleeding disorders. This novel SCHEC has a great potential to be developed into a biological haemostatic agent to treat severe haemorrhage emergencies, which will prevent the complications of blood loss and save lives.


Assuntos
Aminoácidos/metabolismo , Ciclo-Oxigenase 1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tromboxano-A Sintase/metabolismo , Aminoácidos/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 1/genética , Dinoprostona/metabolismo , Epoprostenol/metabolismo , Células HEK293 , Hemorragia/prevenção & controle , Hemostáticos/metabolismo , Hemostáticos/farmacologia , Humanos , Camundongos Transgênicos , Agregação Plaquetária/efeitos dos fármacos , Prostaglandina H2/metabolismo , Proteínas Recombinantes de Fusão/genética , Tromboxano A2/metabolismo , Tromboxano-A Sintase/genética
7.
J Biol Chem ; 294(6): 1779-1793, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737317

RESUMO

Omega-6 polyunsaturated fatty acids were identified as essential nutrients in 1930. Their essentiality is largely due to their function as prostaglandin (PG) precursors. I spent most of my career in biochemistry determining how PG biosynthesis is regulated. PGs are lipid mediators formed in response to certain circulating hormones and cytokines. PGs act near their sites of synthesis to signal neighboring cells to coordinate their responses (e.g. when platelets interact with blood vessels). The committed step in PG synthesis is the conversion of a 20-carbon omega-6 fatty acid called arachidonic acid to prostaglandin endoperoxide H2 (PGH2). Depending on the tissue and the hormone or cytokine stimulus, this reaction is catalyzed by either cyclooxygenase-1 or cyclooxygenase-2 (COX-1 or COX-2). Once formed, PGH2 is converted, again depending on the context, to one of several downstream PG subtypes that act via specific G protein-coupled receptors. Nonsteroidal anti-inflammatory drugs (e.g. aspirin, ibuprofen, and naproxen) block PG synthesis by inhibiting COX-1 and COX-2. COX-2 is also inhibited by COX-2-selective inhibitors. Inhibition of COX-1 by low-dose aspirin prevents thrombosis. COX-2 inhibition reduces inflammation and pain. Investigating the mysteries of COXs anchored my scientific career. I attribute my successes to the great good fortune of having been surrounded by people who helped me make the most of my talents. I have written this reflection in a light-hearted fashion as a self-help essay, while highlighting the people and factors that most impacted me during my upbringing and then during my maturation and evolution as a biochemist.


Assuntos
Anti-Inflamatórios não Esteroides , Bioquímica/história , Ciclo-Oxigenase 1 , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/história , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 1/história , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/história , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/história , Inibidores de Ciclo-Oxigenase 2/farmacologia , História do Século XX , História do Século XXI , Humanos , Prostaglandina H2/história , Prostaglandina H2/metabolismo
8.
Life Sci ; 176: 26-34, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341178

RESUMO

AIMS: To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. MAIN METHODS: To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). KEY FINDINGS: Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O2-) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF2α receptor antagonist) or SQ29584 [PGH2/thromboxane TXA2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O2- and hydrogen peroxide (H2O2) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. SIGNIFICANCE: These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature.


Assuntos
Aorta/metabolismo , Ciclo-Oxigenase 2/metabolismo , Nitroprussiato/farmacologia , Prostaglandina H2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vasodilatação/efeitos dos fármacos
9.
Anal Biochem ; 511: 17-23, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27485270

RESUMO

Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 µM in the LAD2 cell assay.


Assuntos
Inibidores Enzimáticos/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/química , Lipocalinas/antagonistas & inibidores , Lipocalinas/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Prostaglandina D2/biossíntese , Prostaglandina D2/sangue , Prostaglandina H2/química , Prostaglandina H2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Arch Biochem Biophys ; 603: 29-37, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27177970

RESUMO

Through linking inducible cyclooxygenase (COX)-2 with microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), a Single-Chain Enzyme Complex (SCEC, COX-2-10aa-mPGES-1) was engineered to mimic a specific inflammatory PGE2 biosynthesis from omega-6 fatty acid, arachidonic acid (AA), by eliminating involvements of non-inducible COX-1 and other PGE2 synthases. Using the SCEC, we characterized coupling reactions between COX-2 and mPGES-1 at 1:1 ratio of inflammatory PGE2 production. AA demonstrated two phase activities to regulate inflammatory PGE2 production. In the first phase (<2 µM), AA was a COX-2 substrate and converted to increasing production of PGE2. In the second phase with a further increased AA level (2-10 µM), AA bound to mPGES-1 and inhibited the PGE2 production. The SCEC study was identical to the co-expression of COX-2 and mPGES-1. This was further confirmed by using mPGES-1 and PGH2 as a direct enzyme target and substrate, respectively. Furthermore, the carboxylic acid group of AA binding to R67 and R70 of mPGES-1 was identified by X-ray structure-based docking and mutagenesis. mPGES-1 mutants, R70A, R70K, R67A and R67K, lost 40-100% binding to [(14)C]-AA. To conclude, a cellular model, in which AA is involved in self-controlling initial initiating and later resolving inflammation by its two phase activities, was discussed.


Assuntos
Ácido Araquidônico/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Prostaglandina H2/metabolismo , Prostaglandina-E Sintases/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Domínio Catalítico , Cristalografia por Raios X , Ciclo-Oxigenase 2/genética , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Inflamação , Mutagênese Sítio-Dirigida , Prostaglandina-E Sintases/genética , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Sci Rep ; 6: 26608, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197559

RESUMO

Definitive haematopoiesis occurs during the lifetime of an individual, which continuously replenishes all blood and immune cells. During embryonic development, haematopoietic stem cell (HSC) formation is tightly controlled by growth factors, signalling molecules and transcription factors. But little is known about roles of the cytochrome P450 (CYP) 2 family member in the haematopoiesis. Here we report characterization and functional studies of Cyp2aa9, a novel zebrafish Cyp2 family member. And demonstrate that the cyp2aa9 is required for the HSC formation and homeostasis. Knockdown of cyp2aa9 by antisense morpholino oligos resulted the definitive HSC development is defective and the Wnt/ß-catenin activity becomes reduced. The impaired HSC formation caused by cyp2aa9 morpholino can be rescued by administration of PGE2 through the cAMP/PKA pathway. Furthermore, the in vivo PGE2 level decreases in the cyp2aa9 morphants, and none of the PGE2 precursors is able to rescue phenotypes in the Cyp2aa9-deficient embryos. Taken together, these data indicate that Cyp2aa9 is functional in the step of PGE2 synthesis from PGH2, thus promoting Wnt activation and definitive HSC development.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/enzimologia , Sistemas do Segundo Mensageiro/fisiologia , Peixe-Zebra/embriologia , Animais , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dinoprostona/biossíntese , Dinoprostona/genética , Células-Tronco Hematopoéticas/citologia , Prostaglandina H2/genética , Prostaglandina H2/metabolismo , Peixe-Zebra/genética
12.
Int J Biol Macromol ; 88: 624-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27012893

RESUMO

Microsomal prostaglandin E synthase-1 (mPGES-1) is a membrane protein which plays crucial role in arachidonic acid metabolism, in the catalysis of PGH2 to PGE2. It is a potential drug target involved in variety of human cancers and inflammatory disorders. In the present study we made an attempt to identify crucial amino acid residues involved in the effective binding of its inhibitors at the active site. Molecular docking and Structure Activity Relationship (SAR) studies were performed. In the present study 127 inhibitors having significant variability in parent scaffold were considered. The results clearly indicated that in the GSH and PGH2 binding site Arg70, Arg73, Asn74, Glu77, His113, Tyr117, Arg126, Ser127, Tyr130, Thr131 and Ala138 consistently form crucial interactions with inhibitors of different classes/scaffolds. These findings are consistent with that of existing reports on the active site residues pivotal at mPGES-1 active site. Further analysis suggested that out of all important amino acid residues identified; Arg73, Asn74, His113, Tyr117, Arg126, Ser127, Tyr130, Thr131 and Ala138 play a crucial role in hydrogen and π-π interactions. The identified amino acid residues can act as target sites for the design and development of drug candidates against mPGES-1.


Assuntos
Inibidores Enzimáticos/química , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/química , Relação Estrutura-Atividade , Aminoácidos/química , Aminoácidos/metabolismo , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico , Dinoprostona/química , Dinoprostona/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Prostaglandina H2/química , Prostaglandina H2/metabolismo , Prostaglandina-E Sintases/metabolismo
13.
Biochemistry ; 54(23): 3707-15, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25988363

RESUMO

In vascular inflammation, prostaglandin E2 (PGE2) is largely biosynthesized by microsomal PGE2 synthase-1 (mPGES-1), competing with other downstream eicosanoid-synthesizing enzymes, such as PGIS, a synthase of a vascular protector prostacyclin (PGI2), to isomerize the cyclooxygenase (COX)-2-derived prostaglandin H2 (PGH2). In this study, we found that a majority of the product from the cells co-expressing human COX-2, mPGES-1, and PGIS was PGE2. We hypothesize that the molecular and cellular mechanisms are related to the post-translational endoplasmic reticulum (ER) arrangement of those enzymes. A set of fusion enzymes, COX-2-linker [10 amino acids (aa)]-PGIS and COX-2-linker (22 amino acids)-PGIS, were created as "The Bioruler", in which the 10 and 22 amino acids are defined linkers with known helical structures and distances (14.4 and 30.8 Å, respectively). Our experiments have shown that the efficiency of PGI2 biosynthesis was reduced when the separation distance increased from 10 to 22 amino acids. When COX-2-10aa-PGIS (with a 14.4 Å separation) was co-expressed with mPGES-1 on the ER membrane, a major product was PGE2, but not PGI2. However, expression of COX-2-10aa-PGIS and mPGES-1 on a separated ER with a distance of ≫30.8 Å reduced the level of PGE2 production. These data indicated that the mPGES-1 is "complex-likely" colocalized with COX-2 within a distance of 14.4 Å. In addition, the cells co-expressing COX-1-10aa-PGIS and mPGES-1 produced PGI2 mainly, but not PGE2. This indicates that mPGES-1 is expressed much farther from COX-1. These findings have led to proposed models showing the different post-translational ER organization between COX-2 and COX-1 with respect to the topological arrangement of the mPGES-1 during vascular inflammation.


Assuntos
Ácido Araquidônico/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Retículo Endoplasmático Liso/enzimologia , Oxirredutases Intramoleculares/metabolismo , Modelos Biológicos , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dinoprostona/metabolismo , Retículo Endoplasmático Liso/metabolismo , Epoprostenol/metabolismo , Células HEK293 , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Peso Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Prostaglandina H2/metabolismo , Prostaglandina-E Sintases , Engenharia de Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-25224839

RESUMO

Previously, we have demonstrated that prostamide/PGF synthase, which catalyzes the reduction of prostaglandin (PG) H2 to PGF2α, is constitutively expressed in myelin sheaths and cultured oligodendrocytes, suggesting that PGF2α has functional significance in myelin-forming oligodendrocytes. To investigate the effects of PGF2α/FP receptor signaling on demyelination, we administrated FP receptor agonist and antagonist to cuprizone-exposed mice, a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, glial activation, proinflammatory cytokine expression, and motor dysfunction. Administration of the FP receptor antagonist AL-8810 attenuated cuprizone-induced demyelination, glial activation, and TNFα expression in the corpus callosum, and also improved the motor function. These data suggest that during cuprizone-induced demyelination, PGF2α/FP receptor signaling contributes to glial activation, neuroinflammation, and demyelination, resulting in motor dysfunction. Thus, FP receptor inhibition may be a useful symptomatic treatment in multiple sclerosis.


Assuntos
Doenças Desmielinizantes/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/patologia , Dinoprosta/administração & dosagem , Dinoprosta/análogos & derivados , Modelos Animais de Doenças , Humanos , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Prostaglandina H2/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
15.
PLoS One ; 9(8): e104118, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111383

RESUMO

Lipocalin-type prostaglandin D synthase (L-PGDS) has been correlated with the progression of neurological disorders. The present study aimed at evaluating the imaging potency of a glutathione conjugate of fluorine-18-labeled fluorobutyl ethacrynic amide ([18F]FBuEA-GS) for brain tumors. Preparation of [18F]FBuEA-GS has been modified from the -4-tosylate derivative via radiofluorination in 5% radiochemical yield. The mixture of nonradioactive FBuEA-GS derived from a parallel preparation has be resolved to two isomers in a ratio of 9:1 using analytic chiral reversed phase high performance liquid chromatography (RP-HPLC). The two fluorine-18-labeled isomers purified through nonchiral semipreparative RP-HPLC as a mixture were studied by assessing the binding affinity toward L-PGDS through a gel filtration HPLC, by analyzing radiotracer accumulation in C6 glioma cells, and by evaluating the imaging of radiotracer in a C6 glioma rat with positron emission tomography. The inhibition percentage of the production of PGD2 from PGH2 at the presence of 200 µM of FBuEA-GS and 4-Dibenzo[a,d]cyclohepten-5-ylidene-1-[4-(2H-tetrazol-5-yl)butyl]piperidine (AT-56) were 74.1 ± 4.8% and 97.6 ± 16.0%, respectively. [18F]FBuEA-GS bound L-PGDS (16.3-21.7%) but not the isoform, microsomal prostaglandin E synthase 1. No binding to GST-alpha and GST-pi was observed. The binding strength between [18F]FBuEA-GS and L-PGDS has been evaluated using analytic gel filtration HPLC at the presence of various concentrations of the cold competitor FBuEA-GS. The contrasted images indicated that the radiotracer accumulation in tumor lesions is probably related to the overexpression of L-PGDS.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Radioisótopos de Flúor , Regulação Neoplásica da Expressão Gênica , Glutationa/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Amidas/química , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glutationa/farmacologia , Masculino , Prostaglandina D2/biossíntese , Prostaglandina H2/metabolismo , Traçadores Radioativos , Radioquímica , Ratos , Ratos Sprague-Dawley
16.
Prostaglandins Other Lipid Mediat ; 107: 26-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24045148

RESUMO

Microsomal prostaglandin E synthase-1 (mPGES-1) inhibition has been suggested as an alternative to cyclooxygenase (COX) inhibition in the treatment of pain and inflammation. We characterized a selective inhibitor of mPGES-1 activity (compound III) and studied its impact on the prostanoid profile in various models of inflammation. Compound III is a benzoimidazole, which has a submicromolar IC50 in both human and rat recombinant mPGES-1. In cellular assays, it reduced PGE2 production in A549 cells, mouse macrophages and blood, causing a shunt to the prostacyclin pathway in the former two systems. Lastly, we assayed compound III in the air pouch model to verify its impact on the prostanoid profile and compare it to the profile obtained in mPGES-1 k.o. mice. As opposed to mPGES-1 genetic deletion, which attenuated PGE2 production and caused a shunt to the thromboxane pathway, mPGES-1 inhibition with compound III reduced PGE2 production and tended to decrease the levels of other prostanoids.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Ácidos Isonipecóticos/farmacologia , Animais , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Humanos , Concentração Inibidora 50 , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Prostaglandina H2/metabolismo , Prostaglandina-E Sintases , Ratos , Tromboxano B2/metabolismo
17.
J Lipid Res ; 54(11): 2979-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009185

RESUMO

12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) has long been considered a by-product of thromboxane A2 (TxA2) biosynthesis with no biological activity. Recently, we reported 12-HHT to be an endogenous ligand for BLT2, a low-affinity leukotriene B4 receptor. To delineate the biosynthetic pathway of 12-HHT, we established a method that enables us to quantify various eicosanoids and 12-HHT using LC-MS/MS analysis. During blood coagulation, 12-HHT levels increased in a time-dependent manner and were relatively higher than those of TxB2, a stable metabolite of TxA2. TxB2 production was almost completely inhibited by treatment with ozagrel, an inhibitor of TxA synthase (TxAS), while 12-HHT production was inhibited by 80-90%. Ozagrel-treated blood also exhibited accumulation of PGD2 and PGE2, possibly resulting from the shunting of PGH2 into synthetic pathways for these prostaglandins. In TxAS-deficient mice, TxB2 production during blood coagulation was completely lost, but 12-HHT production was reduced by 80-85%. HEK293 cells transiently expressing TxAS together with cyclooxygenase (COX)-1 or COX-2 produced both TxB2 and 12-HHT from arachidonic acid, while HEK293 cells expressing only COX-1 or COX-2 produced significant amounts of 12-HHT but no TxB2. These results clearly demonstrate that 12-HHT is produced by both TxAS-dependent and TxAS-independent pathways in vitro and in vivo.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Receptores do Leucotrieno B4/metabolismo , Tromboxano-A Sintase/metabolismo , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Plaquetas/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandina H2/metabolismo , Tromboxano B2/biossíntese , Tromboxano-A Sintase/antagonistas & inibidores , Tromboxano-A Sintase/deficiência , Tromboxano-A Sintase/genética
18.
Int J Oncol ; 43(3): 746-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23807031

RESUMO

Prostacyclin synthase (PGIS or PTGIS) is an enzyme that catalyses the conversion of prostaglandin H2 (PGH2) to prostaglandin I2 (PGI2). PGI2 promotes cancer growth by activating peroxisome proliferator-activated receptor δ (PPARδ), and increases the expression levels of the pro-angiogenic factor vascular endothelial growth factor (VEGF). We found that the expression of the PGIS gene was enhanced in WI-38, TIG-3-20 and HEL human lung fibroblast cells and two cancer cell lines (NB-1 and G361) under hypoxic conditions. The main localization of PGIS changed from the cytoplasm to the nucleus by hypoxia in WI-38 cells. The induced PGIS had an enzymatic activity since the intracellular level of 6-keto-prostaglandin, a useful marker of PGI2 biosynthesis in vivo, was increased with the increasing levels of PGIS. Expression of VEGF was increased in parallel with PGIS induction under hypoxic conditions. PGIS knockdown resulted in the decreased expression of VEGF mRNA. Since VEGF is a known PPARδ target gene, we examined the effects of siRNAs targeting PPARδ on the expression of VEGF under hypoxic conditions. Knockdown of PPARδ suppressed the expression of VEGF under hypoxic conditions in WI-38 cells. These findings suggest that PGIS is induced by hypoxia and regulates the expression of VEGF in fibroblasts. Fibroblasts in the hypoxic area of tumors may have an important role in tumor growth and angiogenesis.


Assuntos
Hipóxia Celular/genética , Sistema Enzimático do Citocromo P-450/genética , Fibroblastos/metabolismo , Oxirredutases Intramoleculares/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/biossíntese , Epoprostenol/genética , Epoprostenol/metabolismo , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Oxirredutases Intramoleculares/biossíntese , Pulmão/citologia , Pulmão/metabolismo , PPAR gama/genética , Prostaglandina H2/genética , Prostaglandina H2/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
19.
Yao Xue Xue Bao ; 48(12): 1743-54, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24689230

RESUMO

Many studies have shown that chronic inflammation occurs in the brain of patients with Alzheimer's disease (AD). It is well known that long-term administration of non-steroidal anti-inflammatory drugs (NSAIDs) can alleviate the cognitive decline of AD patient and elderly. Several inflammatory cytokines produced in the metabolism of arachidonic acid (AA) are closely related to inflammatory diseases. Lipoxygenases (LOXs) and cyclooxygenases (COXs) play a crucial role in the AA network, the products eicosanoids have an important impact on the progression of AD. Although there are many arguments and conflicting evidence, currently LOXs and COXs are still the hot topics in the research on AD pathogenesis and drug development. Here, we review the progress in research on COXs and LOXs, including their actions on CNS and their association with AD, and explore the feasibility of LOXs and COXs as targets for the drugs to prevent and/or treat AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase/uso terapêutico , Inibidores de Lipoxigenase/uso terapêutico , Lipoxigenases/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Prostaglandina H2/metabolismo
20.
Pharmacogenet Genomics ; 22(9): 653-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22735388

RESUMO

BACKGROUND: Thromboxane A synthase (TXAS) metabolizes the cyclooxygenase product prostaglandin (PG) H2 into thromboxane H2 (TXA2), a potent inducer of blood vessel constriction and platelet aggregation. Nonsynonymous polymorphisms in the TXAS gene have the potential to alter TXAS activity and affect TXA2 generation. OBJECTIVES: The aim of this study was to assess the functional effects of genetic variants in the TXAS protein, including K258E, L357V, Q417E, E450K, and T451N. METHODS: Wild-type TXAS and the variant proteins were expressed in a bacterial system and purified by affinity and hydroxyapatite chromatography. The two characteristic catalytic activities of TXAS were assayed in each of the purified recombinant proteins: isomerization of PGH2 to TXA2 and fragmentation of PGH2 to 12-hydroxyheptadecatrienoic acid and malondialdehyde. RESULTS: All of the variants showed both isomerization and fragmentation activities. The Km values of the variants ranged from 27 to 52 µmol/l PGH2 (wild-type value: 32 µmol/l PGH2); the Vmax values of the variants ranged from 18 to 40 U/mg (wild-type value: 41 U/mg). The kinetic differences were largest for the L357V variant, whose Vmax/Km ratio was just 27% of the wild-type value. CONCLUSION: The increased Km and decreased Vmax values observed with L357V suggest that this variant may generate less TXA2 at the low levels of PGH2 expected in vivo, raising the possibility of attenuated signaling through the thromboxane pathway.


Assuntos
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Tromboxano-A Sintase/genética , Tromboxano-A Sintase/metabolismo , Biocatálise , Eletroforese em Gel de Poliacrilamida , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Prostaglandina H2/química , Prostaglandina H2/metabolismo , Tromboxano B2/biossíntese , Tromboxano-A Sintase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...